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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies , new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

The rapid invasion of industrial and process control applications by low-cost 
computer hardware, graphical-user-interface technology and high-level software 
packages has led to the emergence of the virtual instrumentation paradigm. In fact, 
some manufacturers quickly recognised the potential of these different aspects for 
exploitation in producing virtual instrumentation packages and modules as 
exemplified by the LabVIEW™ product from National Instruments. 

As this monograph makes clear, virtual instrumentation is a computer-based 
platform of hardware and software facilities that can be used to create customised 
instruments for a very wide range of measurement tasks. These facilities involve: a 
user interface to enable the flexible construction, operation and visualisation of the 
measurement task; computational software to allow advanced processing of the 
measurement data; and software to integrate hardware units and sensors into the 
virtual instrument and to orchestrate their operation. 

By way of comparison, Professor Fortuna and his colleagues consider “soft 
sensors” to be a far narrower concept within the topic of virtual instrumentation, 
stating that “soft sensors focus on the process of estimation of any system variable 
or product quality by using mathematical models, substituting some physical 
sensors and using data acquired from some other available ones.” Thus, the 
methods in this Advances in Industrial Control monograph have very strong links 
to the procedures of industrial-process-model identification and validation. 

The monograph opens with three chapters that establish the background to soft 
sensors; this presentation culminates in Chapter 3 where the complete design 
process for these sensors is described. Chapters 4, 5 and 6 are then sharply 
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focussed on the key steps in soft sensor design: data selection; model structure 
selection and model validation, respectively. Extensions to the basic steps of soft-
sensor design, namely soft-sensor performance enhancement and the modifications 
needed to facilitate different industrial process applications follow in Chapter 7 and 
8, respectively. Widening the applications range and role of soft sensors to fault 
detection and sensor validation configurations is dealt with in Chapter 9. 

A great strength of Soft Sensors for Monitoring and Control of Industrial 
Processes is the use, throughout the text, of a set of industrial case studies to 
demonstrate the successes and drawbacks of the different methods used to create 
soft-sensor models. A number of different methods may be used in each separate 
step of the soft-sensor design process and the industrial case studies are often used 
to provide explicit comparisons of the performance of these methods. The 
industrial control and process engineer will find these comparison exercises 
invaluable illustrations of the sort of results that might be found in industrial 
applications. 

The monograph also highlights the importance of using knowledge from 
industrial experts and from the existing industrial process literature. This is an 
important aspect of industrial control that is not very widely acknowledged or 
taught in control courses. Most industrial processes have already generated a 
significant experimental knowledge base and the control engineer should develop 
ways of tapping into this valuable resource when designing industrial control 
schemes. 

This is a monograph that is full of valuable information about the veracity of 
different methods and many other little informative asides. For example, in 
Chapter 9, there is a paragraph or two on trends in industrial applications. This 
small section seeks to determine whether and how nonlinear models are used in 
industrial applications. It presents some preliminary data and argument that “the 
number of nonlinear process applications studied through nonlinear models has 
been clearly increasing over the years, while nonlinear process applications with 
linearised models have been decreasing.” A very interesting finding that deserves 
further in-depth investigation and explanation. 

The industrial flavour of this monograph on soft sensors makes it an apposite 
volume for the Advances in Industrial Control series. It will be appreciated by the 
industrial control engineer for its practical insights and by the academic control 
researcher for its case-study applications and performance comparisons of the 
various theoretical procedures. 

M.J. Grimble and M.A. Johnson 
Glasgow, Scotland, U.K. 



 

Preface 

This book is about the design procedure of soft sensors and their applications for 
solving a number of problems in industrial environments.  

Industrial plants are being increasingly required to improve their production 
efficiency while respecting government laws that enforce tight limits on product 
specifications and on pollutant emissions, thus leading to ever more efficient 
measurement and control policies. In this context, the importance of monitoring a 
large set of process variables using adequate measuring devices is clear. However, 
a key obstacle to the implementation of large-scale plant monitoring and control 
policies is the high cost of on-line measurement devices.  

Mathematical models of processes, designed on the basis of experimental data, 
via system identification procedures, can greatly help, both to reduce the need for 
measuring devices and to develop tight control policies. Mathematical models, 
designed with the objectives mentioned above, are known either as virtual sensors, 
soft sensors, or inferential models.  

In the present book, design procedures for virtual sensors based on data-driven 
approaches are described from a theoretical point of view, and relevant case studies 
referring to real industrial applications, are described. The purpose of the book is to 
provide undergraduate and graduate students, researchers, and process 
technologists from industry, a monograph with basic information on the topic, 
suggesting step-by-step solutions to problems arising during the design phase. A 
set of industrial applications of soft sensors implemented in the real plants they 
were designed for, is introduced to highlight their potential.  

Theoretical issues regarding soft sensor design are illustrated in the framework 
of specific industrial applications. This is one of the valuable aspects of the book; 
in fact, it allows the reader to observe the results of applying different strategies in 
practical cases. Also, the strategies adopted can be adapted to cope with a large 
number of real industrial problems.  

The book is self-contained and is structured in order to guide the interested 
reader, even those not closely involved in inferential model design, in the 
development of their own soft sensors.   

Moreover, a structured bibliography reporting the state of the art of the research 
into, and the applications of, soft sensors is given. 
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All the case studies reported in the book are the result of collaboration between 
the authors and a number of industrial partners. Some of the soft sensors developed 
are implemented on-line at industrial plants. 

The book is structured in chapters that reflect the typical steps the designer 
should follow when developing his own applications. The reader can refer to the 
following scheme as a guide with which to search the book for solutions to 
particular aspects of a typical soft sensor design. Also, soft sensor design procedure 
is not straightforward and the designer sometimes needs to reconsider part of the 
design procedure. For this reason, in the scheme, a path represented by grey lines 
overlaps the book structure to represent possible soft sensor design evolution.     

Selection of historical data from plant 
database, outlier detection, data filtering 

 
Chapter 4 

Model validation 
 

Chapter 6 

Model structure  
and regressor selection 

 
Chapters 5,7 and 8  

Model estimation 
 

Chapters 5,7 and 8 

 
 



 Preface 
   

xi 

The state of the art on research into, and industrial applications of, soft sensors 
is reported in Chapter 1. Chapters 2 and 3 give some definitions and a short 
description of theoretical issues concerning soft sensor design procedures. 
Chapter 9 deals with the related topic of model-based fault detection and sensor 
validation, giving both the state of the art and two applications of sensor validation. 
Technical details of plants used as case studies are reported in the Appendix A.  

As a complement to the bibliography section, where works cited in the book are 
listed, a structured bibliography is provided, in Appendix B, with the aim of 
guiding the reader in his or her search for contributions on specific aspects of soft 
sensor design.    

Readers wishing to apply the techniques for soft sensor design described in the 
book will find data taken from real industrial applications in the book web site: 
www.springer.com/1-84628-479-1.   

 Catania, March 2006 
Luigi Fortuna 

Salvatore Graziani 
Alessandro Rizzo 

M. Gabriella Xibilia 
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1 

Soft Sensors in Industrial Applications  

1.1 Introduction 

Soft sensors are a valuable tool in many different industrial fields of application, 
including refineries, chemical plants, cement kilns, power plants, pulp and paper 
industry, food processing, nuclear plants, urban and industrial pollution 
monitoring, just to give a few examples. They are used to solve a number of 
different problems such as measuring system back-up, what-if analysis, real-time 
prediction for plant control, sensor validation and fault diagnosis strategies. 

This book deals with some key points of the soft sensors design procedure, 
starting from the necessary critical analysis of rough process data, to their 
performance analysis, and to topics related to on-line implementation. 

All the aspects of soft sensor design are dealt with both from a theoretical point 
of view, introducing a number of possible approaches, and with numerical 
examples taken from real industrial applications, which are used to illustrate the 
behavior of each approach.  

Industries are day by day faced with the choice of suitable production policies 
that are the result of a number of compromises among different constraints. Final 
product prices and quality are of course two relevant and competing factors which 
can determine the market success of an industry. Strictly related to such aspects are 
topics like power and raw materials consumption, especially because of the ever 
growing price of crude oil. Moreover, the observance of safety rules (according to 
several studies, inadequate management of abnormal situations represents a 
relevant cause of loss in industry) and environmental pollution issues contribute to 
increase the complexity of the outlined scenario. 

In recent decades, people and politicians have focused their attention on these 
topics, and regulations have been promoted by governments. Companies are 
required to respect laws that enforce more and more strict limits on product 
specifications and pollutant emissions of industrial plants.  

A relevant example is the Kyoto treaty, which is a legal agreement under which 
industrialized countries agreed to reduce their collective emissions of greenhouse 
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gases by 5.2% compared to the year 1990. The goal of the treaty is to lower overall 
emissions of six greenhouse gases – carbon dioxide (CO2), methane (CH4), nitrous 
oxide (N2O), sulfur hexafluoride (SF6), hydrofluorocarbons (HCFs), and 
perfluorocarbons (PFCs) – calculated as an average over the five-year period 
2008–12. The treaty came into force on February 16, 2005 following ratification by 
Russia on November 18, 2004. As of September 2005, a total of 156 countries 
have ratified the agreement (representing over 61% of global emissions). Although 
notable exceptions include the United States and Australia, the agreement clearly 
shows that environmental issues are recognized as global problems.  

The constraints mentioned above represent a continuous challenge for process 
engineers, politicians and operators; adequate solutions require a deep, quantitative 
knowledge of the process and of relevant process parameters. The importance of 
monitoring a large set of process variables by installing and using adequate 
measuring systems (generally in the form of distributed monitoring networks) is 
therefore clear. 

Unfortunately measuring devices are generally required to work in a hostile 
environment that, on the one hand, requires instrumentation to meet very restrictive 
design standards, while on the other hand a maintenance protocol has to be 
scheduled. In any case, the occurrence of unexpected faults cannot be totally 
avoided. Nevertheless, some measuring tools can introduce a significant delay in 
the application that can reduce the efficiency of control policies. To install and 
maintain a measuring network devoted to monitoring a large plant is never cheap 
and the required budget can significantly affect the total running costs of the plant, 
which are generally biased to reduce the total number of monitored variables 
and/or the frequency of observations, though in many industrial situations 
infrequent sampling (lack of on-line sensors) of some process variables can present 
potential operability problems. A typical case is when variables relevant to product 
quality are determined by off-line sample analyses in the laboratory, thus 
introducing discontinuity and significant delays (Warne et al., 2004). 

Cases can be mentioned where it is impossible to install an on-line measuring 
device because of limitations of measuring technologies. Also in such cases the 
variables that are key indicators of process performance are determined by off-line 
laboratory analyses.  

Mathematical models of processes designed to estimate relevant process 
variables can help to reduce the need for measuring devices, improve system 
reliability and develop tight control policies.  

Plant models devoted to the estimation of plant variables are known either as 
inferential models, virtual sensors, or soft sensors.  

Soft Sensors offer a number of attractive properties: 

 they represent a low-cost alternative to expensive hardware devices, 
allowing the realization of more comprehensive monitoring networks; 

 they can work in parallel with hardware sensors, giving useful information 
for fault detection tasks, thus allowing the realization of more reliable 
processes; 

 they can easily be implemented on existing hardware (e.g. 
microcontrollers) and retuned when system parameters change; 
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 they allow real-time estimation of data, overcoming the time delays 
introduced by slow hardware sensors (e.g. gas chromatographs), thus 
improving the performance of the control strategies. 

There are three main approaches to building soft sensors: mechanistic modeling 
(physical modeling), multivariate statistics, and artificial intelligence modeling 
such as neural networks, fuzzy logic and hybrid methods. This classification 
approach is not intended to be very rigid, and methodologies typical of one of them 
are often improved by techniques typical of others. 

Suitable empirical models, or data-driven models, producing reliable real-time 
estimates of process variables on the basis of their correlation with other relevant 
system variables can be useful tools in industrial applications, due to the 
complexity of the plant dynamics, which can prevent the first principles approach 
from being used.  

The accumulated historical record generally collected by industries in fact 
represents a useful source of information, which can enable relevant features to be 
identified (Albazzaz and Wang, 2006). 

However, the potential information regarding factors affecting plant operation 
might be obscured by the sheer volume of data collected (Flynn, Ritchie and 
Cregan, 2005). Moreover, the process of data mining can be difficult because of 
high dimensionality, noise and low accuracy, redundant and incorrect values, 
non-uniformity in sampling and recording policies. 

The importance of data collection policy and critical analysis of available data 
can never be emphasized enough. Data collection is a fundamental issue because a 
model cannot be better than the data used for its estimation: poor results are 
generally obtained if collected data are passed on without any action, such as 
selection, filtering, etc., to some modeling procedure. The model designer might 
select data that represent the whole system dynamic when this is possible by 
running suitable experiments on the plant. Effects of disturbances should also be 
filtered out.  

Moreover, careful investigation of available data is required in order to detect 
either missing data or outliers, due to faults of measuring or transmission devices 
or to unusual disturbance, which can have unwanted effects on model quality. In 
fact, any help from plant experts should be considered a precious support to any 
numerical data processing approach.  

Collected data can be processed in different ways to design the soft sensor. A 
number of choices are necessary in order to select both the model class (e.g. linear 
or nonlinear, static or dynamic, and so on) and the identification approach most 
suitable to the problem under investigation.  

The last step in soft sensor design, i.e. the problem of model validation, can be 
approached using a number of different strategies. 

All the aspects mentioned will be described in detail in the following chapters 
through a number of industrial case studies. 
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1.2 State of the Art 

The literature on soft sensors in industrial applications, concerning both theoretical 
and practical aspects, consists of a number of very specialized journals, 
international conferences, and workshops. Nevertheless some theoretical aspects 
related to modeling, signal processing, and identification theory can be found in 
books and conferences devoted to system theory, automatic control, 
instrumentation and measurement, and artificial intelligence. 

It is easy to understand that any attempt to give an exhaustive description of 
such a huge literature would necessarily be unsuccessful. Therefore, we will 
proceed in what follows, to describe the state of the art, referring to relevant 
contributions and trying to give an order to the referenced material, by using some 
classification criteria. In the case of reported applications, we will refer mostly to 
recent literature. 

The present survey is not intended to be exhaustive, and obviously 
classification schemes different from the proposed one are possible. In addition, 
class boundaries should be considered as somewhat fuzzy and overlapping: it is not 
always possible to focus on one single aspect without addressing correlated ones.  

A first classification of the relevant literature will be between theoretical and 
applicative contributions. For the former class, further classification will follow the 
typical steps of soft sensor design and can be summarized as follows: 

 data collection and filtering; 
 variables and model structure selection; 
 model identification; 
 model validation. 

Some books are available that address some of the steps mentioned. The book 
by Ljung (1999) is considered a milestone in the field of identification theory. A 
valuable source of theoretical information on linear multiple input–multiple output 
(MIMO) system identification can be found in Guidorzi (2003). 

Though most industrial processes should be better identified by nonlinear 
models, there are very few books devoted explicitly to this topic. Among these, 
that by Nørgaard et al. (2000) deals with nonlinear models, implemented using 
neural networks. The known approximation property of some neural network 
structures is exploited by the authors to obtain the nonlinear generalization of 
linear model structures. In particular, relevant topics like design of the input signals 
for experiments, data collection and pre-processing, lag selection, parameter 
identification (in the form of neural network training strategies), regularization, 
model structure adaptation (neural network pruning) and model validation are dealt 
with. 

Also of interest is the book by Omidvar and Elliott (1997), where one chapter is 
devoted to identification of nonlinear dynamic systems using neural networks and 
another deals with practical issues regarding the use of neural networks for 
intelligent sensors and control. 

In recent years a number of books have been published dealing with soft 
computing and artificial intelligence techniques. Some aspects of these fields form 
the basis of the approaches reported in this book. Readers who have no in-depth 
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knowledge of this topic can refer to Haykin (1999), Fortuna et al. (2001), or Gupta 
and Sinha (2000). 

These books deal with theoretical and practical aspects of soft sensors, while 
little attention is given to real case studies. In contrast, in the present book we 
focus attention mainly on real industrial applications, without dealing in depth with 
theoretical issues. Readers interested in theoretical aspects can refer to the reported 
bibliography. 

1.2.1 Data Collection and Filtering 

Large industries are generally required to collect and store data on sensitive 
process parameters, and the same holds for large cities as regards pollutant levels. 
This paves the road to the subsequent use of data for model identification. 
Unfortunately data collection strategies sometimes do not fit the requirements of 
identification techniques (e.g. problems can arise with sampling time, missing data, 
outliers, working conditions, accuracy and so on).  

The strategy adopted for data collection, and the critical analysis of available 
data are fundamental issues in system identification. The very first issue to be 
addressed concerns with the sampling frequency, which depends on the system 
dynamics. Plenty of books deal with the process of data sampling for continuous 
time systems. A good example of a book dedicated to such a topic is that by 
Oppenheim and Schafer (1989), where sampling theory is addressed together with 
correlated topics such as anti-alias filtering, signal reconstruction and so forth. 

An in-depth description of the negative impact of data compression policies, 
often adopted in industrial plants to enable storage cost reduction, can be found in 
Thornhill et al. (2004), while the effect of the presence of missing data in the 
historical plant database, deriving from failure in sensors, is dealt with in Lopes 
and Menezes (2005), where projection to latent structures (PLS)  models are used 
to develop a soft sensor for industrial petrochemical crude distillation columns. 
Principal component analysis (PCA) and PLS methods in the case of missing data 
are also dealt with in Nelson, Taylor and MacGregor (1996).  

Another relevant topic regarding collected data quality is the presence of 
outliers, resulting from hardware failure, incorrect readings from instrumentation, 
transmission problems, ‘strange’ process working conditions, and so on. Different 
techniques for outlier detection are reviewed in Warne et al. (2004), Englund and 
Verikas (2005), Lin et al. (2005), Pearson (2002), and Chiang, Pell and Seasholtz 
(2003). In particular, in Englund and Verikas (2005) a survey of methods for 
outlier detection is reported along with a new strategy which aggregates different 
approaches. The proposed approach is applied to the design of a soft sensor for an 
offset lithographic printing process. 

After outliers have been successfully detected, data may still be inadequate for 
soft sensor design, and operations, generally known as pre-filtering, are required. A 
general treatment of the role of pre-filtering in model identification can be found in 
Ljung (1999) and Guidorzi (2003). The role of pre-filtering in nonlinear system 
identification is analyzed in Spinelli, Piroddi and Lovera (2005), where a 
frequency domain interpretation is provided based on the use of the Volterra series 
representation.  
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1.2.2 Variables and Model Structure Selection 

Different strategies have been proposed in the literature to model real systems 
depending on the level of a priori knowledge of the process. Models can be 
obtained either on the basis of first principles analysis (also known as mechanistic 
models) or by using gray- or black-box identification approaches.  

In the case of processes involved in industrial plants, due to the complexity of 
the phenomena involved, mechanistic modeling can be very time consuming and 
significant parameters are generally unknown. However, the great amount of 
historical data, usually acquired for monitoring purposes, suggests the use of 
nonlinear gray- or black-box process model identification.  

Even if it is difficult to give a theoretical treatment of the gray-box approach (it 
essentially depends on both the type of process under investigation and the level of 
available physical insight), contributions do exist on practical applications. The 
gray-box approach can lead to very accurate models because it exploits any 
available source of information to refine the model. 

Two recent contributions describing industrial applications are those of 
Zahedi et al. (2005), and Van Deventer, Kam and Van der Walt (2004). In the 
former, a hybrid model of the differential catalytic hydrogenation reactor of carbon 
dioxide to methanol is proposed. The model consists of two parts: a mechanistic 
model and a neural one. The mechanistic model calculates the effluent temperature 
of the reactor by taking outlet mole fractions for a neural model. The authors show 
that the hybrid model outperforms both a first principles model and a neural 
network model using the available experimental data. A set of other interesting 
applications of the gray-box approach can be found in the reference list of the 
paper. 

The paper by Van Deventer, Kam and Van der Walt (2004) is an example of an 
effort to include prior knowledge of a process into neural models in such a way 
that the interactions between the process variables are represented by the network’s 
connections by means of regression networks. A regression network is a 
framework by which a model structure can be represented using a number of 
feedforward interconnected nodes, each characterized by its own transfer function. 
In particular, the dynamic modeling of continuous flow reactors using the 
carbon-in-leach process for gold recovery is proposed as a case study. Black-box 
regression techniques are compared to the regression network and the latter is 
shown to give better performances.  

The present book focuses mainly on the black-box approach because it can give 
satisfactory results in complex industrial modeling applications, with reasonable 
computational and time efforts. In what follows, we will report significant 
examples of different identification techniques devoted to black-box modeling.  

The aspects of variable and model structure selection are of key importance and 
therefore they are widely investigated in the literature, even if it is hard to find a 
general solution that clearly outperforms others. This outlines a fundamental aspect 
of black-box modeling: any technologist knowledge, regarding the input variable 
choice, the system order, the operating range, time delay, degree of nonlinearity, 
sampling times, etc., represents a valuable source of information that should be 
taken into account by the model designer. This is very true when nonlinear systems 
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are considered. Though most of the literature deals with theoretical results for 
linear model identification, we will focus our attention on literature about nonlinear 
applications that, in our opinion, are the closest to reality. 

The very first question a model designer is faced with regards the choice of 
independent variables that influence the model output. In Warne et al. (2004) the 
authors, among other topics, reviewed a number of techniques that can be used for 
linear and nonlinear modeling problems. The first and most intuitive approach to 
the problem of variable selection discussed in this paper is the graphical inspection 
of dispersion plots aimed at discovering any structure in the graphs obtained. 
Moreover, more quantitative criteria such as the coefficient of correlation and 
Mallows’ statistics are reviewed. 

In Rallo et al. (2002), Kohonen maps are used to solve the same problem. 
Kohonen maps belong to the class of self-organizing maps. In the application 
mentioned self-organizing maps are used to project subsets of input variables along 
with the output variables onto network output space. A dissimilarity method is 
used to determine the relevance of each combination. The proposed strategy is 
used to develop a virtual sensor to infer the properties of manufactured products. 
The same approach is applied in Nagai and Arruda (2005) to predict the top 
composition of a distillation column.  

It is widely reported in the literature that highly correlated variables can give 
numerical problems during the identification step. This is often the case for 
variables measured from industrial processes. This drawback can be mitigated by 
using projection-based techniques such as PCA and PLS, both in the linear and in 
the nonlinear case. The use of PCA and PLS in chemometrics applications is 
widely reviewed in the IEEE Control System Magazine, issue 5, published in 2002. 
A useful survey of linear and nonlinear PLS algorithms can be found in Baffi, 
Martin and Morris (1999).  

An example of the use of PCA- and PLS-based models can be found in Flynn, 
Ritchie and Cregan (2005) concerning a fault detection task for a power plant. In 
Komulainen, Sourander and Jamsa-Jounela (2004) a review of more sophisticated 
techniques that can be considered as evolutions of both PCA and PLS is reported. 
Among the possibilities, the authors apply the dynamic PLS, which includes 
time-lagged values, to a fault detection task of a dearomatization process. 

A comparative study of soft sensors derived using multiway PLS and an 
extended Kalman filter for a fed-batch fermentation process is presented in Zhang, 
Zouaoui and Lennox (2005). The procedure proposed allows nonlinear 
characteristics to be removed from the data by using suitable transformations and, 
hence, PLS to be adapted to a nonlinear problem. 

In Liu (2005), fuzzy models are used to realize a piecewise linear time-varying 
model for inferring the melt index of a polyethylene process. The model is 
recursively updated based on PCA. 

Another relevant technique proposed in the literature for variable processing is 
independent component analysis (ICA). It is aimed at making the variables 
independent, and involves higher order statistics. In Lee, Yoo and Lee (2004), ICA 
is used to process data relative to biological waste water treatment. An interesting 
comparison between ICA and PCA monitoring capabilities is reported.  
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In Albazzaz and Wang (2006), ICA is considered in the framework of data 
visualization that poses challenging problems due to the high number of variables 
monitored in a typical industrial plant. 

Different structures can be used to model real systems. In the field of industrial 
applications, attention is focused on parametric structures and among these a key 
role is played by autoregressive models with exogenous inputs both in the linear 
(FIR, ARX or ARMAX) and nonlinear versions (NFIR, NARX, and NARMAX). 
A theoretical in-depth treatment of possible models can be found in Ljung (1999). 

Regardless of the particular model structure of interest, either linear or 
nonlinear, a challenging task to be solved is the choice of input and output 
regressors, i.e. the choice of the model order, on the basis of measurement data 
and, eventually, any kind of available information. A number of contributions are 
available in the literature on this topic. Among them, some interesting papers will 
be briefly described below. 

Lipschitz quotients can be used as a tool for guiding the solution of this 
complex task, when the assumption is made that the system nonlinearity can be 
represented by a smooth function in the regressors. A description of this approach 
can be found in He and Asada (1993) and in Nørgaard et al. (2000). An example of 
application of this method can be found in Bomberger and Seborg (1998). In the 
same paper, the Lipschitz quotients method is compared, but exclusively for single 
input–single output (SISO) systems, with a method derived from the false nearest 
neighbor (FNN) approach. In Nagai and Arruda (2005), the Lipschitz quotients 
method is used to select the lag structure of a fuzzy multiple input–single output 
(MISO) model of the top composition of a distillation column. 

In Feil, Abonyi and Szeifert (2004), a modified version of the FNN approach, 
based on fuzzy clustering, is proposed to increase its efficiency. In particular, in the 
proposed method the model structure is estimated on the basis of the cluster 
covariance matrix eigenvalues. In the reference section of the paper a good 
selection of further work on this topic can be found. Another interesting list can be 
found in Lind and Ljung (2005). 

A further approach that can be used for model order selection is based on input 
output correlation analysis (Komulainen, Sourander and Jamsa-Jounela, 2004). In 
Lang, Futterer and Billings (2005) a new method, derived for the correlation 
approach, is proposed for the identification of NARX models with input 
nonlinearities.  

In Mendes and Billings (2001), the authors propose a method to overcome the 
growth in computational effort with model complexity that can compromise the 
search for the optimal model structure. 

The ANalysis Of VAriance (ANOVA) has been proposed as a possible method 
for regressor selection of nonlinear models in Lind and Ljung (2005) and in 
Lind (2005). This approach has the valuable property of allowing the model order 
selection to be operated independently from the other steps required for model 
identification. 
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1.2.3 Model Identification   

A good overview of nonlinear black-box structures for system identification 
ranging from neural networks, radial basis networks, wavelet networks, hinging 
hyperplanes, to fuzzy systems is reported in Sjoberg et al. (1995), Sjoberg, 
Hjalmarsson and Ljung (1994), and Juditsky et al. (1995). In particular, in 
Juditsky et al. (1995) the mathematical foundations of the techniques described in 
Sjoberg  et al. (1995) are introduced. 

The theory of identification of nonlinear systems using a polynomial model is 
introduced in Chen and Billings (1989), while a seminal work dealing with neural 
networks for identification of dynamic nonlinear systems is that of Narendra and 
Parthasarathy (1990). Examples of numerical applications are also given in the 
paper. 

Beyond these classical contributions, a number of approaches are proposed in 
papers that mainly address the practical applications of soft sensors. The taxonomy 
of this huge literature represents a very hard task. Some interesting contributions 
are reported below, while further examples will be discussed when the literature on 
relevant applications is described. 

A number of authors used the neuro-fuzzy approach to fuse the ease of fuzzy 
model interpretation with the data-driven learning capabilities of neural networks. 
An example can be found in Araúzo-Bravo et al. (2004), where soft sensors, based 
on neuro-fuzzy systems, named FasArt and FasBack, are used to develop dynamic 
adaptive models of a penicillin production process and hence to avoid human 
intervention.  

In Luo and Shao (2006), a hybrid soft computing modeling approach in which a 
neuro-fuzzy system based on rough set theory and genetic algorithms is used to 
obtain a reduced structure neural network which estimates the freezing point of the 
light diesel fuel in a fluid catalytic cracking unit. The same application was 
considered in Yan, Shao and Wang (2004), where a different approach, based on 
support vector machines, is used.  

Classical structures such as fuzzy c-means and fuzzy Takagi–Sugeno are used 
in Liu (2005) to approach the identification problem of a multivariable 
time-varying nonlinear system. The procedure is applied to a polyethylene process 
and is based on the decomposition of the nonlinear model into several subsystems. 

In Rallo et al. (2002) a predictive fuzzy neural system and two hybrid 
networks, each combining a dynamic unsupervised classifier with a different kind 
of supervised mechanism, are applied to develop a virtual sensor to infer the 
properties of manufactured products. 

In Nagai and Arruda (2005), a fuzzy clustering algorithm is applied to find the 
rule base of a soft sensor designed to infer the top composition of a distillation 
column. 

Neural networks, namely eng-genes and multi-layer perceptons (MLPs), are 
designed in Li et al. (2005) by using genetic algorithms and are applied to the 
estimation of NOx in a thermal power plant. 

Identification procedures are very sensitive to the size of the data set used. 
Approaches tailored to alleviate negative effects of small data sets are proposed in 
Yan, Shao and Wang (2004) and in Feng, Chen and Tu (2005). In the last paper the 



10 Soft Sensors for Monitoring and Control of Industrial Processes 

problem of shortage of data is approached by using the group method of data 
handling to obtain the parameters of a polynomial NARMAX model. A case study 
referring to model radar-land-clutter reflectivity is described.  

A completely different approach, based on sparse grid approximation, is 
proposed in Kahrs, Brendel and Marquardt (2005) to incrementally identify a 
nonlinear model. Interestingly, the proposed strategy allows iteration of the 
classical model-building steps to be reduced by a systematic strategy that combines 
all steps into a single algorithm. 

In Park and Han (2000), a multivariate locally weighted regression (a procedure 
for estimating a nonlinear regression surface to data, through multivariate 
smoothing) for applications with high dimensionality, collinearity and nonlinearity 
is proposed. The approach is applied to an industrial splitter column and to a crude 
column. 

1.2.4 Model Validation 

Though performing the previous tasks could require solving also the problem of 
model validation, in what follows we will report on some interesting contributions 
to this specific topic. Generally speaking, the problem of model validation has not 
been solved in a definitive way. Nevertheless, in the theory of linear systems the 
usual approach consists of computing the autocorrelation function of the residuals 
and the cross-correlation functions between the residuals and the input over a set of 
unseen data (Stoica and Södersröm, 1989). 

The task of nonlinear model validation is generally accomplished by extending 
the correlation approach to all linear and nonlinear combinations of past inputs and 
outputs. Classical contributions dealing with this topic are Chen, Billings and 
Grant (1990), Billings, Jamaluddin and Chen (1992), and Billings and Voon 
(1991). Two further correlation functions can be found in Mendes and Billings 
(2001). 

Confidence levels as a tool for model validation are proposed by Papadopoulos, 
Edwards and Murray (2001), Dadhe and Engell (2005), and Masson et al. (1999). 
In Dadhe and Engell (2005) prediction intervals of multi-step-ahead prediction of 
neural networks are estimated by bootstrap methods. In Masson et al. (1999), 
K-fold cross-validation is used as a resampling technique to provide a large 
validation set. 

1.2.5 Applications 

Potential applications of soft sensors can be imagined in any industrial field. Of 
course some characteristics (large plants, hard-to-measure process parameters, 
measurement delay, working environments hostile to measuring device survival, 
hard control requirements, etc.) of the plants considered can encourage the 
application of this technique.  

A good review of soft sensor applications in a number of different fields up to 
the year 2001, can be found in Dote and Ovaska (2001), while below we will 
mainly address the more recent applications. 
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Refineries are a typical application field where a wealth of contributions can be 
found. An early example of applications in this field is Tham, Morris and 
Montague (1994), where linear models are considered to solve two different 
modeling problems in a refinery.  

A number of applications refer to the case when continuous on-line 
measurements are not available and models based on laboratory analysis are the 
only choice. In these cases, static models are mainly used (and this can affect the 
model quality). In Yan, Shao and Wang (2004) a model is proposed for the 
estimation of the freezing point of light diesel oil in distillation columns. A model 
for the estimation of the same quantity using a neuro-fuzzy system driven by rough 
set theory and genetic algorithms is proposed in Luo and Shao (2006).  

An attempt to alleviate the large time intervals between lab analyses is reported 
in Shi et al. (2005) where a dynamic compensation method is proposed for the 
estimation of the product composition of a distillation plant. 

The PLS approach is used in  Park and Han (2000) to model both an industrial 
splitter column and an industrial crude column while in Komulainen, Sourander 
and Jamsa-Jounela (2004) a dynamic PLS approach is used to develop an on-line 
monitoring system for an industrial dearomatization process. In particular, time 
lags in the model are selected by using both expert plant knowledge and a classical 
cross-correlation analysis. 

On-line fault diagnosis for a refinery fluid catalytic cracking reactor is 
addressed in Yang, Chen and Wang (2000), where information on the not directly 
accessible critical variables is extracted using a procedure based on wavelets and 
neural networks. 

In Fortuna, Graziani and Xibilia (2005a) a dynamic nonlinear model based on a 
cascade of neural networks is proposed to solve the problem of the control of a 
debutanizer column, in the presence of large measurement delays. 

Finally, a survey of typical applications, spanning from static to dynamic 
nonlinear neural models, that may be of interest for refineries, can be found in 
Fortuna, Graziani and Xibilia (2005b). 

Another typical industrial application field is polymerization. A case study 
referring to prediction of the melt index of six low-density polyethylene (LDPE) 
grades produced in a tubular reactor is reported in Rallo et al. (2002), where a 
predictive fuzzy neural system and two hybrid networks, each combining a 
dynamic unsupervised classifier with a different kind of supervised mechanism, is 
used. In Xiong and Zhang (2005), dynamic neural models based on recurrent 
MLPs are applied to a laboratory-scale polymerization reactor. Different 
techniques, based on bootstrap resampling and stacked neural networks, are 
applied to the same lab-scale process in Zhang et al. (1997) and Zhang (1999).  

Applications referring to fermentation processes can also be found, and a 
review of state estimator techniques applied to bioreactors is reported in Assis and 
Filho (2000). A comparative study between black-box and hybrid (gray-box) 
estimation methods for on-line biomass concentration estimation is reported in 
Janes, Legge and Budman (2002). 

In Willis et al. (1992), an inferential controller, based on a neural network 
model and a classical PI controller, is used for a penicillin fermentation plant. 
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The pulp industry is a recurrent topic in journals dealing with industrial 
applications and soft sensors have been proposed in this field. In Dufour et al. 
(2005) a soft sensor to infer unmeasured variations, due to faults, in the feedstock 
of an industrial pulp digester are presented.  

The problem of product quality in the papermaking industry, in particular the 
estimation of paper curl measurement, is addressed in Edwards et al. (1999) using 
neural networks. Neural models are also adopted to predict the corrosion potential 
in a pulp and paper mill (Bucolo et al. (2002)). 

Emissions are of course one of the main concerns of industries, due to the 
restricting limits imposed by the prevailing laws. In Graziani et al. (2004), a static 
nonlinear neural model is proposed to estimate NOx concentration in chimney 
emissions produced by a refinery. The proposed model overperforms an empirical 
model developed by the plant experts. NOx level emissions for a power station are 
dealt with also in Flynn, Ritchie and Cregan (2005), where PCA and both linear 
and nonlinear PLS are used to synthesize a static model. The problem of NOx 

 

emission estimation is dealt with in a novel approach, denoted eng-genes 
architecture, in Li et al. (2005). 

In order to eliminate the delay time in the estimation of NOx emissions in a 
power plant, an ARX soft sensor is used in Matsumura et al. (1998). The soft 
sensor is used to implement a control loop. 

Another chemical matter that has become the center of attention is carbon 
dioxide, as its emission is recognized to be the main source of the greenhouse 
effect. The catalytic hydrogenation of carbon dioxide to methanol is a method for 
reducing its emission in the atmosphere. A hybrid structure, consisting of a 
mechanistic model and a neural one, to identify a methanol reactor, is proposed in 
Zahedi et al. (2005).  

SO2 and H2S have negative effects on the phenomenon of acid rains. In Fortuna 
et al. (2003) SO2 and H2S in a sulfur recovery unit of a refinery are estimated using 
different kinds of nonlinear models.  

The monitoring and control of the emission from a palm oil mill is described in 
Ahmad et al. (2004). In particular, a neural model is developed from palm oil mill 
data, while genetic algorithms are employed to find the optimal operating 
conditions to reduce the emission level. 

A number of applications can be found in the literature that, even though they 
do not fit the classes we have introduced so far, are still of interest. In what 
follows, a description of these contributions is reported. 

In Govindhasamy et al. (2005) dynamic nonlinear neural structures are 
proposed to model the grinding process used by a factory during the production of 
the aluminum disk used in disk drives. In particular, a NARX model, realized using 
a generalized MLP, is proposed. 

In Su, Fan and Schlup (1998) the quality of epoxy/graphite fiber composites, 
measured using the degree of cure (DOC), are estimated using a recurrent neural 
network. This network is the core of a soft sensor that manipulates the outputs of a 
dual heat-flux sensor to estimate the DOC value. 

Lin et al. (2005) describe the steps to be performed in a typical soft sensor 
design and apply the proposed techniques to the real-time estimation of the 
behavior of a cement kiln. 
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Ruan et al.’s (2003) contribution is the description of somewhat embryonic 
results, further improved in Roverso and Ruan (2004). Both these papers deal with 
the possibility of using a number of artificial intelligence techniques, including 
noise analysis, neural networks, fuzzy theory, and wavelets, to estimate feedwater 
flow in a nuclear plant. In particular, classical measuring techniques, i.e. Venturi 
flowmeters, are integrated by using the proposed techniques to realize a novel soft 
sensor. 

Food factories are another interesting field for the application of soft sensors. In 
Wang, Chessari and Karpiel (2001) the problem of product quality control in a 
food cooking extruder is addressed. An on-line dynamic model between the 
influential variables and the product quality attributes is proposed to design a 
feedback control. 

In Janes, Yang and Hacker (2005), the authors focus their attention on the 
problem of pork farm odor modeling that can be of great interest to mitigate 
negative effects for the residents of rural areas. In particular, multiple-components 
multiple-factor neural models are compared to linear models and the superiority of 
the neural approach is shown. 

In Englund and Verikas (2005), the problem of outlier detection in an offset 
lithographic printing process is addressed, and a structure containing both a fuzzy 
system for data filtering and artificial neural networks is proposed. 



2 

Virtual Instruments and Soft Sensors 

2.1 Virtual Instruments 

In this chapter, the concepts of virtual instruments (VIs) and of soft sensors will be 
introduced in some detail. In particular, we will commence in this section with an 
introduction to VIs, to focus in the next one on soft sensors, that are the main topic 
of the book.  

VIs can be considered as a wider class than soft sensors. In fact, soft sensors 
focus on the process of estimation of any system variable or product quality by 
using mathematical models, substituting some physical sensors and using data 
acquired from some other available ones.  

For their part, VIs are based on software that performs any of the typical 
actions involved in a measurement and/or control problem, by exploiting available 
instrumentation, computers and software. This action can either involve, or not, 
modeling capabilities typical of soft sensors. 

VIs are the result of the rapid diffusion that has taken place in the last 20 years 
of low-cost Windows-based personal computers, Macs, and workstations in any 
engineering application field, along with performing software (Foster ,1998).  

They represent an alternative paradigm to traditional instruments and allow us 
both to customize the measuring facility capabilities to user application and to take 
control of the way measurement results are used and presented.  

The flexibility of VIs is obtained by software that is used to transform a 
collection of facilities into the customized instrumentation suitable for the 
measurement task of interest. Also, the use of software allows the adaptation, at 
different times, of the available resources to new measuring problems in such a 
way as to adapt the measuring system to new scenarios, and hence to better exploit 
available resources.  
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Three main functional blocks can be recognized in any instrument, and all of 
them have been affected by changes introduced by the introduction of VIs 
(Combs, 1999): 

 measurement; 
 computation; 
 user interface. 

As regards measurement, this is the very first action that a measuring system 
performs on the observed variable, in order to extract some kind of meaningful 
signal. Signals extracted from real plants are analog in nature, while the majority of 
modern instrumentation is digital. An analog to digital (A/D) converter is, 
therefore, required at this stage along with conditioning circuitry, to adapt 
real-world signals to the A/D input span.  

At this stage, VIs are used mainly to the ease the setting and control of 
measuring systems, especially in routine measurement surveys that require a large 
number of actions, and are usefully automatized using adequate software. This is 
the typical application when a VI is designed, and used, to drive a stand-alone 
system. 

Data acquired from the measurement hardware do not necessarily correspond to 
the searched information. It is generally required either to filter data in some way, 
to combine data acquired from the same device in different times or different 
points, or to combine data acquired from different measuring facilities. At this 
level, computation capability plays a key role and it is possible either to have 
instruments with local computation capabilities or to send raw data to some kind of 
intelligent system that performs the required data manipulation. Of course, these 
two solutions impose different constraints on the designer and have conflicting 
performances. The first one is generally more expensive, because of the need to 
have a number of local intelligent systems, while the other will need a faster 
communication system to handle the large quantity of raw data that needs to be 
transferred.  

The computation level is of course one of the most characterizing aspects of 
VIs. In fact, by using adequate software it is possible to use general measuring 
devices, e.g. acquisition cards or modular instrumentation, to acquire data and 
combine them in a virtually infinite number of ways. Moreover, the same devices 
can be re-used in different applications simply by changing the algorithms used. 

Though modern electronic instrumentation is totally different from older analog 
measuring systems, producers try to maintain the traditional look of the 
instruments. This is because users experience great difficulty when the objects they 
are used to change their appearance. As an example, a modern digital oscilloscope 
has an internal structure that is totally different from traditional analog ones. 
Nevertheless, both of them look very similar and present a number of input 
channels, some knobs and buttons to control the instrument operations, and a 
screen. This allows the user to change from older systems to newer ones with a 
minimum of difficulty: only if he is interested, will he search at some convenient 
time for new functionalities. 

This general rule has been maintained in the case of VIs. The measuring system 
might be realized by using traditional stand-alone instrumentation, with its own 
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user interface, or by using modular instrumentation; in that case the user interface 
is almost totally missing, and so the VI designer will produce, on a host PC 
monitor, a user interface that mimics the traditional instrumentation front panel and 
that will allow interaction with the measuring system. In this way, the user will 
find digital knobs or buttons to control the measurement system and will observe 
the information in which he is interested on some kind of graph, indicator, or in the 
case of surveillance systems, for example, a simulated LED will be turned on by 
the software together with some kind of acoustic signaling.  

An example of a front panel of a VI is shown in Figure 2.1. 

 
Figure 2.1. An example of a VI front panel 

Figure 2.1 shows the front panel of an instrument designed for the estimation of 
the products of a debutanizer column that will be described in greater detail 
elsewhere in the book. In this case, the core of the VI was a soft sensor based on a 
cascade of neural network dynamic models whose objective was the prediction of 
products concentration without the large delay introduced by traditional measuring 
systems. In particular, in Figure 2.1 the presence of a number of time plots, a 
button, and some indicators can be recognized. The button was introduced to allow 
the user to turn the VI on and off, while both the time graphs and the indicators 
show the instrument outputs. 

The availability of low-cost computers with programming capabilities has 
produced a far-reaching and rapid evolution also in the possible measuring 
hardware configurations. In fact, on the one hand, modern instrumentation is 
configured as a digital system whose core is a microprocessor that controls all 
actions required to perform measurements, while on the other one, it is more and 
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more common that the instruments communication capabilities allow for the 
realization of distributed measuring networks where a number of devices cooperate 
and exchange relevant information, either using a shared standard or custom 
communication protocol.  

The simplest and most widely used class of measuring instruments are 
stand-alone devices. In this case, a single box contains all the resources required to 
perform measurements and is equipped with a front panel that is used both to set 
up the instrumentation and to display measurement results. VIs in this case are 
used to realize virtual front panels on a PC that mimics the hardware front panel. 
These instruments can operate by themselves and eventually, if they have digital 
communication capabilities, can be used in a multiple instrument system. For 
example, this is the typical configuration used in IEEE 488.2 compliant 
measurement systems. 

With the evolution of computers, modular measuring instrumentation became 
available. In this case, the instrument front panel is totally missing and the only 
available option to use modular systems is to insert them into a frame and to 
program them by software. VIs are widely used in this context to program and use 
measuring stations. 

Generally, modular measuring systems are realized by using some standard, 
such as VME, VXI or PXI. 

They greatly outperform traditional stand-alone systems especially when the 
required system throughput is high, but they are quite expensive. Also, since they 
are mainly software defined, the available resources can be reconfigured virtually 
an infinite number of times and this is a valuable possibility both for R&D 
purposes, when the measured variables change frequently, and for maintenance and 
control applications, when measuring systems are often updated. 

The latest evolution of modern electronic instrumentation is based on 
networked devices. In this case, each instrument acts as a computer, capable of 
being connected on some LAN and of sharing a common communications line or 
wireless link within a small geographic area, or even by using the Internet. These 
last scenarios are typical of monitoring and control in industrial applications due to 
the distributed nature of processes involved and of air quality monitoring in large 
urban and industrial areas, where a number of measuring stations are installed at 
adequately chosen points to obtain information about air quality.  

Of course, also in the latter case, VIs can be very useful especially if software 
tools with networking programming capabilities are used, which can greatly 
simplify both the troubleshooting and running of the measuring system. 

As mentioned before, the success of Vis is mainly due to the possibility of  
reconfiguring them to perform custom functions. In this sense, they look quite 
different from traditional instrumentation, designed for one specific measurement 
task.  

Apart from the initial system design, which for VIs must start with the 
identification of some minimum hardware resources, the design of a VI is a matter 
of software programming. The importance of having access to powerful 
programming languages is therefore fundamental. It is by using programming 
languages that general measuring tools are customized by the user to the intended 
application. In this sense, the VI designer has much more freedom than the 
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traditional instrumentation designers, even if such flexibility can pose serious 
problems of re-using available software, unless close attention is paid to realizing 
modular software in which previously designed software procedures can be 
included for new applications. 

There are two categories of development environments for VIs available for the 
designer: 

 textual languages; 
 graphical languages. 

In the case of textual languages, traditional programming languages, such as 
BASIC or C/C++, are used to realize a VI. Generally, programming in this case 
involves the use of functions specifically developed by the vendor for the hardware 
in question, and that govern the specific instrument functionalities and I/O 
functions for communication purposes. 

Graphical programming allows the design of VIs using functional blocks 
(icons) that perform specific tasks. These blocks perform desired actions, from 
simple to very complex ones. Information is transferred from one icon to another 
by suitably wiring them. Also, programming languages come with a number of 
libraries (e.g. to perform signal spectrum analysis or digital signal processing) that 
greatly improve the language potentialities. 

To better explain how graphical programming languages work, we will refer to 
the widely used LabVIEWTM by National Instruments, which can be considered a 
standard de facto for VI design, though competing languages have been proposed 
by other companies and still exist on the market. 

A VI consists of a front panel that mimics the user interface and a block 
diagram that lies at the back of the front panel and is used to graphically define the 
VI functionalities. Moreover, during the design phase of a VI, other available VIs 
can be used as subroutines to perform simpler tasks in a hierarchical way.  

The front panel of a VI, presented on the computer monitor, represents the user 
interface and intentionally looks very like a traditional instrument panel. This is the 
part of the VI that allows the user to act on the instrument, and eventually on the 
connected measuring hardware, by setting measurement parameters and loading 
data files. To obtain this capability, the designer can use a number of knobs, 
buttons, switches and so forth. Also, the front panel is used to show the user the 
results of  VI operations (including measurement and computation results).  

A number of tools are available to show VI outputs in the best way. The 
designer can, in fact, use time plots, XY graphs, numeric indicators, to give just a 
few examples, or even digital LEDs in those cases when an immediate alarm is 
better suited to the application. 

As an example, in Figure 2.2 a very simple front panel showing a time graph, a 
numerical indicator, and a LED is reported. 
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Figure 2.2. Example of a typical VI front panel 

The block diagram is the core of a VI: the designer assembles here a number of 
available functional blocks, in the form of icons that carry out specific actions on 
input data, and produce corresponding output results. These blocks can either be 
part of the graphical programming language or have been realized by the user 
during the development of previous VIs. The function of each block can be simple, 
such as adding two input variables and giving the resulting sum, or very complex, 
such as performing sophisticated statistical analysis of input vectors.  

Data are passed from one block to the next one using software wires. In the 
same way, elements in the front panel have icons in the block diagram that can be 
wired to functional blocks in the block diagram to allow commands from the user 
to be passed to the graphical software and final results to be shown on the front 
panel. 

Figure 2.3 shows an example of a VI block diagram. The VI accepts numerical 
inputs from the VI front panel and returns their sum on a front panel indicator.  

 
Figure 2.3. Examples of a typical VI block panel 
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Finally, Figure 2.4 shows a less didactic example of a VI block diagram. The 
reported example is part of the block diagram of the VI whose front panel is given 
in Figure 2.1, which was developed for the realization of a soft sensor for a 
debutanizer column.  

 
Figure 2.4. Part of a block diagram of the VI reported in Figure 2.1, for estimating 
debutanizer products 

It is worth noticing that in the block diagram powerful tools for instrument 
driving, supplied by vendors, networking facilities, and data storage are available, 
all of which make VIs very flexible devices.  

Some functional blocks can take inputs from an A/D converter and/or hardware 
measuring device and elaborate them on the basis of a user designed code. In other 
words, a block in the block diagram can be a soft sensor. Also, the soft sensor can 
either be designed using the graphical programming language that implements the 
VI or can be software, developed using a textual programming language, 
depending on the most suitable approach. 



22 Soft Sensors for Monitoring and Control of Industrial Processes 

As a final remark on the difference between textual and graphical programming 
languages for VI design, it should be noted that, though graphical languages are 
more suitable for their eye appeal in presenting measurement results to the end 
user, they generally are very resource demanding and especially in real-time 
applications can introduce an unacceptable delay.  In contrast, textual based VIs 
are much more conservative as regards computing resources and can be very 
efficient tools for real-time control applications. As usual, the final choice between 
the two alternatives will depend on the designer, who will need to take into account 
velocity constraints imposed by the application. 

Of course, hybrid solutions where complex data elaboration is performed using 
textual programming languages, and where the user interface is realized using a 
graphical language, can be developed. 

2.2 Applications of Soft Sensors 

There are a number of reasons why soft sensors can be profitably used in industrial 
applications; currently they are becoming routine tools with the trend moving from 
open-loop information tools for the operator towards sensors in closed-loop 
inferential and/or adaptive control schemes. 

Moreover, the wide availability of on-line analyzers and digital systems that are 
used both for monitoring and control give designers and operators the tools 
required for the design and implementation of soft sensors with a minimum, or 
even null, increase in the initial costs. In what follows, a description of typical soft 
sensors applications is given. 

2.2.1 Back-up of Measuring Devices 

A huge number of measuring devices connected to realize distributed monitoring 
networks, are used from industrial plants for monitoring and control pourposes.  
They routinely acquire a very large quantity of data. In fact, monitoring the state of 
a plant, even at a fixed time instant, could require sampling hundreds or even 
thousands of different variables.  

Such measuring devices, and the corresponding data transmission systems, are 
required to face very harsh working environments. It is not surprising that working 
conditions impose both the use of very robust measuring hardware and periodic 
maintenance procedures. Notwithstanding such precautions, faults in measuring 
devices occur. Faults can come either in the form of abrupt changes in the working 
mode of measuring devices or in the form of slow changes of metrological 
characteristics. The latter can be even more dangerous than the former, because it 
is more difficult to detect and can hence cause malfunctioning of control systems. 

Irrespective of whether a maintenance intervention be programmed or 
accidental, the measuring hardware needs to be turned off and suitably substituted. 
The back-up of measuring instrumentation is a typical application of soft sensors: 
an inferential model is in this case specifically designed to momentarily substitute 
unavailable measuring equipment and to avoid degradation of plant performance 
and rises in cost.  
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This particular scenario imposes restrictions on the soft sensor designer’s 
possible choices. In particular, care must be taken in those cases when the variable 
inferred by the soft sensor is the output of a dynamic system. In fact, two possible 
choices are common: 

 to restrict the model structure to moving average (MA) or nonlinear 
moving average (NMA) models that do not require past samples of the 
output variable. This corresponds to limiting the class of possible models to 
the class of finite impulse response (FIR) structure (including their 
nonlinear generalization), eventually decreasing the model performance 
with respect to more general model  structures; 

 to use autoregressive models as infinite-step-ahead predictors. In this case, 
the model has among its inputs past samples of its own estimations with 
corresponding feedback of model errors. Such structures are generally 
more efficient than the corresponding MA or NMA structures in the very 
first predicting steps but, generally, their performance quickly degrades due 
to error propagation. This is very true when the envisaged maintenance 
interval is very large compared to the system dynamics, so that a large 
number of successive samples are required to be estimated. 

2.2.2 Reducing the Measuring Hardware Requirements 

Using a software tool instead of a measuring hardware device represents, of course, 
a source of possible budget saving. Experts can therefore be encouraged to design 
inferential models that are intended to definitively substitute hardware devices, 
which become available for further reallocation.  

Also in this case, a NMA model should be preferred to autoregressive 
structures. In any case much care should be taken to critically analyze model 
performance, due to the lack of any redundancy, and periodic model validation 
should be performed by temporarily inserting measuring devices and eventually 
proceeding to soft sensor retuning. 

The problem of periodic soft sensors validation and eventual retuning is 
actually a common issue for any application of soft sensors. The need for such 
retuning can be due to a change in a new process working point (not considered 
during the soft sensor design phase), which can be detected by critically analyzing 
system inputs. This analysis should be constantly performed by checking for 
violation of suitable thresholds imposed for each input variable.  

Soft sensor retuning is also needed when a change in system parameters occurs, 
in the case of slowly time-varying systems (e.g. due to seasonal variations).  

The application scenario considered in this subsection is particularly sensitive 
to these problems. In fact, in the other applications described in this section, 
measuring hardware is always available (at least after a finite maintenance period) 
and this allows the required soft sensor validation operations to be accomplished. 
When the designer intends to eliminate measuring hardware, the availability of 
measuring facilities for sensor validation must be suitably planned, and extra 
hardware must be used temporarily. 
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2.2.3 Real-time Estimation for Monitoring and Control 

The real-time estimation of system variables obtained using soft sensors, as 
opposed to its delayed measurement by means of hardware measuring devices, 
represents the most valuable feature of soft sensors; this is due both to the 
possibility to design a very efficient soft sensor and to the importance of the 
corresponding benefits in terms of process performance. 

Any measuring instrument requires a finite time to perform the actions needed 
to give the final variable measurement. Though such a time can be very small in a 
number of applications, in some cases it can be significant. To give an example, 
this is the case with some gas chromatographs that require measuring times of the 
order of minutes or even greater. Moreover, due to the high cost of some 
measuring devices used in industrial applications, variables can sometimes be 
inferred on the basis of data acquired using measuring hardware that can be located 
on different processes, with a corresponding further delay (see, for example, the 
application reported in Chapter 8). Should this time be comparable with system 
dynamics, the measuring time can be a significant source of delay.  

In the case of measuring instrumentation used for monitoring purposes, this 
corresponds to a delay in the time in which data are presented to the operator, with 
no relevant consequences, unless this information is important for safety issues. 

When information about a variable value is needed in a closed-loop control 
scheme the effects of delay can decrease system performance to the point that the 
measuring hardware is not suitable for the control application.  

In this class of applications the variable measurement is always available, albeit 
with a relevant delay. This allows the use of Auto-Regressive with eXogenous 
inputs (ARX) or Nonlinear ARX (NARX) model structures, which perform finite 
(and small) step-ahead prediction of the variable.  

The real-time estimation obtained by the soft sensor can be used by the 
controller, while the corresponding delayed measurements allow the soft sensor 
performance to be improved, by avoiding the error propagation effect mentioned in 
the previous subsection.  

2.2.4 Sensor Validation, Fault Detection and Diagnosis 

An industrial control system can be seen as a hierarchy of at least three levels: the 
first level is the control level, which implements the actual control loop by means 
of feedback and feedforward controllers, state observers, parameter estimators, and 
so on. Above the control level, the supervision level accomplishes the task of 
continuously monitoring the operational life of the process, making the process 
operation almost independent from the presence of human operators. The highest 
level is dedicated to management, coordination and optimization activities, which 
provide the control system with high-level directives in order to maximize the 
performance of the system with respect to certain criteria.  

Fault detection and diagnosis are part of the supervision functions 
accomplished by modern industrial control systems. In the past, the supervision 
function was essentially limited to checking important variables, and the 
consequent raising of alarms if some safety thresholds were trespassed. This was 
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actually an early stage of fault detection. On the other hand, at present, fault 
detection and diagnosis is performed by means of advanced techniques of 
mathematical modeling, signal processing, identification methods, computational 
intelligence, approximate reasoning, and many others. The main goals of modern 
fault detection and diagnosis systems are to:  

 perform early detection of faults in the various components of the system, 
possibly providing as much information as possible about the fault which 
has occurred (or is occurring), like size, time, location, evaluation of its 
effects; 

 provide a decision support system for scheduled, preventive, or predictive 
maintenance and repair;  

 provide a basis for the development of fault-tolerant systems. 

Fault detection and diagnosis strategies always exploit some form of redundancy. 
This is the capability of having two or more ways to determine some characteristic 
properties (variables, parameters, symptoms) of the process, in order to exploit 
more information sources for an effective detection and diagnosis action. The main 
idea underlying all fault detection strategies is to compare information collected 
from the system to be monitored with the corresponding information from a 
redundant source. A fault is generally detected if the system and the redundant 
source provide two different sets of information. There can be three main kinds of 
redundancy: physical redundancy, which consists of physically replicating the 
component to be monitored; analytical redundancy, in which the redundant source 
is a mathematical model of the component; knowledge redundancy, in which the 
redundant source consists of heuristic information about the process. When dealing 
with industrial applications, an effective fault detection and diagnosis algorithm 
must usually exploit a combination of redundancy sources, rather than a single one.  

Sensor validation is a particular kind of fault detection, in which the system to 
be monitored is a sensor (or a set of sensors). At a basic level, the aim of sensor 
validation is to provide the users of a measurement system (that can be human 
operators, measurement databases, other processes, control systems, etc.) with an 
evaluation about the reliability of the measurement performed. At a higher level, a 
sensor validation system may also provide an estimate of the measurement in the 
case in which the actual sensor is out of order. In this framework, soft sensors are a 
valuable tool to perform sensor validation. Their usefulness is twofold. First, they 
can be exploited as a source of analytical redundancy. They can in fact be 
paralleled with actual sensors, and faults can be detected by comparison between 
the outputs of actual and soft sensors. Second, they can be exploited to provide an 
estimate of the sensor output in the case of sensor fault. Therefore, they can be 
used as a back-up device once a fault has been detected.  

2.2.5 What-if Analysis 

The design process of control systems requires the process behavior to be 
described via adequate theoretical/data-driven models that might be able to predict 
the system output corresponding to suitable input trends, for a given time span. 
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A model is used in this case to perform simulation of the system dynamics 
corresponding to input trends that are of interest, with the aim of obtaining both a 
deeper understanding of system behavior and/or designing suitable control policies. 
This particular use of process models to perform simulation is called what-if 
analysis.   

Though first principle models could be a better choice due to their capability of 
describing the phenomena ruling the process, the difficulty of obtaining accurate 
enough models in a reasonable time can lead experts to adopt data-driven 
inferential models. 

In the case of what-if analysis, inputs are therefore synthetic quantities, i.e. they 
are designed in order to analyze system reactions on a time span that makes sense, 
in accordance with system dynamics.  

In this case, NARX models can be a suitable choice, due to the finite time span 
used in simulations. In fact, in this way, model error effects propagate only for a 
small number of iterations that must, however, be carefully fixed by the designer. It 
is also worth noting that, in the case of what-if analysis, input variables are 
noise-free, thus improving simulation performances.  

On the other hand, much attention must be addressed to a careful choice of 
input trends. Much more than in the cases described in previous subsections, data 
used during soft sensor design must represent the whole system dynamics. 

Also, the usual model validation should be followed by a further test phase in 
which canonical signals are used to force the real plant, and recorded plant 
reactions are compared to model simulations. A case study describing the design of 
a soft sensor to perform the what-if analysis of a real process will be reported in 
Chapter 8. 

  



3 

Soft Sensor Design 

3.1 Introduction 

This chapter gives a brief description of the methodologies used in this book for 
soft sensor design. It is intended to help the reader in understanding the approach 
used in the following chapters and not to give an exhaustive treatment of 
theoretical topics relevant to soft sensors: readers interested in a deeper description 
of theoretical aspect can refer to the cited bibliography. 

The chapter is organized following the typical steps that a soft sensor designer 
is faced with. As reported in previous chapters,  soft sensors are mathematical 
models that allow us to infer relevant variables on the basis of their dependence on 
a set of influential variables. In line with the topic of the book only data-driven soft 
sensor design techniques will be considered in this chapter. 

The methodologies described will be reconsidered in the following chapters 
using a number of suitable case studies. All the applications considered were 
developed using data taken from plant databases of real industrial applications, 
with only the preliminary manipulation of data scaling when required for reasons 
of confidentiality. 

3.2 The Identification Procedure 

The soft sensor design based on data-driven approaches follows the block scheme 
reported in Figure 3.1. A number of constraints, when using this scheme, depends 
on the objective for which the soft sensor is required. As an example, a soft sensor 
designed for measuring hardware back-up cannot use past measured samples of the 
inferred plant variable. This consideration will impose contrains in the block 
“Model structrure and regressor selection”. As a second example, if the soft sensor 
will be designed to reduce the effect of measurement delays in a closed loop 
control scheme different constraints should be considered for the same block.  In 
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fact, past samples of the inferred variables could be available, suggesting for using 
them in the model. At the same time, high model prediction capabilities are 
mandatory. 

Selection of historical data from 
plant database 

Model validation 

Outlier detection and data 
filtering 

Model structure  
and regressor selection 

Model estimation 

 
Figure 3.1. Block scheme of the identification procedure of a soft sensor 

As regards the first block reported in Figure 3.1, a preliminary remark is needed. 
Generally, the first phase of any identification procedure should be the experiment 
design, with a careful choice of input signals used to force the process 
(Ljung, 1999). Here this aspect is not considered because the input signals are 
necessarily taken  from the historical system database. In fact, due to questions of 
economy and/or safety, industries can seldom (and sometimes simply cannot) 
perform measurement surveys. 
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This poses a number of challenging problems for the designer, such as:  
missing data, collinearity, noise, poor representativeness of system dynamics (an 
industrial system spends most of its time in steady state conditions and little 
information on system dynamics can be extracted from data), etc.. A partial 
solution to these problems is the careful investigation of very lengthy records (even 
of several years) in order to find relevant data trends.  

In this phase, the importance of interviews with plant experts and/or operators 
cannot be stressed enough. In fact, they can give insight into relevant variables, 
system order, delays, sampling time, operating range, nonlinearity, and so forth. 
Without any expert help or physical insight, a soft sensor design can become an 
unaffordable task and data can be only partially exploited.  

Moreover, data collinearity and the presence of outliers need to be addressed by 
applying adequate techniques, as will be shown in the following chapters of the 
book. 

Model structure is a set of candidate models among which the model should be 
searched for. The model structure selection step is strongly influenced by the 
purpose of the soft sensor design for a number of reasons. If a rough model is 
required or the process works close to a steady state condition, a linear model can 
be the most straightforward choice, due to the greater simplicity of the design 
phase. A linear model can also be the correct choice when the soft sensor is to be 
used to apply a classical control strategy. In all other cases a nonlinear model can 
be the best choice to model industrial systems, which are very often nonlinear. 

Other considerations about the dependence of the model structure on the 
intended application have already been reported in Chapter 2. 

Regressor selection is closely connected with the problem of model structure 
selection. This aspect has been widely addressed in the literature in the case of 
linear models. In this chapter, a number of methods that can be useful also for the 
case of nonlinear models will be briefly described.  

The same consideration holds true for model identification, consisting in 
determining a set of parameters which will identify a particular model in the 
selected class of candidates, on the basis of available data and suitable criteria. In 
fact, approaches such as least mean square (LMS) based methodologies are widely 
used for linear systems. 

Though a corresponding well established set of theoretical results is not 
available for nonlinear systems, methodologies like neural networks and 
neuro-fuzzy systems are becoming standard tools, due to the good performance 
obtained for a large number of real-world applications and the availability of 
software tools that can help the designer. 

In the applications described in this book we mainly use multi-layer perceptron 
(MLP) neural networks. The topic of neural network design and learning is beyond 
the scope of this book. Interested readers can refer to Haykin (1999). 

The last step reported in Figure 3.1 is model validation. This is a fundamental 
phase for data-driven models: a model that fits the data used for model 
identification very well could give very poor results in simulations performed 
using new sets of data. Moreover, models that look similar according to the set of 
available data can behave very differently when new data are processed, i.e. during 
a lengthy on-line validation phase.  
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Criteria used for model validation generally depend on some kind of analysis 
performed on model residuals and are different for linear and nonlinear models. A 
number of validation criteria will be described later in this chapter and will be 
applied to case studies in the following chapters. 

Finally, it should be borne in mind that the procedure shown in Figure 3.1 is a 
trial and error one, so that if a model fails the validation phase, the designer should 
critically reconsider all aspects of the adopted design strategy and restart the 
procedure trying different choices. This can require the designer going back to any 
of the steps illustrated in Figure 3.1, and using all available insight until the success 
of the validation phase indicates that the procedure can stop. 

3.3 Data Selection and Filtering 

The very first step in any model identification is the critical analysis of available 
data from the plant database in order to select both candidate influential variables 
and events carrying information about system dynamics, relevant to the intended 
soft sensor objective. This task requires, of course, the cooperation of soft sensor 
designer and plant experts, in the form of meetings and interviews. In any case, a 
rule of thumb is that a candidate variable and/or data record can be eliminated 
during the design process, so that it is better to be conservative during the initial 
phase. In fact, if a variable carrying useful information is eliminated during this 
preliminary phase, unsuccessful iteration of the design procedure in Figure 3.1 will 
occur with a consequent waste of time and resources.     

Data collection is a fundamental issue and the model designer might select data 
that represent the whole system dynamic, when this is possible by running suitable 
experiments on the plant. High-frequency disturbances should also be removed.  

Moreover, careful investigation of the available data is required in order to 
detect either missing data or outliers, due to faults in measuring or transmission 
devices or to unusual disturbances.  In particular, as in any data-driven procedure, 
outliers can have an unwanted effect on model quality. Some of these aspects will 
now be described in greater detail.  

Data recorded in plant databases come from a sampling process of analog 
signals, and plant technologists generally use conservative criteria in fixing the 
sampling process characteristics. The availability of large memory resources leads 
them to use a sampling time that is much shorter than that required to respect the 
Shannon sampling theorem. In such cases, data resampling can be useful both to 
avoid managing huge data sets and, even more important, to reduce data 
collinearity. 

A case when this condition can fail is when slow measuring devices are used to 
measure a system variable, such as in the case of gas chromatographs or off-line 
laboratory analysis. In such cases, static models are generally used. Nevertheless, a 
dynamic MA or NMA model can be attempted, if input variables are sampled 
correctly, by using the sparse available data over a large time span. Anyway, care 
must be taken in the evaluation of model performance. 

Digital data filtering is needed to remove high-frequency noise, offsets,  and 
seasonal effects. 



 Soft Sensor Design 31 

Data in plant databases have different magnitudes, depending on the units 
adopted and on the nature of the process. This can cause larger magnitude variables 
to be dominant over smaller ones during the identification process. Data scaling is 
therefore needed. Two common scaling methods are min–max normalization and 
z-score normalization. Min–max normalization is given by: 
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x minminmax
minmax

minxx  (3.1) 

where: 

x  is the unscaled variable; 
x   is the scaled variable; 
minx is the minimum value of the unscaled variable; 
maxx is the maximum value of the unscaled variable; 
minx’ is the minimum value of the scaled variable; 
maxx’ is the maximum value of the scaled variable. 

The z-score normalization is given by: 
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where: 

meanx  is the estimation of the mean value of the unscaled variable; 
x is the estimated standard deviation of the unscaled variable. 

The z-score normalization is preferred when large outliers are suspected 
because it is less sensitive to their presence. 

Data collected in plant database are generally corrupted by the presence of 
outliers, i.e. data inconsistent with the majority of recorded data, that can greatly 
affect the performance of data-driven soft sensor design. Care should be taken 
when applying the definition given above: unusual data can represent infrequent 
yet important dynamics. So, after any automatic procedure has suggested a list of 
outliers, careful screening of candidate outliers should be performed with the help 
of a plant expert to avoid removing precious information. Data screening reduces 
the risk of outlier masking, i.e. the case when an outlier is classified as a normal 
sample, and of outlier swamping, i.e. the case when a valid sample is classified as 
an outlier.  

Outliers can either be isolated or appear in groups, even with regular timing. 
Isolated outliers are generally interpolated, but interpolation is meaningless when 
groups of consecutive outliers are detected. In such a case, they need to be 
removed and the original data set should be divided into blocks to maintain the 
correct time sequence among data, which is needed to correctly identify dynamic 
models. Of course, this is not the case with static models, which require only the 
corresponding samples for the remaining variables to be removed.     
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The first step towards outlier filtering consists in identification of data 
automatically labeled with some kind of invalidation tag (e.g. NaN, 
Data_not_Valid, and Out_of_Range). After this procedure has been performed, 
some kind of detection procedure can be applied. Though a generally accepted 
criterion does not exist, a number of commonly used strategies will be described. 
In particular, the following detection criteria will be addressed: 

 3  edit rule; 
 Jolliffe parameters; 
 residual analysis of linear regression. 

In the 3  edit rule, the normalized distance di of each sample from the 
estimated mean is computed: 

 
x

xi
i

meanx
d  (3.3) 

and data are assumed to follow a normal distribution, so that the probability that 
the absolute value of di is greater than 3 is about 0.27% and an observation xi is 
considered an outlier when  |di| is grater than this threshold.  

To reduce the influence of multiple outliers in estimating the mean and 
standard deviation of the variable, the mean can be replaced with the median and 
the standard deviation with the median absolute deviation from the median (MAD). 
The 3  edit rule with such a robust scaling is commonly referred to as the Hampel 
identifier. Other robust approaches for outlier detection are reviewed in Chiang, 
Perl and Seasholtz (2003). 

The Jolliffe method, reviewed in Warne et al. (2004), is based on the use of the 
following three parameters, named d1i

2, d2i
2, d3i

2, computed on the variables z, 
obtained by applying either the principal component analysis (PCA) or projection 
to latent structures (PLS) to the model variables. The parameters are computed as 
follows: 
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where:  

index i refers to the ith sample of the considered projected variable;  
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p is the number of inputs;  
q is the number of principal components (or latent variables) whose 
variance is less than one;  
zik is the ith sample of the kth principal component (or latent variable); 
lk is the variance of the kth component.  

Statistics in Equations 3.4 and 3.5 have been introduced to detect observations 
that do not conform with the correlation structure of the data. Statistic 3.6 was 
introduced to detect observations that inflate the variance of the data set 
(Warne et al., 2004). 

Suitable limits to any of the three statistics introduced above can be used as a 
criterion to detect outliers. PCA and PLS can also be used directly to detect outliers 
by plotting the first component vs. the second one and searching for data that lie 
outside a specified region of the plot (Chiang, Perl and Seasholtz, 2003). 

A final technique considered here is the residual analysis of linear correlation. 
This is based on the use of a multiple linear regression between dependent and 
independent variables in the form: 

 Xy  (3.7) 

where: 

y is the vector of the system output data; 
X is a matrix collecting input variable data; 
 is a vector of parameters; 
 is a vector of residuals. 

The procedure requires the least square method to be applied to obtain an 
estimation of : 

 yXXX TT 1)(ˆ  (3.8) 

so that the estimated output is 

 ˆˆ Xy  (3.9) 

and the model residual can be computed as 

 yyr ˆ  (3.10) 

The residuals are plotted together with the corresponding 95% confidence 
interval (or any other suitable interval). Data whose confidence interval does not 
cross the zero axis are considered outliers. As an example, in Figure 3.2 the results 
of a case study described in Chapter 4 (Figure 4.21) are reported. 
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Figure 3.2. An example of outliers detected using the linear regression technique: outliers 
correspond to segments that do not cross the zero line and are reported in gray 

 Nonlinear extensions of techniques for outlier detection introduced so far can 
be used. Examples are PLS, which can be replaced with nonlinear PLS (NPLS), 
and linear regression, which can be substituted with any kind of nonlinear 
regression.   

As a final remark, it should be noted that outlier search methods use very 
simple models (e.g. only static models are considered for the case of linear 
regression) between inputs and outputs, and suggest as outliers all data that do not 
fit the model used with a suitable criterion. This implies that the information 
obtained needs to be considered very carefully. In fact, automatic search 
algorithms tend to label as outliers everything that does not fit the rough model 
used. This can lead to the elimination of data that carry very important information 
about system dynamics and can significantly affect the results of the procedure 
used for soft sensor design.  

The final choice about data to be considered as outliers should be performed by 
a human operator, with the help of plant experts.   

3.4 Model Structures and Regressor Selection 

Here some general model structures to be used for data-driven models will be 
introduced. In particular, we will start with linear models and then generalize about 
the corresponding nonlinear models.  
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Whatever the model structure, the very first representation of a system is that of 
an oriented structure, where a set of dependent variables, i.e. the system outputs, 
are the consequence of a set of independent variables, i.e. the system inputs. This 
schematization of a system model is reported in Figure 3.3. 

 
Figure 3.3. Scheme of an oriented system 

The general model of a linear system is 

 )()()()()( 11 tezHtuzGty  (3.11) 

where, for Single Input–Single Output (SISO) systems, G(·) and H(·) are transfer 
functions, z-1 is the time delay operator and e(t) is a white noise signal, with a 
corresponding probability density function; and Equation 3.11 can then be 
rewritten as 
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where A(·), B(·), C(·), D(·), and F(·) are polynomials in the delay operator. 
The identification procedure is aimed at determining a good estimate, according 

to certain criteria, of the two transfer functions introduced in Equation 3.11. This 
can be done according to the model’s ability to produce one-step-ahead predictions 
with a low variance error. It can be verified that the minimum variance 
one-step-ahead predictors is (Ljung, 1999) 

 )()(1)()()()1|(ˆ 111111 tyzHtuzGzHtty  (3.13) 

Different families of models, i.e. model structures, can be defined by imposing the 
structure of the transfer functions G(·) and H(·). A model of a given family is 
determined by identifying the parameters of the transfer functions. The role of the 
model parameters is clear if the one-step-ahead predictor is rewritten in the 
following regressor form: 

 )(),1|(ˆ ttty  (3.14) 

where 

 
System model 

Input vector, u(t) Output vector, y(t) 
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 is the parameter vector; 
 is the regression vector, which contains past samples of system inputs 

and outputs and/or residuals, depending on the chosen model structure. 

Common dynamic models used in soft sensor applications are now described in 
the following, by giving the corresponding regression vectors. 

The MA model structure is characterized by the following regression vector: 

 Tmdtudtut )()...()(  (3.15) 

where d and m indicate the delay of the samples. 
This corresponds to 
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MA models are characterized by having all the poles at zero; this corresponds 
to a FIR and can be an adequate model structure for modeling very fast systems. 

The regressor for an ARX model is 

 Tmdtudtuntytyt )()...(),(),...,1(  (3.17) 

This corresponds to 
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The regressor structure in Equation 3.17 implies that now the G(·) input–output 
transfer function is not forced to have all the poles at zero. Also the impulse 
response this time is not extinguished in a finite time span. For this reason, 
Equation 3.17 is said to correspond to an infinite impulse response (IIR) filter. 

Though ARX models can require a smaller number of parameters for accurate 
modeling of real systems than an MA model, Equation 3.17 clearly shows the 
necessity to use regressors of the system output. This implies that when data about 
past output samples are not available, the regressor structure of an ARX model 
cannot be applied, unless past values of system output are replaced with their 
estimated values.  

When the designer wants to avoid such a choice, an FIR structure is the only 
suitable solution, with a corresponding growth of model parameters or degradation 
of model accuracy. 
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Finally an Auto-Regressive Moving Average, with eXternal input (ARMAX) 
model is characterized by the regressor: 

 Tktt

mdtudtuntytyt

),(...,),,(
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 (3.19) 

Note that now the regressor vector depends on the parameter vector , making 
the identification procedure more complex. Equation 3.19 corresponds to: 

 

)(
)(),(

)(
)(),(

1

1
1

1

1
1

zA
zCzH

zA
zBzzG d

 (3.20) 

The linear structures introduced above can be extended to nonlinear 
counterparts, that later on in the book will be implemented mainly by using 
nonlinear neural models based on MLPs. This choice is motivated by the well 
known approximation capabilities of MLPs with one hidden layer (Haykin, 1999). 
Nevertheless, case studies will be reported where the complexity of the problems 
led to a different structure choice. 

In particular, if Equation 3.14 is considered, its nonlinear extension is named a 
NMA model. A block scheme of such a model is shown in Figure 3.4. 

 u(t-d) 

u(t-d-1) 

u(t-d-m) 

(t) Nonlinear 
function 

 
Figure 3.4. Scheme of a NMA model 

In the same way, an ARX model can be extended to a NARX model, in 
accordance with the scheme shown in Figure 3.5. 
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 u(t-d) 

u(t-d-1) 

u(t-d-m) 

(t) 

y(t-1) 

y(t-n) 

Nonlinear 
function 

 
Figure 3.5. Scheme of a NARX model 

Finally, the scheme of a Nonlinear ARMAX model (NARMAX) is obtained as 
an extension of the ARMAX structure, as shown in Figure 3.6. 

 

 

u(t-d) 

u(t-d-1) 

u(t-d-m) 

(t) y(t-1) 

y(t-n) 

Nonlinear 
function 

z-k 

z-1 
(t-1) 

(t-k) 

y(t) (t) 

 
Figure 3.6. Scheme of a NARMAX model 
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Once the model structure has been selected on the basis of the soft sensor 
objective and available information, the influential variables and their regressors 
need to be determined. This is a very complex task and again any physical insight 
and/or expert knowledge about the process can greatly help effort reduction and a 
meaningful solution. 

Though, as a matter of simplification, these two topics are introduced as 
separate aspects of the identification process, in practical applications they are 
tightly intertwined so that, generally, they are solved simultaneously. This means 
that a large set of variables, including independent variables and a number of their 
regressors, should be considered as candidate inputs for the model.  

A starting list of independent variables and their regressors can be hypothesized 
by using expert suggestions and any knowledge about system physics. A great help 
in this phase is when possible a set of experiments designed to gain information 
about time delays, time constants, and input/output dependence. 

Later in this section, a number of methods that allow us to extract a subset of 
relevant model inputs from the initial set of candidates will be briefly described. In 
particular, the methods used in the case studies reported in the book will be 
described, while a number of other approaches can be found in Ljung (1999).  

The following approaches will be dealt with (Warne et al., 2004; He and 
Asada , 1993): 

 correlation analysis and scatter plots; 
 partial correlation analysis; 
 Mallows’ statistics; 
 Lipschitz quotients; 
 PCA and PLS approaches.  

Correlation analysis is performed by computing the estimated normalized 
correlation function between each candidate independent variable (regardless of 
the delay) and the system output. The magnitude of any peak in the 
cross-correlation function gives information about the relevance of the input 
variable (as regards linear dependence), while its position gives information about 
the correct regressor to be considered in the model.  The following MA model is an 
example of this:  

 )20(3.0)10(7.0)( txtxty  (3.21) 

and the model output has been computed when the input signal is a white noise 
with a normal distribution. In Figure 3.7, the estimated normalized 
cross-correlation function obtained in this case is shown. The presence of two large 
peaks can be observed in Figure 3.7. Also, the position of the peaks is in 
accordance with the lags introduced in the model 3.21, while their values depend 
on the coefficients of the model. 
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Figure 3.7. Cross-correlation function for the model 3.21, when a white noise with Gaussian 
distribution is used as input signal  

A slightly different kind of analysis is represented by scatter plots. In this case, 
each candidate variable is plotted against the system output to search for any 
structure. A straight line will give evidence of a linear input–output correlation, 
while a curve will suggest a nonlinear relationship. Though the scatter plot method 
allows us to find also nonlinear input–output correlations, the search for input 
regressors requires subsequent delays to be plotted: if an input–output correlation 
exists between the considered input and the system output, the plot that shows a 
clear structure will give the correct regressor. A slight modification of example 
3.21 is considered here, namely the following NMA: 

 )20(3.0)10(7.0)( 2 txtxty  (3.22) 

and again a Gaussian white noise is considered as an input signal for this model. 
The scatter plot reporting y(t) vs. x(t) is reported in Figure 3.8. 

It will be observed that no structure can be recognized in the scatter plot. 
However, this conclusion changes dramatically when the correct lag is considered. 
In fact, from Equation 3.22 it is evident that a strong correlation between model 
input and output can be found if input data are delayed by 10 samples. In 
Figure 3.9, the scatter plot for model 3.22 is reported in the case when y(t) is 
plotted versus x(t–10). 
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Figure 3.8. x–y scatter plot for the NMA model 3.22, when a white noise with Gaussian 
distribution is used as input signal  

 
Figure 3.9. y(t) versus x(t–10) scatter plot for the NMA model 3.22, when a white noise 
with Gaussian distribution is used as input signal  

It is evident that in this second case the scatter plot displays a clear structure. 
Moreover, the points in the scatter plot are approximately parabolic in shape. The 
dispersion of the points in Figure 3.9 is the effect of the dependence of y(t) from 
x(t–20). In fact, neither of the methods mentioned so far can filter out the effect of 
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other inputs on the system output. Such an undesired effect can even hide the 
correlation being sought. Hence, the partial correlation analysis can be used. 

The partial correlation method is designed to identify a linear relation between 
two variables xi and xj (or y) “adjusting for” the effects of the remaining variables 
in the set of candidates. The partial correlation coefficient between the two 
variables is computed as 
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where Cij represents the ijth entry of the inverse of the simple correlation matrix. 
It is worth noting that this method also gives information about linear 

correlation, while nonlinear input–output dependence could remain undetected. 
The method proposed by Mallow (Warne et al., 2004) is based on evaluation of 

the standardized total squared error as a criterion for the selection of the model 
structure. An estimate of model complexity is obtained by using Mallows’ Cp 
statistic, defined as  
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where: 

n is the total number of model input candidates; 
p is the number of selected variables, extracted from the set of 
candidates; 
R is the residual variance of the model with the n variables (full model); 
Rp is the residual sum of squares for the reduced model with p inputs. 

Good models typically have the (p,Cp) coordinate close to the 45° line on a 
Cp vs. p plot. 

An advantage of this method is that it can be used both for linear and nonlinear 
models.  

In Equation 3.24, p is not defined a priori and different values need to be 
analyzed, starting from a minimum value up to n. This is a typical combinatorial 
problem that can become unmanageable when n is large. It can help in such a case 
at least to fix p and search for a sub-optimal solution. 

The problem of computational load becomes even more severe when the model 
structure is nonlinear, as in the case of neural network based models. In fact, in this 
case iterative identification techniques are generally used and the time required for 
the identification of each model can become considerably longer than the time 
spent to determine a linear model. A clear example of this drawback is reported in 
Chapter 5. 

Another working method for nonlinear systems is proposed in He and 
Asada (1993) and is based on the assumption that the system can be represented 
accurately by a function that is smooth in the regressors.  
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The method is based on the computation of the so-called Lipschitz quotient for 
all combinations of input–output pairs and is designed for NARX models: 
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where N is the number of available samples. 
The procedure proposed by He and Asada (1993) is the following: 

1. for a given choice of selected model inputs (i.e. of model inputs and 
their regressors) determine the Lipschitz quotients; 

2. select the p largest quotients, where p=0.01 N ~ 0.02 N; 
3. evaluate the criterion: 
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where n is the number of model inputs; 
4. repeat computation 3.26 for a number of different lag structures; 
5. plot the criterion as a function of lag space and select the optimal 

number of regressors as the knee point of the curve. 

The procedure described is very time consuming expecially for large sets of 
candidate inputs, and/or large data sets, though a model need not be identified for 
each trial. 

Once the model structure has been determined, the model parameters need to be 
identified on the basis of the selected measurement data and a suitable criterion. 
Minimization of the mean square error (MSE) between the actual system output 
and its estimation is widely adopted. This topic has been investigated in depth in 
the literature both for linear and nonlinear models.  

In the case of linear models, least mean squares (LMS) methods are generally 
used, while for nonlinear models the strategy adopted strictly depends on the 
nature of the nonlinear function selected. In particular, if the nonlinearity is 
approximated by using MLPs, the identification procedure consists of a suitable 
learning algorithm. 

Though this step of the model identification procedure will not be further 
addressed in the book, the reader can refer to the widely available literature on 
optimization algorithms. 

PCA and PLS are very powerful tools widely used in soft sensor design. They 
are applied in a number of steps of a typical design procedure ranging from outlier 
detection to model identification (Levine, 1996). A number of applications will be 
described in the book, and a general introduction to theoretical foundations of these 
techniques will be given here. 

PCA is used to rotate original data in such a way to transform correlated 
variables into a set of uncorrelated ones, which are ordered by decreasing 
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variability. The transformed variables are linear combinations of original ones and 
the last ones can, eventually, be removed with minimum loss of information. 

The first step of PCA consists in data centering and normalization. Scaling data 
is used to avoid data with large values shading information conveyed by variables 
represented with smaller numbers. Scaling is generally performed by multiplying 
each variable by the inverse of its estimated variable standard deviation. 
Normalized data are therefore organized in a matrix X and the covariance matrix is 
computed: 

 XXCOV T
x  (3.27) 

Eigenvectors pi of this matrix are called loadings and identify the directions 
where the majority of data variability occurs, while the corresponding eigenvalues 
give the amount of variability associated with each direction. 

The application of PCA to original data produces a new set T of variables, 
called scores. The relationship between the original data and the corresponding 
scores is 

 TPTX  (3.28) 

where P is the matrix containing the eigenvectors of the covariance matrix 3.27.  
Equation 3.28 holds true only in the case when the whole set of eigenvectors is 

used. If a reduced set is of interest, scores can only approximate original data: 

 x
T EPTX  (3.29) 

where Ex is the reconstruction error. Interestingly, based on the order given to the 
transformed matrix, by considering the first scores in the reduced models, most of 
the variability of the original variables is retained. 

As an example, the scatter plot of a synthetic data set, consisting of a dimension 
two matrix, is now considered. Probably, this is not the most suitable example, 
because PCA is more useful when multivariate problems with a large number of 
variables are considered. In fact, in these cases the possibility to reduce the size of 
the problem is greatly welcomed. Nevertheless, considering a dimension two 
problem allows us to give a graphic representation of the data and of the effect of 
PCA application. 

The scatter plot of the data considered is shown in Figure 3.10. Data reported 
on the vertical axis were obtained by multiplying data on the horizontal data axis 
by a constant value and then adding a suitable amount of noise. This produces a 
significant correlation among data. The directions of the loadings are also reported, 
with the use of solid lines. 
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Figure 3.10. Scatter plot of two correlated synthetic vectors. Scores are indicated with two 
solid lines.  

The scatter plot of corresponding latent variables obtained after application of 
PCA to the original data is reported in Figure 3.11.  

 
Figure 3.11. Scatter plot of latent variables obtained by applying PCA to data shown in 
Figure 3.10  
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Interested readers can find details about PCA algorithms in the cited 
bibliography. 

In contrast to PCA, PLS considers information about both independent and 
dependent variables, in order to determine a linear model, by using sets X and Y of 
measurements, both affected by noise.  

In this case, both the X and Y sets are transformed into scores and loadings, so 
that two new sets (T and U) are obtained. 

To obtain the PLS of original data, X is modeled by using the first principal 
component:  

 1,11 x
T EptX  (3.30) 

Similarly, Y is modeled as 

 1,11 y
T FquY  (3.31) 

Residuals matrices Ex,1 and Fy,1 are therefore modeled using again Equations 3.30 
and 3.31 to find t2, p2, u2, and q2. The procedure can be further repeated, until no 
useful information is left in the residuals.  

The procedure described returns the scores t and u and the loadings p and q of 
X and Y, respectively. The scores of input and output variables are related by the 
following internal linear model: 

 iiii rtbu  (3.32) 

Finally, it is worth noting that PLS returns a linear model for the system. 
Nevertheless, extensions to nonlinear PLS (NPLS), based both on polynomial 
functions and on neural networks, have been proposed in the literature, (Baffi, 
Martin and Morris, 1999). 

Case studies where NPLS have been applied to real industrial applications will 
be described elsewhere in the book. 

3.5 Model Validation 

The final step towards the identification of a model is its validation. Validation is 
the phase required to verify whether the model is able to adequately represent the 
underlying system.  

A general rule to be followed when approaching this phase of soft sensor 
design is that data used for model validation should be different from those used 
for model identification. In fact, a model could have satisfactory behavior with the 
learning data set and work very poorly when processing a new data set. This 
precaution is useful for investigating overfitting phenomena. Overfitting should 
anyway be taken into account during the model identification procedure by using 
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adequate strategies and/or algorithms (e.g. early stopping), especially when the 
amount of available data is small compared to the model complexity.  

The task of model validation is a complex one and it becomes even harder in 
the case of validation of a nonlinear model, which is often the case for a soft sensor 
designer. Any valid help is greatly welcome in this phase and, generally, expert 
designers use a mixture of the different techniques available for data analysis. 

The criteria to be used during the validation step can be divided into two 
groups. In the first one, general techniques devoted to an analysis of the model 
residual properties can be found, while the second one groups criteria that are 
suggested by the application the soft sensor is designed for.  

Here techniques from the first group will be described. Examples of the second 
group are strictly linked to the application and will be given later on in the book, 
when we proceed to the critical analysis of the performance of models obtained 
during the solution of corresponding case studies. 

Techniques for model validation are aimed both at analyzing statistical model 
residual characteristics and at searching for any undesired correlation between 
model residual and present and/or delayed samples of model inputs and outputs. 
Notwithstanding this general aspect, validation of nonlinear models requires an 
even deeper analysis than linear models. 

In particular, graphical approaches can be very powerful tools for model 
validation, especially if adequate graphics are presented in a number of plots that 
allow the user to extract information from direct data inspection. 

The very first, and often the most important, graphical analysis consists in the 
visual inspection of time plots of both recorded data and their estimation, on a 
large and significant set of data. This can help in having an immediate feeling for 
the capability of the model to reproduce significant system dynamics. Such a test 
needs to be performed both on learning and test data. Moreover, attention must be 
paid to select data trends that are relevant for the intended soft sensor application.  

Graphical techniques can also help to gain evidence that residuals between the 
measured output and the estimated output contain no information about past 
residuals or about system dynamics, as in the case of correlation graphs, and that 
the residuals have specific distribution, location and variation (Chen, Billings and 
Grant, 1990; Billings, Jamaluddin and Chen, 1992; Guidorzi, 2003; Ljung, 1999; 
NIST/SEMATECH, 2005). 

A simple technique that can help to test the above mentioned assumption is 
known as the 4-plot analysis of model residuals.  

In more detail, the 4-plot analysis is based on visual inspection of the following 
graphs: 

 run sequence plot; 
 lag plot; 
 histogram; 
 normal probability plot. 

These four graphics can be used to test specific properties of the model 
residual. In particular, if the run sequence plot, i.e. the time plot of the model 
residual, does not show any drift nor any change in its spread, then the assumptions 
of a residual with fixed location and variation hold true. 
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The lag plot is used to search for any dependence of the model residual on its 
past values. This, in fact, will be reflected in the presence of a structure in the lag 
plot. On the contrary, the randomness assumption will produce a lag plot without 
any relevant structure. 

The histogram and the normal plot will be used to investigate the normal 
distribution of the model residual. In fact, if the model identification works 
properly, the histogram will be approximately zero centered and bell-shaped, while 
the normal plot will be close to a straight line.  

Any discrepancy from the 4-plot ideal aspect is a symptom of divergence from 
the stated hypothesis for the model residual, so that the designer should go back to 
the flow diagram reported in Figure 3.1 and search for anything wrong in the 
design process. Also, each cause of departure from the ideal case produces specific 
(and different) effects on the 4-plot, so that from the 4-plot analysis it is possible to 
determine the cause of modeling failure. 

In Figure 3.12, an example of the 4-plot for a synthetic random variable is 
reported. A visual inspection of the plots shows that all the considerations reported 
above are satisfied.  

 
 

 
Figure 3.12. 4-plot analysis for a random variable 

An example of a 4-plot, obtained for a variable that was not normally 
distributed, is reported in Figure 3.13. In this case an oscillatory variable was 
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synthesized and a noise signal, with suitable variance, was added. Visual perusal of 
the graphs shown in Figure 3.13 allows a number of interesting conclusions to be 
drawn. The run sequence plot shows a low-frequency fluctuation that evinces 
evidence of variation of residual location. Also a structure is clearly visible in the 
lag plot. The histogram shows a bimodal (U-shaped) distribution. Finally, the 
normal probability plot shows evident departures from the straight line, especially 
on the tails.  

 
 

 
Figure 3.13. 4-plot analysis for a noisy oscillatory variable 

In Figure 3.14, results of the case study described in Chapter 5 (Figure 5.37) are 
reported here as an example of 4-plot analysis of the residuals of a model for a real 
industrial application.  

More 4-plot analyses performed on residuals of identified models for soft 
sensor implementation will be shown in the following chapters of the book. 

A number of further examples of 4-plot analysis can be found in 
NIST/SEMATECH (2005), where 4-plots are shown along with a description of 
the conclusions that can be drawn from visual perusal of the graphs.  

The procedures that should be followed in the case of linear systems are quite 
well established and a huge amount of literature exists on this topic (Ljung, 1999).  
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When dealing with nonlinear systems, the checking of residual properties is 
more cumbersome; however, a number of tests designed to detect whether the 
residual is unpredictable from all linear and nonlinear combinations of past inputs 
and outputs is reported in the literature (Billings, Jamaluddin and Chen, 1992; 
Billings and Voon, 1991; Mendes and Billings, 2001). These tests were introduced  
considering the case of analytic nonlinear models; they are generally used for 
neural network based NARX models. In fact, while a theoretical analysis of this 
aspect does not exist, experimental evidence of their usefulness in the case of 
neural models is widely available. 

 
 

 
Figure 3.14. 4-plot analysis for the real case study reported in Chapter 5 (Figure 5.37) 

In practice, model validation requires that normalized correlation functions 
between couples of sequences i and j be estimated. The sampled correlation 
function is 
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The following conditions need to be tested, for each input variable: 
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where E[ ] is the mathematical expectation, (t) is the model residual, u(t) is the 
generic input variable, and the subscript m denotes the time average. The 
normalization adopted in Equation 3.33 guarantees that introduced correlation 
functions are in the interval [–1, 1]. 

In practical applications, none of the reported correlation functions are exactly 
zero for any of the lags considered. Instead, they are traced with a corresponding 
confidence band. The 95% confidence band is generally used and corresponds to 

N/96.1 , where N is the number of samples considered.  
The presence of values of correlation functions lying significantly outside the 

confidence band for any time lag suggests that it is advisable to consider the 
corresponding lagged input in the model structure. The occurrence of this 
undesirable behavior should be checked for the first delay values, while for larger 
values of the delay the physical meaning of the cross-correlation function can be 
lost. 

If the validation phase fails, because of any of the reported criteria, the soft 
sensor design procedure should be reconsidered. In particular, changes in any step 
of the procedure should be taken into account. As examples, identification 
procedure failure could have been caused by a wrong selection of data used for 
model identification, incorrect outlier detection, inadequate choice of influential 
variables, and so forth. 

In the following chapters, a number of industrial case studies, based on real 
data and intended to highlight each step of the identification procedure, are 
reported. 
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Selecting Data from Plant Database 

4.1 Detection of Outliers for a Debutanizer Column:                    
A Comparison of Different Approaches 

In this chapter, the detection of outliers, a topic addressed from the theoretical 
point of view in Chapter 3, is reconsidered by taking a case study. Some of the 
methods discussed will be applied to data referring to the debutanizer column 
described in the Appendix.  

The purpose of modeling in the case considered was to obtain a very accurate 
dynamic model able to estimate the system output in real time, avoiding the long 
delay introduced by the analyzer, which in this case was estimated at about 45 min. 

Experts furnished a set of ten input variables which were considered relevant 
(procedures to be followed to select input variables will be addressed in Chapter 5). 
Data were acquired in different periods, with a sampling time Ts = 6 min; in this 
chapter, results obtained for a subset recorded in one period will be described. A 
set of about 2500 data values (normalized so as to avoid important variables whose 
magnitudes are small from being overshadowed by less important but larger 
magnitude variables), extracted from the plant historical database was considered. 
The same data set was processed with all the methods considered for the purposes 
of comparison. 

The following methods were applied: 

 3  edit rule; 
 Jolliffe parameters with PCA; 
 Jolliffe parameters with PLS; 
 Residual analysis of linear regression. 

The methods listed above are those most commonly suggested in the literature, 
though others can be found. However, their nonlinear counterpart can be 
considered, in particular nonlinear PLS regression and residual analysis of 
nonlinear regression can be considered.  
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The data were preprocessed in order to take into account the presence of 
missing and invalid data, recognized by the acquisition system and denoted as 
Out_of_Range.  

Whatever the technique used for outlier detection, a post-processing phase is 
necessary to remove outliers. Two strategies can be adopted depending on the size 
of the cluster of detected outliers. If an isolated outlier is detected it can be 
replaced; a common strategy is to use interpolation of adjacent data. When a 
cluster of consecutive data is detected as outliers, interpolation can be meaningless 
and a common strategy is to eliminate them and resize the data set. In this case, 
attention must be paid when searching for dynamical models because these models 
will use as input, time regressors of the input and/or output variables, and jumps in 
timescale cannot be introduced. In this case, the right choice may be to maintain 
the data sets as different files to be fused only after the regressors have been built. 

4.1.1 The 3  Edit Rule 

The 3  edit rule is based on the hypothesis that the variable considered is normally 
distributed and it is generally applied even though the normality condition is 
seldom satisfied in practice. Usually this method is made robust by replacing the 
outlier-sensitive mean and standard deviation estimates with the outlier-resistent 
median and median absolute deviation from the median (MAD), respectively. 

In the case of the debutanizer, computations have been performed with respect 
to mean and standard deviation estimates because suspected outliers were not 
sufficiently relevant to modify these parameter estimations. 

The 3  edit rule method has the valuable property of allowing visual inspection 
of each input and output variable, without projections that could make it hard to 
understand the physical meaning of the results obtained. Also, comparative 
inspection of the graphs obtained for the process variables allows one to decide, 
with the help of a process expert, whether a candidate outlier is due to a particular 
working condition (anomalies will be seen, in this case at least, in a subset of 
available graphs), or to sensor/transmission errors. In the former case, of course, 
the anomalous behavior reflects a working condition of the plant, even if a rare 
one, and it may or may not be considered an outlier, depending on the modeling 
task. In fact, taking into account that the data used must reflect all the possible 
dynamics of the system, such rare events can represent a precious source of 
information for the process of model identification. 

In the following Figures 4.1 to 4.11, time plots of the dependent variable and of 
corresponding independent variables are shown. Detected outliers are reported in 
gray, along with the corresponding order number. Each figure also reports the 
corresponding histogram to check the validity of the normal distribution 
hypothesis. 

As an example, visual inspection of Figure 4.1 shows that the suspected outliers 
for the process output variable are actually part of higher peaks that could contain 
valuable information about the plant dynamics. In such conditions, the final 
decision should be left to the experts. A different condition can be hypothesized for 
the data reported in Figure 4.3, where detected outliers belong to a cluster of data 
clearly separated from the general trend of the considered variable.  
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The reported histograms clearly show that the hypothesis of normal distribution 
is partially verified. 

 
Figure 4.1. Results of the 3  edit rule for the dependent variable of the debutanizer column 
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Figure 4.2. Results of the 3  edit rule for first independent variable of the debutanizer 
column 
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Figure 4.3. Results of the 3  edit rule for the second independent variable of the 
debutanizer column 
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Figure 4.4. Results of the 3  edit rule for the third independent variable of the debutanizer 
column 
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Figure 4.5. Results of the 3  edit rule for the fourth independent variable of the debutanizer 
column 
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Figure 4.6. Results of the 3  edit rule for the fifth independent variable of the debutanizer 
column 
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Figure 4.7. Results of the 3  edit rule for the sixth independent variable of the debutanizer 
column 
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Figure 4.8. Results of the 3  edit rule for the seventh independent variable of the 
debutanizer column 
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Figure 4.9. Results of the 3  edit rule for the eighth independent variable of the debutanizer 
column 
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Figure 4.10. Results of the 3  edit rule for the ninth independent variable of the debutanizer 
column 
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Figure 4.11. Results of the 3  edit rule for the tenth independent variable of the debutanizer 
column 
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4.1.2 Jolliffe Parameters with Principal Component Analysis 

As reported in Chapter 3, outliers can be searched for using parameters suggested 
by Jolliffe, after PCA or PLS decomposition of original data have been performed. 
In this subsection we describe results obtained by applying PCA decomposition to 
data referring to the debutanizer column, while results obtained using PLS will be 
reported in the next subsection. When using Jolliffe parameters, a suitable limit to 
detect outliers should be defined. We used the generally adopted 3  limit for each 
Jolliffe parameter. The results are shown in Figures 4.12, 4.13, and 4.14. 

As can be observed from comparison of the three Jolliffe parameters, they 
mostly agree about detected outliers, notwithstanding that d1

2 has been designed to 
penalize more severely components with a low value of variance, with respect to 
d2

2, and that statistic d3
2 is designed to detect observations that inflate the data set 

variance. 
A simpler approach to outlier detection, commonly used in the literature, 

consists in the direct visual analysis of the graph reporting the first principal 
component vs. the second component. Isolated points should be considered as 
suspected outliers. Figure 4.15 was obtained for the application considered. In the 
figure, labeled points refer to samples recognized as outliers by all three Jolliffe 
parameters. 

 
Figure 4.12. The first Jolliffe parameter ( 2

1d ), computed on the set of data taken from the 
debutanizer column, transformed using PCA 
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Figure 4.13. The second Jolliffe parameter ( 2

2d ), computed on the set of data taken from 
the debutanizer column, transformed using PCA  

 
Figure 4.14. The third Jolliffe parameter ( 2

3d ), computed on the set of data taken from the 
debutanizer column, transformed using PCA 
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Figure 4.15. Plot of the first principal component (PC1) vs. the second principal component 
(PC2), for the debutanizer column 

As can be observed, direct inspection of the PCA plot does not give any 
automatic suggestion about outlier detection, which is somewhat left to the 
designer, even if suitable limits can always be defined (Chiang, Perl and 
Seasholtz, 2003). 

In Figure 4.15 the encircled point corresponds to an outlier which was detected 
by Jolliffe parameters and that is totally lost when using direct PCA plot . This is a 
case when the methods are not totally equivalent, even when the limits of the PCA 
component plot are fixed. Readers can also refer to the book site to download data 
of variables involved and look at data plots to identify the corresponding outliers. 

A common drawback of both the Jolliffe parameters and direct PCA methods is 
that no information about system output is taken into account in the decision 
process. Last, but not least important, the physical meaning of the input/output 
variable is lost and this makes it harder to involve process experts in the detection 
step, unless back projection to the original data is performed.  

An in-depth comparative analysis of the various methods will be given at the 
end of this chapter. 

4.1.3 Jolliffe Parameters with Projection to Latent Structures 

Correlation between input and output variables can be taken into account by using 
PLS, instead of PCA. Among other techiques, Jolliffe parameters can be used also 
in this case to make it easier to detect outliers after PLS projection of original data. 
The results of applying PLS to the Jolliffe method are shown in Figures 4.16, 4.17, 
and 4.18. 
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Figure 4.16. The first Jolliffe parameter ( 2
1d ) computed using PLS 

 
Figure 4.17. The second Jolliffe parameter ( 2

2d ) computed using PLS 
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Figure 4.18. The third Jolliffe parameter ( 2

3d ) computed using PLS 

 
Figure 4.19. Plot of the first PLS component (PLS1) vs. the second PLS component (PLS2) 
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Also in this case, comparison with the plot of the first two PLS components can 
be useful. The results are shown in Figure 4.19, where labeled data once again 
refer to outliers suggested by all three Jolliffe parameters.  

It is evident that in this case the region containing ‘good’ data is better defined 
than the corresponding region obtained using the PCA method. The drawback 
outlined above for PCA, i.e. the loss of data physical interpretation, holds also for 
this method. 

4.1.4 Residual Analysis of Linear Regression 

The final method described in this chapter consists in an analysis of the residual 
obtained after linear regression among independent and dependent variables. The 
same set of data taken from the debutanizer column database was considered in 
order to perform linear regression using the traditional LMS approach. A 
confidence level of 99.5% (corresponding approximately to 3  in the hypothesis of 
Gaussian distribution of the residuals) was fixed as a threshold to recognize 
outliers in the residual vector. The residuals obtained are shown in Figure 4.20, 
along with the corresponding confidence interval. Outliers are reported in gray line 
color and correspond to data whose segments representing the confidence interval 
do not cross zero. 

In Figure 4.21, a zoom of the data highlighted in the previous figure is reported, 
in order to better show the selection criterion for outliers. 

 
Figure 4.20. Time plot of the residual obtained after performing linear regression. The 
corresponding 3  intervals are also reported. Outliers are reported in light gray color 
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Figure 4.21. A zoom of the data reported in Figure 4.20: outliers correspond to segments 
that do not cross the zero line and are reported in gray color 

4.2 Comparison of Methods for Outlier Detection 

In this section, a comparative analysis of results obtained in the previous section is 
reported. The number of outliers detected by each method is summarized in Table 
4.1. 

Table 4.1. Outliers obtained for the debutanizer column with different detection strategies 

 No. of outliers 

3  edit rule 233/2394 

d1
2 40/2394 

d2
2 44/2394 Jolliffe with PCA 

d3
2 42/2394 

d1
2 50/2394 

d2
2 48/2394 Jolliffe with PLS 

d3
2 44/2394 

Linear regression analysis 45/2394 
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A first comparison is made between the number of outliers detected by the 
Jolliffe with PCA and Jolliffe with PLS methods. The results are reported in Table 
4.2. 

Table 4.2. Number of outliers in common between the Jolliffe with PCA and Jolliffe with 
PLS 

 No. of outliers No. of outliers in common  

d1
2 40 

d2
2 44 Jolliffe with PCA 

d3
2 42 

34 

d1
2 50 

d2
2 48 Jolliffe with PLS 

d3
2 44 

31 

20 

Comparison of the remaining methods, two at a time, are reported in Tables 4.3 
to 4.7. In particular, the Jolliffe methods are compared by considering the outliers 
obtained by taking the three parameters together. In the tables, only the number of 
outliers in common are reported, while, at the end of the chapter, Table 4.8 reports 
the order number of the outliers recognized by each method. By using the data 
downloaded from the book web site, this table allows us to analyze, using time 
plots of the system variables, the characteristics of the outliers detected. 

Table 4.3. Number of outliers in common between the Jolliffe with PCA and the 3  edit 
rule 

 No. of outliers No. of outliers in common 
Jolliffe with PCA 34 

3  edit rule 233 33 

Table 4.4. Number of outliers in common between the Jolliffe with PLS and the 3  edit rule 

 No. of outliers No. of outliers in common 
Jolliffe with PLS 31 

3  edit rule 233 31 

Table 4.5. Number of outliers in common between the 3  edit rule and linear regression 

 No. of outliers No. of outliers in common 
3  edit rule 233 

Linear regression 45 
42 
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Table 4.6. Number of outliers in common between the Jolliffe with PCA and linear 
regression 

 No. of outliers No. of outliers in common 
Jolliffe with PCA 34 
Linear regression 45 3 

Table 4.7. Number of outliers in common between the Jolliffe with PLS and linear 
regression 

 No. of outliers No. of outliers in common 
Jolliffe with PLS 31 
Linear regression 45 3 

From a critical analysis of the results reported in Tables 4.1 to 4.7 and by 
performing a visual inspection of time plots of the variables involved, reported in 
Subsection 4.1.1, it is possible to draw some conclusions about the process of 
outlier detection. In particular, most of the outliers suggested using the 3  edit rule 
actually belong to relevant peaks of the output variable. Considering that such 
peaks are frequently repeated and that plant technologists required a model able to 
accurately estimate such dynamics, these values were not considered as outliers 
when modeling the debutanizer column.  

The use of Jolliffe parameters, both in conjunction with PCA and PLS, 
generally gave consistent results. Differences between the two methods can be 
considered as a consequence of the inclusion of information about system output 
when the PLS is used. 

The linear regression method gave results that generally do not fit with the 
suggestions afforded by other methods. 

Table 4.8. List of outliers detected by each method 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

42         
44         
88         
89         
90         
91         
92         
93         

369         
370         
371         
372         
570         
571         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

572         
573         
574         
604         
605         
606         
721         
722         
796         
797         
798         
799         
833         
834         
835         
836         
837         
899         
934         
935         
1067         
1068         
1069         
1070         
1071         
1072         
1073         
1074         
1077         
1078         
1079         
1080         
1081         
1082         
1083         
1084         
1085         
1086         
1087         
1088         
1089         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

1090         
1091         
1092         
1093         
1094         
1095         
1096         
1097         
1098         
1099         
1100         
1101         
1102         
1103         
1104         
1105         
1106         
1107         
1108         
1110         
1111         
1112         
1115         
1121         
1128         
1129         
1130         
1131         
1132         
1133         
1134         
1259         
1268         
1328         
1329         
1330         
1331         
1332         
1333         
1334         
1335         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

1336         
1337         
1338         
1339         
1340         
1341         
1342         
1343         
1508         
1509         
1510         
1511         
1512         
1513         
1514         
1515         
1594         
1595         
1596         
1597         
1598         
1599         
1600         
1601         
1602         
1603         
1604         
1605         
1606         
1607         
1608         
1609         
1610         
1611         
1612         
1613         
1614         
1615         
1616         
1617         
1618         
1619         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

1620         
1621         
1622         
1623         
1624         
1625         
1816         
1963         
1964         
1965         
1966         
1967         
1968         
1969         
1970         
1971         
1972         
1973         
1974         
1975         
1976         
1977         
1978         
1979         
1980         
1981         
1982         
1983         
1984         
1985         
1986         
1987         
1988         
1989         
1990         
1991         
1992         
1993         
1994         
1995         
2030         
2088         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

2139         
2162         
2222         
2223         
2224         
2225         
2226         
2227         
2235         
2262         
2263         
2264         
2265         
2266         
2267         
2277         
2278         
2279         
2280         
2281         
2282         
2283         
2284         
2285         
2286         
2287         
2288         
2289         
2290         
2291         
2292         
2293         
2294         
2295         
2296         
2297         
2298         
2299         
2300         
2301         
2302         
2303         
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Table 4.8. (continued) 

Samples ±3  d1
2  

PCA 
d2

2  

PCA 
d3

2  

PCA 
d1

2  

PLS 
d2

2  

PLS 
d3

2  

PLS 
Linear 
regr. 

2304         
2305         
2306         
2307         
2308         
2309         
2310         
2311         
2312         
2313         
2314         
2315         
2316         
2317         
2344         
2345         
2346         
2347         
2348         
2349         
2350         

4.3 Conclusions 

 From authors experience, confirmed also from applications not reported here, it 
can be concluded that the task of outlier detection is a process that cannot be totally 
automated and all available information, including expert knowledge, has to be 
taken into account. Moreover, a fundamental role in the choice of outlier detection 
criterion is played by the final objective of the analysis.  

As a general rule if a careful modeling of system dynamics is of interest, 
methods that exploit only statistical inspection of process data can have an 
undesired conservative effect. They tend to remove peaks which can carry precious 
information about system dynamics. A better choice in these cases is methods like 
PLS that take into account input–output relationships. The results obtained should 
be in any case carefully investigated due to the rough nature of the outlier detection 
process. The suggested methods, in fact, limit the search process to the case of 
linear static correlations, while their nonlinear extensions are usually 
computationally expensive. If a coarse model is of interest, a rule of thumb is that 
in the case of an uncertain candidate, it is better to eliminate it, instead of using 
wrong information in the process of model identification. Of course the number of 
available data can make the designer more or less sensitive to this rule. 



5 

Choice of the Model Structure 

5.1 Introduction 

This chapter describes a number of case studies referring to soft sensor design for 
systems that require different model structures. We begin with static linear and 
nonlinear models, then move on to dynamic models. Accordingly, a number of 
strategies will be used for the selection of model inputs, spanning from a trial and 
error approach to analytical approaches based on correlation analysis, Mallows 
coefficients, and PLS. 

Though a number of different approaches will be considered that can help 
model selection, it should be borne in mind that the available methods are 
generally designed for linear models or else are an extension of strategies, 
developed for linear models, to the case of nonlinear models. In fact, most methods 
are based on the analysis of some kind of correlation between variables, and 
correlation is indeed an indicator of linear dependence. 

In Section 5.2 the case of a static model for pollutant concentrations in fumes is 
approached using both linear and nonlinear models. 

The estimation of research octane number (RON) for powerformed gasoline 
(i.e. gasoline with a higher octane number) is used to discuss linear dynamic 
models in Section 5.3 (this same case study will be reconsidered in Chapter 7, 
where the fuzzy aggregation of two nonlinear models is designed). Different 
nonlinear modeling strategies are compared in Section 5.4, using a sulfur recovery 
unit (SRU) as case study. Finally, in Section 5.5 a number of approaches designed 
to help with the influencing variables and regressor choices for NMA models are 
described, with reference to a debutanizer column. 
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5.2 Static Models for the Prediction of NOx Emissions                
for a Refinery 

In this section, static models designed to estimate the NOx emissions produced by 
chimneys in a large refinery are proposed. Details about the plant are reported in 
the Appendix. For this process, a model is required to replace the on-line analyzer 
during maintenance. In fact, the plant is equipped with a gas chromatograph that 
measures the NOx level with a sampling time Ts = 1 min. Due to the harsh 
environment, the analyzer is frequently off-line for maintenance. 

Data produced by the analyzer are collected in the refinery database and 
subsequently used to compute the monthly average value. In particular, Italian laws 
establish a limit on the monthly average emission level of NOx, com puted on the 
base of hourly recorded data. Moreover, the average value is considered valid if the 
minimum percentage of acquired hourly data is 80% or higher. In the event that 
such a percentage is not available, e.g. due to failure of on-line analyzers, Italian 
laws require the use of mathematical models that estimate the NOx level on the 
basis of chimney inputs. A linear model, developed on the basis of adequate 
sensitivity coefficients, and suggested by the refinery experts’ heuristic knowledge, 
is used in this section as a benchmark, while a comparison of different linear and 
nonlinear static data-driven models is reported later on in the section. In particular, 
performances obtained by using a neural nonlinear model are compared with the 
estimation capability of both the heuristic model and a linear model, obtained  
using a LMS approach. 

As reported in the Appendix, input variables are represented by the flows of a 
number of different fuel oils and gases, feeding processes whose fumes are 
conveyed in the chimney. 

The data considered were obtained using records produced by the gas 
chromatograph during a period lasting about three months. A total number of some 
1900 valid samples was considered, each one representing a mean hourly value, in 
accordance with Italian regulations. 

The empirical model is 

 
9

1i
ii uwy  (5.1) 

where y is the concentration of NOx in the chimney fumes and ui the ith group of 
the chimney input. In particular, the total number of process inputs is 18, grouped 
into 9 inputs, in accordance with a relative importance weight wi determined by 
process experts on the basis of heuristic knowledge. In Figures 5.1, 5.2 and 5.3 the 
performance of the heuristic model is shown. In Figure 5.1, the model output is 
compared with data obtained from gas chromatograph acquisitions. In Figures 5.2 
and 5.3, the corresponding residual and the residual histogram are reported. 

It can be observed that the heuristic model generally overestimates the NOx 
emission level. Though this characteristic is conservative as regards environmental 
pollution, more efficient estimations are of interest to the refinery operators. 
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Figure 5.1. Comparison between measurements and the empirical model output, normalized 
validation data 

 
 

 
Figure 5.2. Empirical model residual 

 
An improvement of the prediction performance of the linear model given in 

Equation 5.1 was obtained when computing the model coefficients using the LMS 
approach. In this case the original 18 inputs were taken into account separately and 
the available data set was split in order to obtain both a training and a validation 
data set. The results reported below refer to the performance of the model 
evaluated on the validation data set. 
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Figure 5.3. Empirical model residual histogram 

 

In Figure 5.4, the performance of the LMS linear model with 18 inputs is 
compared with measured data, and in Figures 5.5 and 5.6 the corresponding 
residual and residual histogram are reported. 

 
Figure 5.4. Comparison between measurements and the LMS-based model output, 
normalized validation data 
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Figure 5.5. LMS model residual 

 
Figure 5.6. LMS model residual histogram 

It can be observed that the linear LMS model outperforms the heuristic model 
even if the model performance can be further improved using nonlinear models. 
Neural models, based on MLP networks, were designed using the same input 
variables and data sets. One hidden layer 18-11-1 MLP, trained using the 
Levenberg–Marquardt algorithm with the early stopping strategy, gave the best 
results. 

Figures 5.7, 5.8 and 5.9 show the results obtained. 
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Figure 5.7. Comparison between measurements and the neural model output, normalized 
validation data 

 
 

 
Figure 5.8. Neural model residual time plot 

 
In Table 5.1 the correlation coefficients between measured data and the 

corresponding estimations, obtained with the models considered, for the validation 
data set are reported. It can be noted that the linear LMS model works better than 
the heuristic model and that the nonlinear MLP based model offers the best 
performance in terms of correlation between real data and estimated values. 
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Figure 5.9. Neural model residual histogram 

Table 5.1. Correlation coefficients between real data and estimated values and standard 
deviation of model residals 

 Empirical 
model 

LMS 
  model   

Neural 
model   

Correlation coefficient 0.02 0.66 0.93 
Residual standard deviation 0.21 0.11 0.06 

5.3 Linear Dynamic Models for RON Value Estimation in 
Powerformed Gasoline 

Linear models should be tried first when a soft sensor is searched for. In fact, this 
class of models has been investigated in depth and many theoretical results on both 
design and validation phases are available. Moreover, linear models are more 
suitable for developing a control system, and even if more complex structures will 
be the final design result, they represent a useful benchmark. These interesting 
aspects are greatly overshadowed by the nonlinear nature of most industrial 
processes. Hence the approximation capability of linear models is frequently 
unsatisfactory. 

In this section, an example of a soft sensor based on a linear dynamic model is 
introduced. The possibility of estimating the RON in gasoline produced by a 
powerformer unit, using this class of models, is investigated. The estimation was 
required by the plant technologists in order to replace on-line measuring devices 
during planned maintenance actions. MA models are therefore of interest also in 
this case. 

In the application considered, two different working conditions can easily be 
recognized, depending on one of the input variables. In Figure 5.10 a time plot of 
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this variable showing large jumps between two ranges of values is reported. These 
jumps force the plant to move from one working point to the other. 

For this reason, as a first strategy, two different linear dynamic models were 
designed; the performance of these models is the subject of this section, while in a 
subsequent chapter a strategy to improve soft sensor performance will be 
described. 

 
Figure 5.10. The input variable of the powerformer unit, used to discriminate the two 
working points of the plant 

Data used to derive the models were collected during a period lasting about six 
weeks with a sampling period of 3 min (corresponding to about 20 000 samples, 
after invalid data elimination). More details about the plant and the variables 
involved can be found in the Appendix. 

As usual, the first step in model identification consists in the choice of input 
variables. The experts suggested that six variables should be used as model inputs.  

Also, a suitable number of regressors were fixed for each input quantity, on the 
basis of both correlation analysis and considerations regarding system physics; the 
following model structure resulted: 
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where y(k) is the kth sample of the RON and {H, a1, a2, a3, b1, b2, c1, c2, c3, d1, d2, 
e1, e2, f1, f2} is a set of multiplicative coefficients to be searched for, that was 
estimated using the classical LMS approach.  

Simulation results on a set of validation data are shown in Figure 5.11, while in 
Figure 5.12 the 4-plot analysis of the residual is reported. 
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Figure 5.11. Acquired RON values and their linear estimation, scaled units 

 
Figure 5.12. 4-plot of the residual of the linear model  

Though the linear model follows the real-time series trend, the model accuracy 
was considered not satisfactory by the plant technologists, who considered this to 
be a consequence of the plant nonlinearity, which cannot be modeled using a linear 
model structure. 
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5.4 Soft Computing Identification Strategies for a Sulfur 
Recovery Unit 

In this section, a study case is reported dealing with comparison of the performance 
obtained using different nonlinear structures to realize a soft sensor. NMA models 
are implemented and compared with respect to both performance and ease of 
implementation. The strategies used were MLP and radial basis function (RBF) 
neural networks, neuro-fuzzy (NF) networks and nonlinear least square fitting 
(NLSQ). 

As a design guideline, only NMA models were considered. This kind of model 
is particularly suitable for a soft sensor to replace an actual sensor for a long 
period, because it does not require past samples of the output. Alternatively, 
autoregressive models fed with past predicted output values can be adopted. In that 
case, a very accurate estimation capability is needed to minimize the effect of 
estimate error propagation. Nonlinear autoregressive models were designed and 
tested for the application described in this work; however, their performance was 
poorer than that obtained with NMA models. 

Regressors of the input variables are dealt with in this section using a trial and 
error procedure. However, the possibility of using automatic procedures for 
regressor selection is described in great detail in other sections of this chapter. 

The soft sensors described in this section measure the concentration of the so 
called acid gases, hydrogen sulfide (H2S) and sulfur dioxide (SO2), in the tail 
stream of a Sulfur Recovery Unit (SRU).  

Soft sensors are designed to compute the SRU tail gas composition on-line, by 
exploiting a suitable set of measurements of the input variables of the process. In 
particular, the soft sensors presented consist of nonlinear dynamic models, capable 
of predicting the concentration of H2S and SO2 separately. In what follows, a 
complete analysis of results for H2S are reported. Similar results were obtained for 
SO2 estimation. 

In this application the learning set includes 1000 samples, with a sampling time 
of 1.0 min. A second set of 1000 samples was selected as a validation set, to 
prevent overfitting via early stopping of the learning phase when designing the 
neural models. A further, larger, set was used as a checking data set. Plant and 
input variables description are reported in the Appendix.  

As a starting point, the work by Quek, Balasubramanian and Rangaiah (2000) 
was considered, and a static nonlinear model was realized using a MLP. The 
modeling results were not satisfactory, especially as regards the peak value 
estimates, which the experts consider to be the most important in this application. 

Subsequently, NMA models were taken into account. Some choices had to be 
made about the regressors. As stated above, delayed samples were selected during 
a trial and error phase. The experience of plant operators, the correlation 
coefficients between delayed replicas of the inputs and each output, and the 
performance of the model itself were considered. The chosen structure was 
therefore used to design a number of nonlinear models using the same data sets. 
This strategy was adopted because the main objective of this section is to compare 
different nonlinear implementations of soft sensors. 

  



 Choice of the Model Structure 91 

The model structure adopted is the following: 

 
9,7,5,....,
,...9,7,5,

5555

1111
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ky  (5.3) 

The results obtained are shown below in graphical form. In particular, for each 
modeling strategy a comparison between scaled measured data and their 
estimations is reported both for the training data set and for a relevant subset of the 
testing data set.  

Figures 5.13 and 5.14 show the results obtained using a 20-8-1 MLP, trained 
with the Levenberg–Marquardt algorithm with early stopping strategy. 
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Figure 5.13. Comparison between simulated and measured H2S values for the neural model, 
scaled training data  
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Figure 5.14. Comparison between simulated and measured H2S values for the neural model, 
subset of scaled validation data 

A second approach to implement Equation 5.3 was based on RBF networks 
(Chen, Cowan and Grant, 1991). RBF networks were created iteratively by adding 
one neuron at a time until a satisfactory value of the estimation mean square error 
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was reached. The best results with RBF networks were obtained with 298 neurons. 
Although the RBF-based model gave the best performance on the learning patterns, 
its performance on the checking patterns was very poor. Better results were 
obtained only with a great increase in the number of neurons, but this strategy was 
not pursued because of the corresponding complexity of an eventual on-line 
implementation. 

The third strategy considered was based on NF models. In particular, the 
ANFIS (adaptive neuro-fuzzy inference system), implemented in the Fuzzy Logic 
Toolbox (Matlab®) was used to implement the NMA model. ANFIS is based on the 
Takagi–Sugeno–Kang inference method (Takagi and Sugeno, 1985), in which the 
output membership functions in the consequent of each rule are singleton spikes. 
Parameters associated with membership functions are chosen to tailor the 
membership function to the I/O data via a neuro-adaptive learning technique based 
on Fuzzy C-mean clustering (Bezdek, 1981) and a backpropagation algorithm. 
Based on Equation 5.3, the ith rule of the FIS has the following form: 

 iisthenisandisandisif zyMFin....MFinMFin 20202211  (5.4) 

The best configuration of the FIS model consists of six rules and six 
membership functions per input. An attempt to reduce the number of membership 
functions was performed manually, by fusion of very similar membership sets, 
leading to four fuzzy membership sets per input and six rules, without affecting 
modeling performance. As an example, in Figure 5.15 the membership functions 
obtained for variable in5 are given.  

The results are illustrated in Figures 5.16 and 5.17. 

 

 
Figure 5.15. Comparison between the membership functions for variable in5 obtained after 
manually pruning the FIS model 
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Figure 5.16. Simulated and measured H2S comparison of the model implemented via a 
neuro-fuzzy network, scaled learning data 
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Figure 5.17. Simulated and measured output H2S comparison of the model implemented via 
a neuro-fuzzy network, subset of scaled validation data 

 
The H2S model was also implemented by exploiting a nonlinear multivariable 

rational function, like that used in Quek, Balasubramanian and Rangaiah (2000) on 
a static model of a similar SRU plant. In that work, a second-order nonlinear 
function was adopted to implement the dynamic NMA model. With this approach 
function f(·) in Equation 5.3 has the following form: 
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The coefficients were computed using a nonlinear least square data fitting 
algorithm (Ponton and Klemes, 1993). The results are illustrated in Figures 5.18 
and 5.19. 
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Figure 5.18. Comparison between simulated and measured H2S for the nonlinear LSQ-
based model, learning and validation data sets 
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Figure 5.19. Comparison between simulated and measured H2S for the model implemented 
via nonlinear LSQ, subset of scaled validation data 

 
As mentioned above, a similar procedure was adopted to model the 

concentration of SO2.  
Some comparisons were made by visual inspection of graphs like the reported 

ones, MSE and correlation coefficients. Tables 5.2 and 5.3 give, respectively, the 
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MSE, computed for each model, on both the training and the checking data set, and 
the corresponding correlation coefficient between the simulated and computed 
output. 

Table 5.2. MSE obtained with different implementations of the models 

MSE MLP RBF ANFIS NLSQ 
H2S training Data 0.0008 0.0002 0.0009 0.0007 
SO2 training Data 0.0003 0.0002 0.0006 0.0004 
H2S checking Data 0.0009 0.0018 0.0012 0.0008 
SO2 checking Data 0.0004 0.0015 0.0008 0.0004 

Table 5.3. Correlation coefficients between acquired data and their estimations, obtained 
with different implementations of the models 

Correlation coefficient MLP RBF ANFIS NLSQ 
H2S training Data 0.851 0.939 0.843 0.858 
SO2 training Data 0.919 0.941 0.852 0.897 
H2S checking Data 0.847 0.722 0.813 0.848 
SO2 checking Data 0.903 0.761 0.865 0.905 

A further element that should be taken into account when on-line 
implementation of a soft sensor is needed is its computational complexity. Table 
5.4 compares the number of mathematical operations required by each of the  
models. 

Table 5.4. Comparison of the number of operations for different implementation of models 

 Sums Products Exponentials 
MLP 176 176 8 

ANFIS 130 365 120 
NLSQ 80 121 0 

From an analysis of the previous figures and tables, it can be noticed that RBF- 
based models offer the best performance with learning data, but are not able to 
confirm this performance on the checking set, where, instead, they give the worst 
results. They were therefore not considered anymore. 

NF, NLSQ and MLP models give comparable satisfactory performance, with a 
slight improvement for NLSQ and MLP. Moreover, the NLSQ model requires the 
smallest number of operations. 

Based on performance and computational complexity issues, both NLSQ and 
MLP were tested to verify their on-line performance: MLP-based models offered 
the best performance during the whole period of observation, whereas NLSQ 
revealed some periods of mismatching.  

Examples of acquired data and of the corresponding on-line estimations, 
obtained with the MLP soft sensor, are reported in Figures 5.20 and 5.21 for H2S 
and SO2, respectively. Due to commercial confidentiality, graphs are reported 
without the vertical axis scale. 
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Figure 5.20. On-line performance of the model for the estimation of H2S. Solid line refers to 
real data and dotted line to model estimation  

1 10        Days 5 

 

 
Figure 5.21. On-line performance of the model for the estimation of SO2. Solid line refers to 
real data and dotted line to model estimation  

From the case studies reported so far, it appears evident that the choice of  
design strategy plays a main role in the resulting soft sensor capability. Hence, 
though each designer tends to use just a few approaches, investigating an 
affordable number of strategies can result in significant performance 
improvements. Last but not least important, computational effort should be taken 
into account when the soft sensor is designed to work on-line and must be 
implemented using existing resources. In this case, the final choice is usually a 
compromise. 
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5.5 Comparing Different Methods for Inputs and Regressor 
Selection for a Debutanizer Column 

In this section, the problems of relevant inputs and regressor selection for a 
dynamic system are addressed. A number of methods are applied using as case 
study the debutanizer column described in the Appendix. 

Two quantities are of relevance for the plant experts: real-time estimation of 
both the C5 (stabilized gasoline) content in the overheads of the debutanizer 
column and the C4 (butane) content in the bottom flow to stock. Soft sensors can 
be used for this purpose (Fortuna, Graziani and Xibilia, 2005a). 

The case of estimating the butane content in the bottom flow will be 
considered.  

As reported in the Appendix, in the case considered the measuring system for 
the output of the plant is installed on a different column, and this introduces a long 
delay that does not allow the newest regressors of the measured output to be used 
(only values y(k ) and older are available at discrete time k, where  belongs to 
the interval [20–60] min). For this reason, NMA models will be considered here, 
while solutions using the available output regressors together with a number of 
estimated output samples will be introduced later in the book. 

The plant experts suggested a set of eight candidate input variables for the 
model and one dependent variable. Two different problems need to be solved: the 
selection of a minimum set of relevant input variables and the detection of the 
corresponding regressors. These two problems will be approached together by 
considering a starting set of candidate input variables built using three regressors 
for each plant variable. The applied methods, designed to select influential 
variables, in this case process all the 24 elements in the same way and therefore 
determine both model input variables and corresponding regressors.  

Though the number of regressors considered could be thought too restrictive, 
this number is a compromise between the computational load of the proposed 
strategy and the relevant dynamics of the system. As usual, knowledge of the plant 
physics can help the user to accomplish this task avoiding wrong choices. 

The methods taken into account are 

 simple correlation method; 
 partial correlation method; 
 Mallow’s coefficients with a linear model; 
 Mallow’s coefficients with a neural model; 
 PLS-based methods. 

Of course, these methods are not exhaustive and a number of other methods can be 
found in the literature, as reported in Chapter 1. 
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5.5.1 Simple Correlation Method 

Graphical analysis of scatter plots of the plant output against each candidate input 
can give useful information about dominant linear and/or nonlinear dependencies. 

In fact, in the case of a strong direct linear dependence it should be easy to 
recognize in the scatter plot, whereas a parabolic trend suggests a quadratic 
dependence and so forth. In Figure 5.22 the scatter plot of the debutanizer output 
variable at time k versus input variables at the same time is shown for a relevant set 
of recorded data, while scatter plots of the output versus input variables at time 
k 4 are shown in Figure 5.23. Similar graphs were obtained when the input 
variables at sampling time k 8 were taken into account. 

 
Figure 5.22. Scatter plot of the debutanizer output variable at time k versus input variables 
at the same time 

 
Figure 5.23. Scatter plot of the debutanizer output variable at time k versus input variables 
at time k 4 
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Although visual inspection of the scatter plots does not allow any direct 
input/output dependence to be established, it cannot be concluded that dependence 
does not exist. In fact, scatter plots cannot highlight any dependence among the 
system output on a number of input variables. 

A quantitative criterion generally used to search for input–output relationships 
is the estimation of correlation coefficients between the system output and each 
candidate input, along with corresponding regressors. Though in this case a 
numerical indication of the correlation strength is obtained, only linear dependence 
can be recognized. 

Table 5.5 illustrates the correlation coefficients between the debutanizer output 
and the selected set of inputs. For more details on the physical meaning of each 
variable in the model, the reader should refer to the Appendix. In particular, the 
variable named x67 is the mean value of input variables x6 and x7. 

It can be observed that the absence of a clear linear dependence is reflected, for 
this indicator, in low values of the correlation coefficients. Nevertheless, if one is 
interested in testing the performance of a linear model, computation of the 
correlation coefficients can give useful information for the selection of the most 
relevant inputs. In fact, correlation coefficients give a quantitative selection 
criterion: if a linear model is of interest, the larger the correlation coefficient, the 
stronger are the correlation results, and this information can serve as a guide in the 
selection of model inputs. 

In the case considered, Table 5.5 was analyzed in order to search for entries 
that gave the largest correlation coefficients. A set of nine inputs for the model was 
selected. The corresponding entries are represented in Table 5.5 by gray cells.  

In Figure 5.24, correlation coefficients are plotted in order to have visual 
evidence of the selection criterion adopted, corresponding to a threshold value for 
the correlation coefficient of 0.2. 

Table 5.5. Correlation coefficients between the output variable at time k versus input 
variables at times k, k 4 and k 8 

 x1(k) x2(k) x3(k) x4(k) x5(k) x67(k) x8(k) x9(k) 

cxy 0.0163 0.1684 0.2554 0.1416 0.1708 0.0100 0.2915 0.1041 

 x1(k 4) x2(k 4) x3(k 4) x4(k 4) x5(k 4) x67(k 4) x8(k 4) x9(k 4) 

cxy 0.1101 0.0950 0.2873 0.1393 0.3562 0.0538 0.2821 0.1325 

 x1(k 8) x2(k 8) x3(k 8) x4(k 8) x5(k 8) x67(k 8) x8(k 8) x9(k 8) 

cxy 0.2411 0.0108 0.2963 0.1080 0.5289 0.1189 0.2624 0.1508 
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Figure 5.24. Simple correlation coefficients of the debutanizer output variable at time k 
versus input variables at times k, k 4 and k 8 

5.5.2 Partial Correlation Method 

A simple regression method can fail for linear models in those cases when the 
linear correlation between the output variable and an input one is overshadowed by 
the effects of other variables. In such an event, the partial correlation method can 
be helpful, as explained in Chapter 3. 

Here this method is applied to the debutanizer in order compare the suggested 
model structure. In Table 5.6, the results obtained by applying the partial 
correlation method between the debutanizer column output and both the 
corresponding inputs and their regressors are reported.  

Table 5.6. Partial correlation coefficients between the output variable at time k versus input 
variables at times k, k 4 and k 8 

 x1(k) x2(k) x3(k) x4(k) x5(k) x67(k) x8(k) x9(k) 

cxy 0.0935 0.1660 0.0356 0.0415 0.0728 0.1167 0.0115 0.0899 

 x1(k 4) x2(k 4) x3(k 4) x4(k 4) x5(k 4) x67(k 4) x8(k 4) x9(k 4) 

cxy 0.0169 0.0293 0.0317 0.0165 0.0526 0.0624 0.0496 0.0371 

 x1(k 8) x2(k 8) x3(k 8) x4(k 8) x5(k 8) x67(k 8) x8(k 8) x9(k 8) 

cxy 0.0026 0.0720 0.1697 0.1011 0.4398 0.2845 0.1061 0.0365 
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Also in this case, entries in Table 5.6 were used as a selection method for regressor 
selection of a dynamic model and nine inputs were selected. Gray cells indicate the 
resultant relevant inputs. 

Of course, partial correlation analysis is a truly linear investigation and the 
designer should take this into account in critically analyzing the results of the 
investigation. 

The same coefficients reported in Table 5.6 are shown in graphical form in 
Figure 5.25. For the sake of comparison, the same number of model inputs was 
maintained as with the application of the simple correlation method. 

 
Figure 5.25. Partial correlation coefficients of the debutanizer output variable at time k 
versus input variables at times k, k 4 and k 8 

It can be observed that the correlation values reported in Table 5.6 are generally 
lower than the corresponding entries of Table 5.5. This is due to the property of the 
partial correlation method to isolate the correlation between the two variables 
under analysis from undesired correlation with other variables. 

From the results reported in Tables 5.5 and 5.6, it appears evident that both 
simple correlation and partial correlation methods give very low coefficient values 
for any candidate input variable. This gives evidence for the fact that the system 
could be characterized by strong nonlinearities. Other selection strategies are 
analyzed in the following subsections. 

5.5.3 Mallow’s Coefficients with a Linear Model 

In Chapter 3 the possibility of using Mallow’s Cp coefficient for the selection of 
influential independent variables was described in some detail. Here the results 
obtained by computing Mallow’s coefficient for data collected from the 
debutanizer column are analyzed. 

As described previously, the Cp coefficient is computed on the basis of the 
residuals obtained using a given model. In this section; linear models obtained  
using a classical LMS approach are used. 
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The computation of Mallow’s coefficients is very time consuming and quickly 
increases with the number of model inputs. For this reason it can represent a 
suitable selection method when static models are of interest. When regressors must 
be taken into account, the computational effort could become unaffordable.  

Just to give an idea of the nature of information that Mallow’s method can give, 
the results obtained when a static model for the debutanizer column was searched 
for are reported in Figure 5.26. 

 
Figure 5.26. Mallow’s Cp statistics for models with 7, 8 and 9 inputs, respectively. The 
suggested model structure corresponds to the point closest to the straight line. In this case a 
model with nine input variables was suggested  

The x-axis reports the class of the combination, i.e. in this case models with 7, 8 
and 9 inputs were searched for. On the y-axis each ‘*’ represents the value of Cp 
for a given combination of input variables in the corresponding class. The most 
adequate model corresponds to the Cp statistics closest to the reported straight line. 
In the case study considered, a class 9 model is suggested; a static model was not 
satisfactory and Mallow’s statistic was applied for the design of a dynamic model 
structure. For the purposes of comparison, only 9 input model variables were 
searched for. This implies that Mallow’s Cp coefficient should be estimated on 
1 307 504 subsets of input variables (resulting from class 9 combinations of the 24 
inputs). The total computation time was about 30 hours when using  Matlab® on a 
Pentium IV, 2.88 GHz. 

The selected inputs are reported in subsection 5.5.6, where the methods 
considered are compared. 

5.5.4 Mallow’s Coefficients with a Neural Model 

As explained in the previous subsection, Mallow’s Cp coefficient depends on 
model residuals and therefore on the explicit estimation of a particular model with 
the selected input structure. Though in the previous subsection linear models were 
taken into account, Mallow’s statistic can be computed on wider classes of models. 
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Here neural models will be considered, in order to take into account the plant 
nonlinearity.  

Such a choice will however further increase the computational effort, because a 
neural network will now have to be  trained for each trial model. Also, a further 
degree of freedom is introduced, because the optimal number of hidden neurons in 
the hidden layer (only MLPs with one hidden layer were considered) has to be 
determined. 

In the debutanizer column case study, the computational complexity would be 
justified by expected improvements. For this reason, a fixed number of neurons 
was considered after a preliminary trial and error phase.  

Moreover, given that a combination of 24 elements of class 9 would have 
produced an unmanageable number of MLPs to be trained, in this case only 8 
inputs were considered; therefore 735 471 MLPs with 10 hidden neurons, trained 
with the Levenberg–Marquardt algorithm, were considered. Even with this 
simplification, the computation time required, with the same computing structure, 
would be of the order of weeks, at least when using Matlab® code, and without 
spending any effort on more suitable programming languages. 

Of course, the complexity of the method described with this number of 
regressors is hardly manageable if a soft sensor designer has to identify a model for 
a practical application. Here the method was described to give an idea of the 
complexity the designer is faced with when moving from traditional linear methods 
to nonlinear extensions.  

Selected regressors and model performance are reported in subsection 5.5.6. 

5.5.5 PLS-based Methods 

In this section, algorithms will be used in a number of ways to help in the selection 
of model inputs for the debutanizer column.  

As a first approach, PLS was applied to the input–output data, where the inputs 
included corresponding regressors, i.e. the same 24 model inputs considered so far. 
As is known (see Chapter 3), the PLS algorithm projects the input space so that the 
scores of the measurements provide the maximum information about the output.  

The approach is based on the idea of selecting the regressors that contribute to 
the most important latent variables. From the variance analysis of the input matrix 
scores, the graph reported in Figure 5.27 was obtained. The first 10 scores out of 
24 are reported, along with the explained percentage variance. As can be observed 
from the figure, latent variables 1 and 3 give the greatest contributions to the 
explained variance. Looking at the composition of these two latent variables, i.e., 
the weights of the combinations used to obtain each latent variable, starting from 
the original 24 model inputs, the nine most relevant unprojected regressors were 
selected and used to identify a neural-based soft sensor.  

In Figures 5.28 and 5.29, the weights used in the linear combination of the 24 
original inputs to produce the latent variables 1 and 3 are shown. To select the 
original input variables that contribute most, the sum of the weights of Figures 5.28 
and 5.29 was computed. The results are reported in Figure 5.30 (bars in Figure 5.30 
are obtained by adding the corresponding bars reported in Figures 5.28 and 5.29). 
From Figure 5.30 the nine most relevant original input variables were selected. The 
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number of input regressors was fixed at nine in order to allow  comparison of 
models with the same number of inputs, introduced in previous subsections. 

 
Figure 5.27. Variance analysis of the scores of the input matrix (the first ten scores are 
reported) 

 
Figure 5.28. Weights used in the linear combination of the 24 original inputs to compute the 
first latent variable 
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Figure 5.29. Weights used in the linear combination of the 24 original inputs to compute the 
third latent variable 

 
Figure 5.30. Sum of the weights of Figures 5.28 and 5.29. Solid bars indicate the nine most 
relevant original input variables 

The results obtained using the model inputs indicated in Figure 5.30 are 
reported in the next Section. 

The same approach was used to determine a neural-based model for the 
debutanizer, after application of NPLS, where the nonlinear part of the algorithm is 
implemented using a set of one input–one output MLP that approximates the 
nonlinear relationship between each input and output score, as described in Section 
5.3. Figures 5.31 to 5.34 show results of the same analysis as that performed in 
Figures 5.27 to 5.30.  
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Figure 5.31. Variance analysis of the input matrix scores for the NPLS (the first ten scores 
are reported) 

 
Figure 5.32. Weights used in nonlinear combination of the 24 original inputs to compute the 
second latent variable 

Also in this case, the first two most important latent variables were taken into 
account. However, this time they proved to be the second and the first latent 
variables, respectively. After searching for the contribution of the original model 
input variables to these two latent variables, nine input variables were again taken 
into account to determine the neural model of the debutanizer column. The results 
obtained are summarized in the following section. 
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Figure 5.33. Weights used in nonlinear combination of the 24 original inputs to compute the 
first latent variable 

  
Figure 5.34. Sum of the weights of Figures 5.32 and 5.33. Solid bars indicate the nine most 
relevant original input variables 

 
Along with the approaches described so far, the classical PLS and NPLS 

methods reported in the literature were applied to determine the debutanizer model. 
For comparison, nine input latent variables were considered both in the case of 

PLS and in that of its nonlinear extension. It is worth noting that in these last two 
cases the soft sensor is required to manipulate 24 input variables because  
dimension reduction of the problem occurs when the internal representation of the 
problem is performed.  
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Moreover, in  PLS, the input-output representation is truly linear while in  
NPLS only the internal projection is nonlinear (neural in the case study 
considered). 

The prediction results obtained in these two cases are reported in the following 
section where, for the sake of completeness, models with 24 input variables will be 
considered. 

 

5.5.6 Comparison 

In this section, variables selected using the various methods described above are 
reported (Table 5.7) and the corresponding model performance is described. In 
order to avoid confusion, the following nomenclature is used. 

 

 Model 1: Neural model with inputs selected with simple correlation 
 Model 2:  Neural model with inputs selected with partial correlation 
 Model 3:  Neural model with inputs selected with linear Mallow      

 statistics 
 Model 4:  Neural model with inputs selected with nonlinear Mallow 

 statistics (8 inputs) 
 Model 5:  Neural model with inputs selected by PLS (unprojected 

 inputs) 
 Model 6:  Neural model with inputs selected by NPLS (unprojected 

 inputs) 
 Model 7:  PLS model, with 9 latent variables 
 Model 8:  NPLS model, with 9 latent variables 
 Model 9:  PLS model, with 24 latent variables 
 Model 10: NPLS model, with 24 latent variables 
 Model 11: Neural model with 24 inputs. 

 
In Table 5.7, the regressors selected for Model 1 to Model 6 are reported (other 

methods are not reported because they use a projected input structure).   
It can be observed that the methods described do not agree on the subset of 

input variables to be used. Moreover, the user has little control over this selection 
and selected variables depend in a complex way on a number of choices that the 
designer has to make (e.g. the initial number of regressors, selection criteria, 
number of hidden neurons for MLPs-based models, etc.). 

Once more, it is clear that the final choice should be made using all available 
information (including expert knowledge). As an example, for this case study the 
experts felt more confident with those methods that selected input 5 and its 
regressors. 
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Table 5.7. Regressors selected for Model 1 to Model 6 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
x1(k)       
x2(k)       
x3(k)       
x4(k)       
x5(k)       
x67(k)       
x8(k)       
x9(k)       

x1(k 4)       
x2(k 4)       
x3(k 4)       
x4(k 4)       
x5(k 4)       
x67(k 4)       
x8(k 4)       
x9(k 4)       
x1(k 8)       
x2(k 8)       
x3(k 8)       
x4(k 8)       
x5(k 8)       
x67(k 8)       
x8(k 8)        
x9(k 8)       
 

Table 5.8 reports the correlation coefficients obtained testing all the models 
mentioned above on a set of validation data. 

Table 5.8. Correlation coefficient for the debutanizer models 

 Correlation coefficient 
Model 1 0.8812 
Model 2 0.9218 
Model 3 0.9245 
Model 4 0.9076 
Model 5 0.8898 
Model 6 0.8745 
Model 7 0.7459 
Model 8 0.8743 
Model 9 0.7502 
Model 10 0.9263 
Model 11 0.9409 
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A number of observations can be made when Tables 5.7 and 5.8 are analyzed. 
Linear models, regardless of the kind of regressor selection criteria and data 
projection, work less well than nonlinear models (Models 7 and 9). 

The introduction of any kind of nonlinearity (i.e. a nonlinear model used on 
data projected by applying PLS, as in the case of Model 5, or linear regression 
obtained by NPLS, as in the case of Model 8) had a beneficial effect on soft sensor 
performance. 

Further analysis can be performed by looking at the effect of the number of 
model inputs. The best models were nonlinear structures with the whole set of 24 
input variables (Models 10 and 11). However, when models with a reduced number 
of inputs were of interest, good results were guaranteed by Models 2, 3 and 4. 
Looking at Table 5.7 it can be observed that these models have some common 
characteristics. In fact, all of them include input x1(k) and x2(k), and consider also 
the maximum delayed samples of inputs x4, x5 and x67. 

As a final conclusion, it is observed that for the case study considered, partial 
correlation analysis and Mallow’s statistics were the best methods for reducing the 
number of model inputs. 

Figures 5.35, 5.36 and 5.37 show the results for the most significant cases. 
Figure 5.35 refers to the worst-performing soft sensor, i.e. Model 7. This is not 
surprising because the model adopted in this case is a linear structure with a 
reduced number of inputs. This is an interesting consideration since linear models 
with input selection based on PLS are widely used in industrial applications. 

Figure 5.36 reports the results obtained by using Model 3, because this is the 
best model among those with a reduced set of inputs. 

Finally, Figure 5.37 reports tests performed on Model 11 since this is the best-
performing model.  

In all cases considered, both time plots of the model output and 4-plot analysis 
of the residuals are reported.  

From the analysis of the reported figures it can be observed that, in accordance 
with the correlation coefficients reported in Table 5.8, the higher the correlation 
coefficient, the closer the simulated data matches the acquired data.  

Also, the corresponding 4-plot analysis confirms that for soft sensors with 
better performance, the corresponding residuals are closest to being uncorrelated. 

The model validation reported so far is not exhaustive, since in this chapter 
attention was focused on model structure selection.  

A deeper description of methods for model validation is reported in the next 
chapter. 
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Figure 5.35. Comparison between measured data and estimations obtained with Model 7 
and 4-plot analysis of corresponding residuals 
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Figure 5.36. Comparison between measured data and estimations obtained with Model 3 
and 4-plot analysis of corresponding residuals 
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Figure 5.37. Comparison between measured data and estimations obtained with Model 11 
and 4-plot analysis of corresponding residuals 
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5.6 Conclusions 

Model structure selection is the core of any data-driven system modeling. The very 
first choice is between static and dynamic models. No real system can be 
considered strictly static. Nevertheless, if the input signal frequency content is 
much lower than time scales involved in energy exchange phenomena occurring in 
the system, a static model can be an accurate approximation. From a practical point 
of view, static models can be an adequate choice if system transients are not 
relevant to the application. In the case of static models, PCA and PLS are valid 
tools to further simplify the modeling task, avoiding the negative effects of data 
collinearity and reducing the problem dimensionality. 

The case of dynamic modeling is a much more complex task because the 
designer needs to select the model structure, the input variables and the regressors. 
The objective of the soft sensor will drive the designer in the choice between 
auto-regressive or moving-average models, as discussed in Section 2.2.  

The problem of a dynamic model structure selection can be a very time 
consuming task to be solved, especially in the case of MIMO systems. This 
requires exploiting any physical insight on the plant.  

A starting point of any design procedure should be to consider a linear 
structure. This allows running a large number of trials using system identification 
software tools, largely available on the market. These tools mainly use LMS based 
algorithms to design the system parameters and correlation analysis to analyze the 
performance of model candidates. Also in the case of dynamic system PCA and 
PLS can be used to reduce the model complexity. More sophisticated techniques, 
such as partial correlation method, Mallow’s statistics, and Lipschitz quotients can 
be helpful to select model inputs and their regressors.  

Linear models can give good performance when the model is required to 
represent the system dynamic close to a fixed working point. If this is not the case 
a great improvement can be obtained using nonlinear models. This introduces 
further degrees of freedom in the modeling task, represented by the nonlinearity 
structure. Unless some physical considerations suggest for a particular 
nonlinearity, “universal approximators” are widely used and neural networks are 
by far the most popular and effective choice. 

In the cases when linguistic system knowledge is available, fuzzy 
approximators can be successfully used. In such a case the model obtained can 
have the interesting property to give a good understanding of the process. 
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Model Validation 

6.1 Introduction 

In this chapter the problem of model validation, theoretically described in 
Chapter 3, will be considered with reference to a case study. In that chapter it was 
outlined that the problem of model validation mainly consists in verifying that 
model residuals are not correlated with model inputs and that their autocorrelation 
function is an impulse function.  

The procedures that should be followed in the case of linear systems are quite 
well established and a huge amount of literature exists on this topic (Ljung, 1999). 
In particular, the usual statistical approach for linear model validation mainly 
consists in evaluating the characteristics of the autocorrelation function of the 
residuals and the cross-correlation function between the residuals and the inputs.  

When dealing with nonlinear systems, the checking of residual properties is 
more cumbersome; however, a number of tests designed to detect whether the 
residual is unpredictable from all linear and nonlinear combinations of past inputs 
and outputs is reported in Billings, Jamaluddin and Chen (1992), Billings and 
Voon (1991) and Mendes and Billings (2001)). These tests were introduced when 
considering the case of analytic nonlinear models, anyway they are generally used 
for neural network based NARMAX models. In fact, while a theoretical analysis of 
this aspect does not exist, experimental evidence of their usefulness in the case of 
neural models is amply available. In practice, model validation requires that 
normalized correlation functions between couples of sequences i and j be 
estimated. The sampled correlation function is 
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The following conditions need to be tested, for each input variable: 
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where E[ ] is the mathematical expectation, (t) is the model residual, u(t) is the 
generic input variable, and the subscript m denotes the time average. The 
normalization adopted in Equation 6.1 guarantees that correlation introduced 
functions are in the interval [ 1, 1]. 

In practical applications none of the reported correlation functions is exactly 
zero for any of the lags considered. Instead, they are traced with a corresponding 
confidence band. The 95% confidence band is generally used and is N/96.1 , 
where N is the number of samples considered.  

The presence of values of correlation functions lying significantly outside the 
confidence band for any time lag suggests that it is advisable to consider the 
corresponding lagged input in the model structure.  

In the next section, a fairly complex case study will be analyzed in detail and 
the complete validation of two different neural network based models will be 
reported in order to select the more suitable soft sensor. Such a choice will be the 
result of comprehensive analysis of a number of quantitative and qualitative 
evaluations, mainly regarding time plots and residual analysis, on the one hand, 
and computational complexity on the other. 

6.2 The Debutanizer Column 

The case study considered in this section is the real-time prediction of the butane 
concentration (C4) in the bottom flow of a debutanizer column, on the basis of a 
set of available measurements. This case study was considered in Chapter 5, where 
a number of strategies to select model inputs and regressors in order to design an 
NMA model, were analyzed. 

In the present chapter, a different strategy has been adopted to design a NARX 
model in which input variable selection has been performed with the help of an 
expert with a subsequent attempt to refine regressor selection using correlation 
analysis. Of course, the two approaches mentiond should not be considered as 
exclusive and can be used in conjunction with each other. 

The soft sensors have been designed to overcome the problem of the delay 
introduced by the gas chromatograph because of its location. In fact, the C4 
content in the debutanizer bottoms is not detected in the bottom flow, but on the 
overheads of a deisopentanizer column where it measures the content of C4 in the 
isopentane flow (iC5) to stock, as reported in the Appendix.  
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The C4 content in iC5 depends exclusively on the debutanizer operating 
conditions: the C4 detected in the iC5 flow can be assumed to be that coming from 
the debutanizer bottom. 

The measuring device has a measuring cycle lasting 15 min. Because of the 
analyzer location, concentration values are obtained with a long delay, which has 
been estimated to be about 30 min. This means that information about C4 is 
available with a delay of about 45 min and, since this was considered not suitable 
for control purposes, a soft sensor was required. 

Despite the presence of the delay, acquired data about system output variables 
are available for use in the plant model. In addition, a very accurate model is 
required. In view of these two considerations, a NARX model is considered the 
most adequate model structure.  

Two different structures can be adopted. The first approach is based on the use 
of a cascaded structure comprising one-step-ahead predictors of the plant output 

)(ˆ ky in the form: 

 nkykykykymkukufky ,,4,3,,1,,,ˆ   (6.7) 

where the estimated output samples )1(ˆ ky , )2(ˆ ky  and )3(ˆ ky  are computed 
using Equation 6.7 at previous time steps, and older samples are available in the 
plant database.  

The second approach uses a model in the form: 

 nkykykymkukufky ,,5,4,,,ˆ  (6.8) 

where the sampling time used in this application is Ts = 12 min, so that k 4 
corresponds to a delay of 48 min and the regressor y(k 4) considered for the output 
is the newest measured sample available in the plant database (i.e. it does not 
reflect a system delay). 

In both cases, the input regressor vector u  has been chosen using a trial and 
error approach, guided by the plant experts. The results obtained with these two 
approaches are reported in the next two sections. Furthermore, in Section 6.4 a 
refinement of the one-step-ahead soft sensor, suggested by the correlation analysis 
is reported. 

6.3 The Cascaded Structure for the Soft Sensor 

The cascaded structure is made by using four one-step-ahead predictors organized 
as reported in Figure 6.1. 
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Figure 6.1. Block scheme of the cascaded neural network based soft sensor. Inputs to each 
network are either from previous blocks or from the plant database 

The blocks are realized using the same neural network, which at each step 
receives different inputs, either from the previous block or from the plant database. 
The neural block in Figure 6.1 implements the following model 
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and is an MLP with 12 hidden neurons.  
The performance of the soft sensor in Figure 6.1 computed on a set of 

validation data is reported in Figures 6.2 and 6.3. In Figure 6.2, acquired values of 
C4 are compared with their real-time estimations. Figure 6.3 shows the 4-plot 
analysis of the corresponding model residuals. 

 
Figure 6.2. Comparison of the real-time estimation of C4 concentration in the bottom flow 
of the debutanizer column with acquired data 
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Figure 6.3. 4-plot analysis of the residuals of real-time estimation of C4 concentration in the 
bottom flow of the debutanizer column  

The correlation coefficients for the output estimations of each block in 
Figure 6.1 are reported in Table 6.1. 

Table 6.1. Correlation coefficient values for output estimations in the cascaded structure 
shown in Figure 6.1  

 Corr. 
coefficient 

Step 1 0.99796 
Step 2 0.99441 
Step 3 0.98604 
Step 4 0.96592 

A complete analysis of the estimated correlation functions expressed by 
Equations 6.1 to 6.6 is reported in the following paragraphs.  

It is worth noting that, on the basis of the number of model inputs, each of the 
Equations 6.3 to 6.6 requires the estimation of 13 different correlation functions. If 
the model structure reported in Equation 6.9 is considered carefully it is evident 
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that independent inputs reduce to seven, while other variables are either delayed 
samples of the input variables or of the model output. For this reason, some of the 
estimated correlation functions will be no more than translated copies. This is 
exactly the case for the correlation between the model residual and delayed copies 
of the inputs. Such a conclusion does not hold totally true for the model output, 
because the recursive structure of the soft sensor introduces slight differences in 
the various delayed estimations of the system output (see the comments on 
Table 6.1 reported above). In fact, if the four correlation functions between the 
model residuals and the output estimation delayed samples are examined, a 
progressive change in their shape can be observed. The autocorrelation function of 
Equation 6.1 is reported in Figure 6.4, while correlation functions between each 
input and the model residual are reported in Figures 6.5 to 6.9. Note that 
correlation functions reported in Figure 6.7 correspond to regressors of the same 
input variable u5. The same consideration is valid for Figure 6.9 where regressors 
of the model output are considered. 

 
Figure 6.4. Autocorrelation function of Equation 6.2 for the model residual 

 
Figure 6.5. Correlation functions corresponding to Equation 6.3, inputs u1 and u2 
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Figure 6.6. Correlation functions corresponding to Equation 6.3, inputs u3 and u4 

 

 
Figure 6.7. Correlation functions corresponding to Equation 6.3, inputs u5 and its delayed 
replicas 
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Figure 6.8. Correlation function in Equation 6.3, input (u6 + u7)/2 

 

 
Figure 6.9. Correlation functions corresponding to Equation 6.3, output and its regressors 
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In what follows, results corresponding to Equations 6.4, 6.5 and 6.6 are 
reported. Only independent model inputs are considered.  

 

 

 
Figure 6.10. Correlation functions for Equation 6.4, independent model inputs 
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Figure 6.11. Correlation function for Equation 6.4 for the plant output 

 

 

Figure 6.12. Correlation functions for Equation 6.5, plant inputs u1 to u4 
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Figure 6.13. Correlation functions for Equation 6.5, inputs u5 and (u6 + u7)/2 

 
Figure 6.14. Correlation function for Equation 6.5 for the plant output 

 
Figure 6.15. Correlation functions for Equation 6.6, plant inputs u1 and u2 
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Figure 6.16. Correlation functions for Equation 6.6, inputs from u3 to (u6 +u7)/2 

 
Figure 6.17. Correlation functions for Equation 6.6, plant output 
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Though some of the reported correlation functions do not lie in the 
corresponding 95% confidence band, the model simulation capability looks quite 
satisfactory, as can be observed in Figure 6.2, reported at the beginning of this 
subsection. 

Moreover, any attempt to improve the model performance on the basis of 
correlation functions analysis produced no significant improvement. Nevertheless, 
in the following subsection, the results obtained by applying the second structure 
are reported and some final comments drawn. 

6.4 The One-step-ahead Predictor Soft Sensor 

In this second case a one-step-ahead model is directly designed as the core of the 
soft sensor, using already available output regressors, i.e. old enough for them to 
have been already measured by the analyzer and stored in the corresponding plant 
database.  

Based on this consideration, the structure of the output regressors in the model 
was adapted to fit the new constraints, while the structure for the input regressors 
was maintained the same as in Equation 6.9 of the previous subsection. The neural 
model now has the following structure: 
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Also in this case, the model was implemented using an MLP with 12 hidden 
neurons. The model guaranteed a correlation coefficient of 0.982.  

The graphics relative to the model described by Equation 6.10, computed using 
the same set of validation data as that considered in Subsection 6.2.1 for the  
cascaded structure, are reported in Figures 6.18 and 6.19. In Figure 6.18, acquired 
values of C4 are compared with their real-time estimations, while the 4-plot 
analysis of model residuals is shown in Figure 6.19. 

Here again we report, in Figures 6.20 to 6.31, the correlation analysis of the 
model residuals on the basis of Equations 6.2 to 6.6. Only independent model 
inputs are considered. 
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Figure 6.18. Comparison of measured and real-time estimation of C4 concentration in the 
bottom flow of the debutanizer column obtained using the one-step-ahead model 

 

 
Figure 6.19. 4-plot analysis of the one-step-ahead model residuals 
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Figure 6.20. Autocorrelation function of Equation 6.2 for the model residuals 

 

 
Figure 6.21. Correlation functions of Equation 6.3. Model inputs from u1 to u4 
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Figure 6.22. Correlation functions of Equation 6.3. Model inputs u5 and (u6+u7)/2 

 
Figure 6.23. Correlation function of Equation 6.3. Plant output 

 
Figure 6.24. Correlation functions for Equation 6.4. Model inputs u1 and u2 
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Figure 6.25. Correlation functions for Equation 6.4. Inputs u3 to u5 and input (u6+u7)/2 

 
Figure 6.26. Correlation function for Equation 6.4 for the plant output  
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Figure 6.27. Correlation functions for Equation 6.5. Inputs from u1 to (u6+u7)/2 
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Figure 6.28. Correlation function for Equation 6.5 for the plant output  

 

 
Figure 6.29. Correlation functions for Equation 6.6. Inputs u1 to u4 
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Figure 6.30. Correlation functions for Equation 6.6. Inputs u5 and (u6+u7)/2 

 
Figure 6.31. Correlation function for Equation 6.6 for the plant output 

The analysis of the correlation graphs shows that a significant correlation can 
still be hypothesized between inputs and model residuals.  

A new model structure can be tested by adding regressors corresponding to 
model input samples that produce peaks in the correlation functions outside the 
reported confidence band. In fact, this is evidence of a residual significant 
correlation between the model input considered and the corresponding estimated 
output. 

In the following subsection, the results of this attempt are reported. 

6.4.1 Refinement of the One-step-ahead Soft Sensor 

On the basis of the visual inspection of correlation graphs reported in this section, 
the model structure was enlarged, adding a number of model input regressors when 
values of the correlation functions outside the confidence interval were observed.  
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The model structure was modified as follows 
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  (6.11)  

Once again, the model that performed best was an MLP with 12 hidden neurons. 
The model guaranteed a correlation coefficient of 0.985. This means that the 
enlarged model guaranteed only a slight improvement in correlation coefficient.  

The graphics relative to the modeling capability obtained using Equation 6.11 
are reported in Figures 6.32 and 6.33.  

In Figure 6.32 the estimations obtained from the model are compared with 
acquired data, while Figure 6.33 shows the results of the 4-plot analysis of the 
model residuals. 

In Figures 6.34 to 6.44, the correlation analysis of the model residuals are 
reported on the basis of Equations 6.2 to 6.6.  
 

 
Figure 6.32. Comparison of measured and real-time estimation of C4 concentration in the 
bottom flow of the debutanizer column obtained using the enlarged one-step-ahead model  
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Figure 6.33. 4-plot analysis of the one-step-ahead enlarged model residuals 

 

Figure 6.34. Autocorrelation function of Equation 6.2 for the model residuals 
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Figure 6.35. Correlation functions for Equation 6.3. Inputs from u1 to (u6+u7)/2 
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Figure 6.36. Correlation function for Equation 6.3. Plant output 

 

 
Figure 6.37. Correlation functions of Equation 6.4. Model inputs from u1 to u4 
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Figure 6.38. Correlation functions of Equation 6.4. Inputs u5 and (u6+u7)/2 

 
Figure 6.39. Correlation function of Equation 6.4. Plant output 

 
Figure 6.40. Correlation functions of Equation 6.5. Model inputs u1 and u2 
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Figure 6.41. Correlation functions for Equation 6.5. Inputs from u3 to (u6+u7)/2 

 
Figure 6.42. Correlation function of Equation 6.5. Plant output 
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Figure 6.43. Correlation functions for Equation 6.6. Inputs from u1 to (u6+u7)/2 
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Figure 6.44. Correlation function of Equation 6.6. Plant output 

Comparative analysis of the two one-step-ahead models allows some 
conclusions to be drawn.  

As regards the residual trend, reported in the first sub-graph of the 4-plot 
analysis, the enlarged model shows a lower number of peaks, but suffers from 
some larger values (see also the corresponding lag plots and histograms). 

In the correlation graphs for the enlarged model, the values outside the 
confidence interval are either reduced or have disappeared.  

Though a slight improvement can therefore be argued in the soft sensor 
performance, it is not relevant, and the decision about the final model should be 
based on the on-line performance of the models and should, in general, also 
include considerations about model complexity. 

6.5 Conclusions 

Any data-driven model needs a careful validation phase performed observing the 
model behavior when processing “fresh” data. The very first and the most 
straightforward analysis is the graphical comparison of simulated data against 
acquired output variables. The choice among models that show similar behaviour 
can be obtained with further analysis of model residuals, as widely shown in this 
chapter. For linear systems residual autocorrelation and correlation analysis 
between residuals and model inputs can outline the presence of strong undesired 
correlations with lagged inputs that can be therefore included to improve model 
performance.  

In the case of nonlinear models the designer should use a wider set of 
correlation functions, as indicated in this chapter.  

The final step will be in any case the on-line validation of the soft sensor. This 
will require also a careful monitoring of input variable trends to avoid that large 
changes force the process to working points not considered during the design 
phase.    
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Strategies to Improve Soft Sensor Performance 

7.1 Introduction 

This chapter describes some strategies that can be used to improve the performance 
of soft sensors. Strategies typical of the soft computing approach to aggregate 
simpler computing structures are introduced for two different case studies. Both 
strategies use neural models as building blocks for the Soft Sensor design in two 
industrial applications, but they highlight different reasons for using an aggregation 
approach.  

The first case refers to the soft sensor design for the SRU already considered in 
Chapter 5. The strategy introduced in Section 7.2 is intended to cope with the great 
number of sub-optimal neural models that are obtained, and generally rejected, 
during the design of a model. Using this approach, known as model stacking, 
sub-optimal models are aggregated with the hypothesis that the combination of a 
number of models can behave better that the fittest one used by itself.  

In the second case, reported in Section 7.3, aggregation is the natural choice 
because the modeled system (the Powerformer Unit, already considered in Chapter 
5) presents two different working points. Though a single nonlinear model could 
be designed to describe system behavior, a strategy based on the fusion of two 
different models can be adopted.  In this case study, a fuzzy algorithm has been 
used to allow a smooth transition between the two models, in accordance with the 
system inputs. 

The strategies described have been introduced with the aim of showing some of 
the possibilities offered by soft computing to improve soft sensor design. Of 
course, they do not cover all the possible techniques, but reflect personal 
experiences.   
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7.2 Stacked Neural Network Approach for a                          
Sulfur Recovery Unit 

A number of strategies are available to improve the performance of a soft sensor, 
based on combining a set of simpler models (Wolpert, 1992; Zhang et al., 1997; 
Hashem, 1997; Zhang, 1999; Sridhar, Bartlett and Seagrave, 1999; Zhang, 2002; 
Ahamad and Zhang, 2002).  

During the design of a soft sensor a number of trial models are usually 
obtained. Since each model can behave differently in different regions of the I/O 
space, a combination of some of these models can improve the overall prediction 
capability. A combination of different models is usually called “stacking”. Stacked 
generalization is actually a generic term referring to any strategy for feeding 
information from one set of generalizers to another, before forming the final guess 
(Wolpert, 1992).  

When, as in the present case study, a set of neural network models are 
combined, the combination is called a “stacked neural network”. Stacked neural 
networks work by deducing the biases of the generalizers with respect to a learning 
set and generalizing in a second space whose inputs are the guesses of the original 
generalizers and whose output is the correct guess. The information fed to the net 
of generalizers comes from multiple partitioning of the learning set. Starting from 
this idea, several approaches have been proposed in the literature. In 
Zhang et al. (1997), data for building nonlinear models are re-sampled using 
bootstrap techniques to form a number of sets of training and test data. For each 
data set, a neural network model is developed. The models thus obtained are 
aggregated using principal component regression (PCR). The approach is used to 
design a soft sensor for a batch polymerization reactor. In Hashem (1997), an 
optimal linear combination of a number of trained networks is discussed along with 
two algorithms for selecting the component networks. The combination weights 
are selected to minimize the MSE with respect to the distribution of the model 
inputs. In Sridhar, Bartlett and Seagrave (1999) an information theoretic stacking 
(ITS) algorithm for combining neural models is proposed. The ITS algorithm does 
not require the form of the combination to be specified but uses the data itself to 
develop the appropriate combining rule. In Zhang (2002), a simple average of 
individual networks is used to accomplish a fault detection task. A comparison of 
several linear combining approaches is made in Ahmad and Zhang (2002) on 
nonlinear system modeling. 

As a case study, in this section, modeling of the acid gases hydrogen sulfide 
(H2S) and sulfur dioxide (SO2) in the tail stream of the SRU described in the 
Appendix is considered. As described in Chapter 5, a sensor for the SRU has been 
designed using a number of different strategies. The performance of soft sensors 
implemented  by using MLP and RBF neural networks, NF networks, and NLSQ 
have already been described, and it was concluded that MLP-based models gave 
the best results. For this reason, in this Section MLP-based models will used to 
design a stacked model by comparing a number of  linear and nonlinear strategies. 

Stacking of models can be performed using any kind of model that the designer 
considers of interest. In particular, models can differ in a number of  aspects. Cases 
where models differ in structure (e.g., linear, nonlinear, neural, fuzzy, etc.), input 
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variables and/or regressors, data sets used for their identification, and so on, can be 
considered. Here MLPs with the same input structure as those considered in 
Chapter 5 and with two output neurons are considered. Neural networks differ in 
their hidden neuron number, initial weights and training sets.  

Due to the requirements enforced on the tail gas composition, the models 
searched for were ones that are able to accurately predict peaks in SO2 and H2S 
concentration in the tail gas. This aspect will be taken into account in evaluating 
the performance of the different models. 

To train the different neural models, a set of patterns acquired over a period of 
two months (sampling time  Ts = 1 min), covering all the possible process working 
points, was considered. The network training used different sets of 1500 randomly 
selected I/O samples, while a different set of about 15 000 data was used for testing 
and comparing the different models. All the networks were trained using the 
Levenberg–Marquardt algorithm, with the early stopping approach to prevent 
overfitting. A set of 200 different neural models was considered.  

The networks were compared in terms of the correlation coefficients between 
actual data and corresponding estimations, on both learning and testing data, the 
residual trends and their distributions. The ten networks giving the best 
performance were considered for combination in the different stacking approaches. 
Table 7.1 gives the correlation coefficients between the actual and predicted 
outputs, computed over the set of 15 000 testing patterns. Best values are reported 
in bold for each output variable. As can be observed from this table, the highest 
correlation coefficients are obtained with network 8 (with 8 hidden neurons), as 
regards H2S prediction, and network 6 (with 7 hidden neurons), as regards SO2 
prediction.  

Table 7.1. Correlation index of the ten best neural models for the SRU 

 Corr_index 
H2S 

Corr_index 
SO2 

Net1 0.834 0.8027 
Net2 0.8207 0.7989 
Net3 0.8327 0.8050 
Net4 0.7967 0.7873 
Net5 0.8273 0.8038 
Net6 0.8175 0.8113 
Net7 0.8302 0.8000 
Net8 0.8397 0.8059 
Net9 0.7890 0.7932 
Net10 0.8096 0.7808 

Figure 7.1 compares the actual and predicted H2S values for a subset of the 
testing patterns. The corresponding residual computed on the whole set of testing 
patterns is reported in Figure 7.2  
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Figure 7.1. Performance of Net8 for the estimation of H2S. Subset of validation data 

 
Figure 7.2. Residuals of Net8 for the estimation of H2S  

Figures 7.3 and 7.4 show the performance of Net6 for SO2 prediction. 



 Strategies to Improve Soft Sensor Performance 147 

 
Figure 7.3. Performance of Net6 for the estimation of SO2. Subset of validation data 

 
Figure 7.4. Residuals of Net6 for the estimation of SO2 

The overall performance of the networks is quite satisfactory, as shown by both 
the high value of the correlation coefficients and the graphic analysis. However, an 
in-depth comparison between the actual data and the corresponding estimations 
(Figures 7.1 and 7.3) shows, for both H2S and SO2, that even the best working 
networks are not able to accurately predict large peaks in test data. This drawback 
is also shown in Figures 7.2 and 7.4, where the residual vectors for the whole set of 
test data are reported.  

In order to improve the prediction performance obtained, a set of stacking 
strategies were applied and a number of different stacking approaches were 
considered. Of course, the choice of predictors to be combined in the stacking 
strategy must obey some criterion, both as regards candidates and their number. 
Some criteria are reported in the work referenced at the beginning of this section. 
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A reasonable criterion is to select candidates on the basis of their performances as 
indicated by the correlation coefficient between the real system output data and the 
corresponding estimation. The number of candidates can be designed using a 
growing strategy in accordance with the correlation coefficients obtained, until no 
significant improvement is obtained. 

In order to compare different stacking strategies, we decided to use a fixed 
number of models: the ten “best” neural predictors were used.  

A scheme for a generic stacking structure is shown in Figure 7.5. 

 
Figure 7.5. The stacking structure 

Let iŷ  be the vector of the estimated output from the ith neural predictor 
computed on a subset of patterns selected to compute the stacking parameters (in 
our approach a set of 1500 patterns was randomly selected from the whole data 
base). The corresponding estimation of the stacked network is, therefore 

 Wyyyyfy istack ,,..,,..,, 1021  (7.1) 

where W is a matrix of weighting parameters to be searched for and f( ) is the 
stacking function. In the case of linear stacking approaches, Equation 7.1 reduces 
to 

 
10

1i
iistack ywy  (7.2) 

The simplest approach suggested in the literature is based on a simple average 
of the available neural predictions. In this case, the weights wi in Equation 7.2 are 
wi =1 (i = 1,..,10). The results obtained on the whole set of testing samples are 
given in Figures 7.6, 7.7, 7.8 and 7.9. 
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Figure 7.6 shows the stacked network prediction obtained, compared with 
actual data, on a subset of test samples for the H2S concentration. The 
corresponding model residual is given in Figure 7.7. Corresponding Plots for SO2 
prediction are given in Figures 7.8 and 7.9. 

 
Figure 7.6. Performance of average stacking approach for the estimation of H2S. Subset of 
validation data 

 
Figure 7.7. Residuals of average stacking approach for the estimation of H2S  
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Figure 7.8. Performance of average stacking approach for the estimation of SO2. Subset of 
validation data  

 

 
Figure 7.9. Residuals of average stacking approach for the estimation of SO2  

The MSE_OLC (mean square error_optimal linear combination) approach is 
based on deriving the weights wi which minimize the MSE between the actual 
plant output and its estimation obtained by Equation 7.2, using a LMS approach. 
Let the observation matrix be 

 1021 ...... yyyyY i  (7.3) 

and 
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 T
i wwwww 1021 ......  (7.4) 

the combining weight vector. It is computed as 

 yYYYw TT 1  (7.5) 

where y is the vector of the actual plant output. As stated above, a set of 1500 
samples was used to compute the weight vector. The results obtained on the whole 
set of 15 000 patterns are given in Figures 7.10, 7.11, 7.12 and 7.13. These figures 
have the same meaning as in the case described above for the averaging stacking 
approach. 

 
Figure 7.10. Performance of the MSE_OLC approach for the estimation of H2S. Subset of 
validation data  

 

Figure 7.11. Residuals of the MSE_OLC approach for the estimation of H2S 
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Figure 7.12. Performance of the MSE_OLC approach for the estimation of SO2. Subset of 
validation data 

 
Figure 7.13. Residuals of the MSE_OLC approach for the estimation of SO2 

A further method, generally proposed in order to reduce the problem of data 
collinearity, is PCR. In this case, PCR is used as stacking strategy for the 
processing of SRU data. This approach is used to cope with possible drawbacks 
deriving from the highly correlated nature of the individual network predictors. 
Following this approach, the matrix Ŷ is decomposed as a sum of a series of rank 
one matrices through decomposition of its principal components: 

 TT ptptY 101011 ....ˆ  (7.6) 
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where ti and pi are the ith score vector and the corresponding orthogonal loading 
vector. PCR allows the plant output to be estimated as a linear combination of the 
first k principal components of Ŷ . Let the loading matrix be 

 10....1 kppP kk  (7.7) 

and the corresponding score matrix be 

 kk PYT ˆ  (7.8) 

The stacked estimation of the plant output is computed as 

 wYystack
ˆ  (7.9) 

and the combining vector w is obtained by using the LMS approach as 

 yTTTPw T
kk

T
kk

1  (7.10) 

In the application, the value of k was selected by considering the relative 
importance of each component with respect to the principal component. Four 
components were selected for H2S and for SO2. The results are given in Figures 
7.14, 7.15, 7.16 and 7.18. 

 
Figure 7.14. Performance of the PRC_OLC approach for the estimation of H2S. Subset of 
validation data  
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Figure 7.15. Residuals of the PCR_OLC approach for the estimation of H2S 

 
Figure 7.16. Performance of the PCR_OLC approach for the estimation of SO2. Subset of 
validation data 

A nonlinear stacking strategy which will henceforward be called the neural 
network optimal nonlinear combination approach (NN_ONLC) is proposed in what 
follows. It uses the interpolation capabilities of MLPs to combine the entries in Ŷ  
to estimate the actual output y. The matrix Ŷ  is used to train a set of MLPs with a 
number of sigmoidal hidden neurons ranging in the interval [1..4], using the vector 
y as the desired output. Larger numbers of hidden neurons caused a degradation in 
the performance of the estimator. The performance obtained with the different 
second-level networks is shown in Table 7.2, in terms of the correlation coefficient 
between the actual and estimated plant output, computed on the whole set of 
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patterns. Table 7.2 shows that the best results were obtained by using a network 
with three hidden neurons for the estimation of H2S and two hidden neurons for 
SO2. 

 
Figure 7.17. Residuals of the PCR_OLC approach for the estimation of SO2 

Table 7.2 Correlation index of the stacking approaches for the SRU 

 Corr_index H2S Corr_index SO2 

Average 0.8619 0.8240 
MSE_OLC 0.8638 0.8272 
PCR_OLC 0.8620   0.8241 

NN_ONLC_1 0.8632 0.8273 
NN_ONLC_2 0.8637 0.8301 
NN_ONLC_3 0.8652 0.8298 
NN_ONLC_4 0.8642 0.8291 

The results obtained using the best stacking networks are given in Figures 7.18, 
7.19, 7.20 and 7.21. 

A look through Tables 7.1 and 7.2 clearly shows, for the SRU application, the 
improvement obtained with stacking strategies compared with a simple neural 
network in terms of correlation coefficients; the various stacking strategies give 
comparable correlation coefficients. Slightly better results are obtained using 
NN_ONLC. MSE_OLC also gives good results, while PCR_OLC and simple 
average do not work so well. This general trend is confirmed for the estimation of 
both H2S and SO2. 
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Figure 7.18. Performance of the NN_ONLC approach for the estimation of H2S. Subset of 
validation data  

 

Figure 7.19. Residuals of the NN_ONLC approach for the estimation of H2S 

As mentioned above, stacking strategies were introduced to improve the ability 
of the model to estimate large data peak values. Hence, a careful visual inspection 
was carried out on the available data to evaluate this performance. Relevant trends 
are shown in the figures reported above and it is possible to observe that stacked 
networks work better than simple neural networks in the prediction of the two large 
peaks that occur in the interval between samples 12 400 and 12 600 for H2S. 
Moreover, the proposed NN_ONLC is better able to predict the higher peak 
reported. This performance was consistently observed over the whole set of data, 
as can be observed from the residuals. 

A similar behavior can be observed in the intervals between samples 4600 and 
4700 and between 4750 and 4800 for SO2.  
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From analysis of the results obtained, it can be observed that, though the 
different stacking strategies gave an improvement in the prediction capability, the 
differences between the various approaches are not sufficiently significant to 
establish the superiority of any one of them over the others. However, NN_ONLC 
was the strategy that guaranteed best results for both output variables. 

 
Figure 7.20. Performance of the NN_ONLC approach for the estimation of SO2. Subset of 
validation data 

 
Figure 7.21. Residuals of the NN_ONLC approach for the estimation of SO2 
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7.3 Model Aggregation Using Fuzzy Logic for the Estimation of 
RON in Powerformed Gasoline 

Here the estimation of RON in powerformed gasoline is considered again with the 
aim of showing how two different models, derived for two different working 
points, can be fused together, to obtain a single soft sensor, capable of giving 
satisfactory performance over the whole system dynamic range. 

In Chapter 5 a linear model was described for one of the two working points 
and it was outlined that further improvements were required, because of plant 
nonlinearity. Two possible strategies can be adopted: it is in fact possible either to 
design a nonlinear model covering the system dynamics or to aggregate to simpler 
nonlinear models, each one devoted to one working point, by a suitable algorithm. 
In particular, fuzzy logic is a natural choice for such an application. 

Both models are based on the same input structure introduced in Chapter 5, 
replacing the linear combination of input regressors with MLPs.  

While in the first approach a single MLP is trained with data covering both 
working points, in the second approach two different MLPs are trained to cope 
with each working point; they are then coupled with a fuzzy selection algorithm 
which allows a smooth transition between the different working conditions. 

The performance obtained in the first case is reported in Figures 7.22 and 7.23. 

 
Figure 7.22. Performance of the MLP with 13 hidden neurons on a set of validation data 
covering both working points 

The results reported were obtained with one MLP with 13 hidden neurons and 
represent the best performances obtained when trying this approach and MLP with 
different topologies. A correlation coefficient of 0.86 between the acquired RON 
data and estimated data was obtained.  

As can be observed, model performance is improved with respect to linear 
models; moreover, a single model covers both working points, overcoming the 
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possible difficulty of selecting a crisp threshold to assign data to each working 
point.  

The second strategy is based on the fuzzy aggregation of two separate neural 
models. A typical trend of the input flow rate values, showing the two working 
points, is reported in Figure 7.24. 

 
Figure 7.23. 4-Plot analysis of the residuals of the MLP with 13 hidden neurons on a set of 
validation data covering both working points 

 
Figure 7.24. Time plot of input 11 used to discriminate the working points of the plant. 
Scaled data 
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The approach proposed requires, as a first step, that two separate neural models 
be trained to cope with the different working points. With this in view, the same 
pattern used to obtain the linear models, described in Chapter 5, was considered. 
For each neural model, a number of MLPs were trained in order to search for the 
number of hidden units. 

In Figures 7.25 and 7.26, the performance of the network with 11 hidden 
neurons when processing a set of checking data for the first working point is 
shown. In Figure 7.25 the acquired RON values are compared with the nonlinear 
model estimations, while in Figure 7.26 the 4-plot analysis of the model residuals 
is reported. The correlation coefficient between measured plant values and 
estimated ones was 0.84. 

In Figures 7.27 and 7.28 the performance of the network with 14 hidden 
neurons when processing the set of checking data of the second working point is 
shown. In this case, the correlation coefficient between measured plant values and 
estimated ones was 0.94. 

The two neural models were then fused using a fuzzy algorithm designed with 
the adaptive fuzzy rule generator of MATLAB®. The algorithm uses as input the 
value of the variable named in11, while two membership functions (in_11_low and 
in_11_high) were designed in order to minimize the model residuals. The fuzzy 
algorithm has the following form.  

 

• RULE1: if in11 is in_11_low then RON=ymodel_1 
• RULE2:  if in11 is in_11_ high then RON=ymodel_2 

 
where ymodel_1 is the output of the first neural model and ymodel_2 is the output of the 
second neural model. 

The defuzzyfied output is computed as 

 
21

model_22model_11 yy
y fuzzy

 (7.11) 

where 1 and 2 are the activation levels of the two fuzzy rules. 
In Figure 7.29, estimations obtained with the fuzzy-based soft sensor are 

reported. The 4-plot analysis of the corresponding residuals is shown in Figure 
7.30. This approach guaranteed a correlation coefficient of 0.90 between acquired 
RON values and their estimation. 
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Figure 7.25. Performance of the MLP with 11 hidden neurons on a set of validation data 
covering the first working point 

 
Figure 7.26. 4-Plot analysis of the residuals of the MLP with 11 hidden neurons on a set of 
validation data covering the first working point 
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Figure 7.27. Performance of the MLP with 14 hidden neurons on a set of validation data 
covering the second working point 

 
Figure 7.28. 4-plot analysis of the residuals of the MLP with 14 hidden neurons on a set of 
validation data covering the second working point 
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Figure 7.29. Performance of the fuzzy-based soft sensor on the whole validation data 

 
Figure 7.30. 4-plot analysis of the residuals of the fuzzy-based soft sensor on the whole 
validation data 

The analysis of results reported in this section and in Chapter 5 confirms the 
superiority of nonlinear models with respect to linear LMS models for RON 
estimation. Also, among the nonlinear models, fuzzy switched models behave 
better than the single NN based model. 
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Further comparison of nonlinear models was based on their on-line 
performance. Taking into account a long period of on-line monitoring, it was 
decided by the plant technologist that the fuzzy approach gives better results. 

As an example, in Figure 7.31 a comparison between actual data, the prediction 
obtained with the single neural model and the prediction obtained with the fuzzy 
switched model on data collected 3 months after on-line implementation is 
reported (only a subset of data is shown in the figure to emphasize the different 
model behavior). 

 
Figure 7.31. Comparison of  soft sensors for RON estimation. On-line performance 

The results reported in this chapter show that generally a suitable choice of  
aggregating strategy can improve soft sensor performance. Though the choice of 
the fusing strategy is strongly dependent on the application, and much 
responsibility is left to the designer, the possibility of obtaining better performance 
can be a good reason for spending more time on this matter. 

7.4 Conclusion 

Examples reported in this chapter have been selected to show the potentiality of 
soft computing to improve the performance of soft sensors. Soft sensor design is 
partially an artigianal activity which can be improved exploting  ad hoc solutions 
for each problem. Neural networks, fuzzy logic, optimization strategies, classical 
identification strategies, and so forth should be considered as building blocks that 
can be used in the unifying framework of soft computing. This will adapt the used 
tools to the particular application and hence no general strategy can be suggested 
for this activity.  

Stacking approaches, described in this chapter are still far from being a 
consolidated technology and a lot of theoretical open problems need to be 
investigated. As an example, given the set of designed models, no general 
consensus exists on the best method for the selection of candidates to be used in 
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the stacked structure. Moreover, the aggregation strategy is an open issue and no 
unique methodology seems to exist that gives the best performance for all possible 
applications. The interested reader should use all available knowledge to adapt the 
strategies proposed in literature to solve its problem. References reported in this 
book can be used as a valuable starting point to this aim.   

Notwithstanding the fuzziness of the topic, the experience of the authors, and 
results reported in literature show that the improvements can largely justify the 
time spent on this efforts. The cases of study reported in this chapter are just two 
significant examples showing the path to be followed and the improvements that 
can be obtained by using ad hoc stacking strategies.  
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Adapting Soft Sensors to Applications 

8.1 Introduction 

In the applications reported so far, a number of soft sensors have been described 
that were designed either for hardware back-up or for measuring device 
replacements during routine maintenance. Notwithstanding the possibility to use 
soft sensors for these reasons, other applications can be envisaged. 

In Section 8.2, a VI is designed, to be used in the what-if analysis of the SRU 
considered earlier, i.e. to allow the controller designer to off-line simulate the 
system behavior with arbitrary inputs.  

A different kind of monitoring is considered in Section 8.3 where a large urban 
area is considered in order to estimate the pollution level using soft sensors. In this 
case, the control policy is left to operators who, in accordance with local 
regulations, are required to perform some action. Also, the monitoring network has 
the form of a distributed system made up of a soft sensor network. In fact, as a 
result of the nature of the process, a model capable of estimating the pollution level 
at different points of the area considered was required, and this implied the use of 
space interpolation algorithms. 

8.2 A Virtual Instrument for the What-if Analysis of a Sulfur 
Recovery Unit 

In this section, a soft sensor is designed to perform what-if analysis on the SRU 
already considered for other kinds of applications. 

In fact, so far the main objective of soft sensor design has been the back-up of 
available measuring systems. For this reason, NMA represented the most suitable 
choice. During maintenance of the gas chromatograph, output measurements are, 
of course, not available and ARX or NARX models are forced to work on the basis 
of infinite horizon prediction. This poses a high risk of poor estimation. 
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On the contrary, in the case of the what-if analysis, inputs are synthetic 
quantities, i.e. they are designed to analyze system reactions on a time span that 
makes sense, in accordance with system dynamics, so that finite horizon 
predictions are required. In this case, NARX models can be more efficient than the 
NMA ones used so far, because though any estimation error is fed back into the 
model, its magnitude is usually smaller. Moreover, finite-step-ahead prediction 
propagates model error effects only for a small number of iterations, which must, 
however, be carefully fixed by the designer. 

The model used to perform the what-if analysis is therefore based on a 
cascaded structure made of one-step-ahead NARX models, each implemented in 
this application using an MLP. The cascaded structure is used to obtain a 
prediction up to 30 min ahead of phenomena relevant for establishing the working 
conditions of the process. 

This VI was designed with the objective of simulating system dynamics for 
different control policies, to find efficient control strategies and/or to analyze 
effects of input variations (this can represent significant information, because some 
plant inputs come from other processes and are not totally under user control, nor 
predictable). 

Details about the SRU plant are reported in the Appendix. 
The first step to obtain the soft sensor for the what-if analysis is to build a one-

step-ahead model.  
Based on the consideration reported above, the regressor structure used for the 

NMA models might no longer be adequate for the NARX structure. In particular, 
models contain information about plant outputs at previous times. Moreover, since 
the outputs are correlated variables, both of them must be contained in the model 
input structure.  

Due to the small number of candidate model inputs, a trial and error procedure 
was sufficient to determine a suitable model structure. 

The sampling time used for the process was Ts=1.0 min. So that the 
requirement to predict system output up to 30 min would have required the use of a 
cascaded structure made up of thirty one-step-ahead predictors, and this was the 
first structure we considered. Though the one-step-ahead model performed very 
well, the behavior of the cascaded structure was totally unacceptable. 

As a compromise, it was decided to reduce the total number of cascaded 
elements, by performing at each step the output prediction at step k+2. The 
following model structure was therefore used. 

 

10,7,4,1
,...10,7,4,1...,
,...9,7,5,3,1...,

,...,,,,2,2

2222

2222

55555

5432122

kSOkSOkSOkSO
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kinkinkinkinkin
kinkinkinkinkinfkSOkSH

 (8.1) 

This choice allowed the total number of MLPs in the cascaded structure to be 
reduced to 10. Each network has 18 input neurons, 4 hidden neurons, and 2 
outputs. Figure 8.1 reports the performance of the model. 
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Figure 8.1. Performance of model reported in Equation 8.1. Subset of scaled test patterns 

Model 8.1 was used to realize the cascaded structure that covers the required 
30 min prediction interval. The scheme adopted is reported in Figure 8.2. 
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Figure 8.2. Scheme for the 30 min interval simulator. Output samples represented by a 
black line refer to estimated quantities. Gray lines refer either to historical data, available in 
the plant database, or to relevant initial conditions fixed by the user 

From an analysis of Figure 8.2 it can be observed that the proposed structure 
allowed us to have the required system outputs at intermediate sampling times. It 
was therefore possible to evaluate the changes in the correlation coefficient 
between measured outputs and their estimation at each point in the structure.  
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Figure 8.3 reports the trends in the correlation coefficients for the two estimated 
outputs at each node in the cascaded structure. It can be observed that, generally, 
the larger the time delay, the smaller the corresponding correlation coefficient 
value. Anyway, it can also be observed that, up to thirty steps, the proposed model 
guarantees a satisfactory value of the correlation coefficient. 

 
Figure 8.3. Trends in the correlation coefficients between measured output variables and 
their estimations vs. the simulation step 

In order to emphasize the influence of the number of cascaded blocks, 
Table 8.1 reports the correlation coefficients between intermediate output 
estimations and measured values for both the structure with thirty cascaded blocks 
(each one performing a one-step-ahead prediction) and the structure reported in 
Figure 8.2. 

Table 8.1. Comparison between the correlation coefficient at each step obtained using both 
30 cascaded blocks and 10 cascaded blocks 

30 blocks 10 blocks 
 SO2 H2S SO2 H2S 
k+1 0.9785 0.9827   
k+2 0.8907 0.9157 0.8612 0.8321 
k+3 0.7825 0.8361   
k+4 0.6916 0.7638   
k+5 0.6283 0.7139 0.8243 0.7775 
k+6 0.5715 0.6704   
k+7 0.5175 0.6291   
k+8 0.4719 0.5901 0.7761 0.7612 
k+9 0.4260 0.5460   
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Table 8.1. (continued) 

30 blocks 10 blocks 
 

SO2 H2S SO2 H2S 
k+10 0.3851 0.5040   
k+11 0.3447 0.4664 0.7416 0.7394 
k+12 0.2844 0.4131   
k+13 0.2593 0.3836   
k+14 0.2982 0.3928 0.7351 0.7343 
k+15 0.3116 0.3888   
k+16 0.3127 0.3755   
k+17 0.3065 0.3617 0.7177 0.7461 
k+18 0.2863 0.3461   
k+19 0.2388 0.3219   
k+20 0.1821 0.2966 0.7154 0.7463 
k+21 0.1613 0.2857   
k+22 0.1433 0.2739   
k+23 0.1311 0.2645 0.7054 0.7451 
k+24 0.1322 0.2600   
k+25 0.1281 0.2516   
k+26 0.1223 0.2418 0.7067 0.7432 
k+27 0.1191 0.2339   
k+28 0.1093 0.2263   
k+29 0.1004 0.2177 0.6990 0.7413 
k+30 0.1009 0.2134   

It can be observed that even if the network performing one-step-ahead 
prediction guarantees a very high correlation coefficient, the error propagation 
through the 30 blocks causes rapid degradation of the estimation performances, and 
at step k+5 its performance is worse than those guaranteed by using simplified 
structures.  

Once the 30-step-ahead predictor had been trained and its performance 
validated with respect to its capability of estimation up to 30 steps on the whole set 
of validation data, a further validation was performed, bearing in mind the 
objective of the soft sensor design.  

As described above, the soft sensor was intended to help in the what-if analysis 
of the SRU and hence to analyze the system reaction to different input trends 
and/or control policies. In particular, a suitable control policy should avoid large 
peaks in both output variables. Bearing this in mind, available data were screened 
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to search for relevant input trends that could be associated with the presence of 
large variations in the output variables. These subsets were used to perform 
simulations aimed at verifying the soft sensor capability to simulate output peaks. 
The simulations were performed using initial conditions both for inputs and 
outputs taken from historical data sets, not used in the learning phase, and 
comparing the simulated outputs with the recorded trends during the whole 
simulation period, lasting 30 min and corresponding to 30 steps, with a sampling 
time Ts = 1.0 min. 

Figures 8.4 to 8.7 show examples of the simulation capability of the soft sensor. 
Figures 8.4 and 8.5 refer to the simulation of H2S, while Figures 8.6 and 8.7 report 
examples regarding SO2. 

In these figures, the thin lines show the input trends recorded in the plant 
database, while the thick lines are the corresponding outputs. Solid lines are used 
for measured variables, while dashed lines refer to their estimations. 

 

 
Figure 8.4. Simulation capability of the soft sensor designed for the SRU. Detection of a 
peak in H2S (scaled units) 
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Figure 8.5. Simulation capability of the soft sensor designed for the SRU. Detection of a 
peak in H2S (scaled units) 

 
Figure 8.6. Simulation capability of the soft sensor designed for the SRU. Detection of a 
peak in SO2 (scaled units) 
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Figure 8.7. Simulation capability of the soft sensor designed for the SRU. Detection of a 
peak in SO2 (scaled units) 

The figures show that phenomena analyzed are extinguished in a time interval 
considerably shorter than 30 min, and this is evidence that the chosen simulation 
time span for the soft sensor suffices for the detection of peaks in the SRU output 
variables. Also the prediction accuracy in peak detection was considered 
satisfactory by plant technologists. 

8.3 Estimation of Pollutants in a Large Geographical Area 

Many human activities, both in urban and industrial areas, produce pollutants that 
can greatly modify the composition of the atmosphere. In urban areas, the main 
sources of air pollutants are motor vehicle emissions and domestic heating systems, 
while in industrial areas, production activities greatly contribute to emissions. 
Possibly, particular atmosphere conditions can produce thermal inversion 
phenomena that make it still harder for the air to mix. 

In what follows, an application dealing with the problem of pollution level 
monitoring in urban areas using soft sensors is described. The interest in pollutant 
level estimation in large cities derives also from the development of regulations 
aimed at limiting each particular pollutant. Of course, different chemical 
substances will be considered in different ways, depending on the level of risk they 
represent for human health. 

The very first attempts, in use for many years, tried by the public safety 
authorities were impositions of restrictions in emissions, e.g. by reduction in the 
number of vehicles allowed to circulate when a pollution level exceeding the 
maximum safety limit was detected (Stern, 1982). 
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Here the problem of the design of a monitoring network for air quality 
management is considered. The aim of the application described is the optimal 
exploitation of available measuring hardware, while a number of soft sensors use 
information redundancy to estimate pollutant levels at a set of sensitive points. The 
measuring system is, therefore, in the form of a distributed network, where each 
node is a monitoring station, and two different tasks need to be solved: 

 to find the optimal observation points where it makes good sense to install 
available hardware; 

 for each of these points, to design a soft sensor capable of predicting the 
pollution level as a function of relevant inputs. 

Techniques for the optimal allocation of monitoring stations have been 
developed. A methodology for the optimization of the number of stations in a 
monitoring network based on a recursive procedure, is described below (Andò et 
al., 1999).  

A "first trial" monitoring network is assumed to be available, and soft sensors 
are designed to estimate the level of a pollutant at a monitoring point as a function 
of the pollutant levels recorded at other points. As a by-product, the sets of 
monitoring stations that supply redundant data and the smallest number of 
monitoring stations that must be left "alive" are determined. Stations that can be 
turned off, on the basis of previous analysis, become available for reallocation.  

Now it is possible to start the second phase of the monitoring network design 
procedure: the most "significant" places for the reallocation of the monitoring 
stations in the area under consideration are therefore searched for. 

In what follows, the application of the procedure described to a case study is 
reported. 

As usual, the problem of outlier detection should be addressed. Here the most 
common problems generating outliers were detected during both the transmission 
and the auto-calibration phases of the measuring instrumentation. 

Also in this case, expert knowledge was a precious source of information for 
the critical analysis of available data (e.g. experts had established that carbon 
monoxide levels in urban areas fall within the range 0.3 ppm to 40 ppm, and data 
outside this interval were cut out).  

Further information about data significance can be obtained if the redundancy 
of available data, due both to the multi-input structure of the measurement systems 
(each station collects data on several pollutants) and to the distributed nature of the 
phenomena under investigation, is taken into account. The correlation among the 
levels of different pollutants measured in one station, and the correlation among 
the levels of one pollutant, recorded in different stations, can be hypothesized. 
Therefore, a critical analysis of the significance of data can be improved by using 
the cross-correlation technique.  

The following procedure was suggested to look for anomalies at any station. 

 For each station, and for each pollutant recorded at that station, compute 
the correlation coefficients between each pollutant and the others. 
Anomalous values for all correlation coefficients, related to one pollutant, 
allow the detection of any device that is not working properly in the station. 
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 Compute now the cross-correlation coefficients between the time series 
collected from the suspect hardware and the corresponding series acquired 
in other stations. 

If both investigations provide low values of the correlation coefficients, the set of 
data regarding the pollutant is eliminated. 

Examples of time plots of typical urban pollutant levels, after removing 
outliers, are reported in Figures 8.8 and 8.9. Five hundred samples per hour were 
acquired for both CO and SO2. The corresponding mean hourly values are reported 
in Figure 8.8 for CO, while for SO2 mean daily values are shown in Figure 8.9. 
Such a difference depends on the different way in which limits are set for these two 
pollutants by Italian law. 

 
Figure 8.8. CO levels recorded by one measuring station in a typical medium size town, 
after outliers elimination 

 
Figure 8.9. SO2 levels recorded by one measuring station after outliers elimination 
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Once data are processed to detect and eliminate outliers, due to hardware 
malfunctioning, the optimization procedure for measuring station re-allocation can 
be started (an initial guess monitoring network structure is assumed to exist). The 
procedure is based on the use of mathematical models that allow the vector of 
pollutant values in one station to be estimated as a function of corresponding 
vectors recorded from other stations in the network (Andò et al., 1999): 

 mj ST
i

ST
i

ST
i

ST
i PPPfP ,...,, 21  (8.2) 

where jST
iP  is the ith pollutant concentration value, recorded by the jth station 

considered and represents the output of the candidate soft sensor, m is the number 
of neighboring stations chosen between available monitoring stations and f(•) is an 
unknown function describing the model. 

As regards the choice of the input stations m, a combinatory optimization 
problem must be solved, also considering that such stations are not necessarily 
those closest to the jth station. It was in fact observed that a more reliable tool for 
the selection of neighboring stations is represented by the correlation coefficient: 
cases were observed of measuring stations that guaranteed a larger correlation 
coefficient than closer stations, though they were farther away. 

Once this step is accomplished, the structure of the f(•) function needs to be 
solved. In this application, nonlinear models based on neural networks were used. 
Nonlinear static models based on MLPs with one hidden layer were proposed. One 
MLP with one output neuron, corresponding to the pollutant level of interest, was 
considered for each pollutant recorded in each station. 

To evaluate the performance of the models, both the mean value and the 
standard deviation of the model residuals were estimated.  

Models 8.2 allow us to find stations that can be substituted by a soft sensor 
capable of estimating the pollutant considered .  

If all soft sensors associated with pollutants recorded at one monitoring station 
work properly, that monitoring station is a candidate to be turned off, because 
measuring devices can be substituted by mathematical models. In order to be able 
to turn off such a station it is also necessary to check that data recorded by this 
station are not used as independent variables by other soft sensors.  

When the procedure described ends, the set of available monitoring stations 
will be either removable, if all soft sensors designed for this stations perform 
adequately and data acquired by measurement instruments installed in the station 
are not used by any of Models 8.2, or else non-removable, if not replaceable with a 
mathematical model, because the performance index value is worse than the fixed 
threshold, or because data acquired by this station are already used by other soft 
sensors in the form of Equation 8.2. 

Stations that have been declared removable become available for reallocation. 
This problem must be faced by considering the spatio-temporal nature of the 
problem. 

 With this in view, a family of continuous maps covering the urban area for the 
whole set of pollutants is estimated on the basis of data recorded at a finite number 
of points. Each map in the family represents a snapshot of the spatial distribution 
of a pollutant concentration in the urban area at a given time. This family of maps 
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is analyzed to look for points where the available stations should be reallocated. 
Points where at least one pollutant concentration reaches the maximum value will 
be considered as candidates for station reallocation. 

The continuous maps can be obtained from the recorded data using a suitable 
interpolation method. Here, the spline interpolation method (Kreyszig, 1999; 
Ahlberg, Nilson and Walsh, 1967) for two-dimensional data is applied. 

A case study of the described procedure was introduced in Andò et al. (1999). 
There, data recorded using a monitoring network working in the city of Catania 
and intended to monitor the intra-urban air pollution due to a number of pollutants 
were considered. 

Catania is a medium-sized town in southern Italy. It represents a typical 
European town, with a very congested downtown section and a large suburban 
area. Moreover a great number of people commute to the town each day in private 
cars. The problem of air pollution due to exhaust gases produced by motor vehicles 
is therefore very serious and the monitoring network was installed according to 
Italian law. 

The monitoring network used to acquire data considered in the application 
described consisted of 22 stations for the acquisition of data on the following 
pollutants: 

 carbon monoxide, CO; 
 nitrogen dioxide, NO2; 
 sulfur dioxide, SO2; 
 hydrocarbons, NHMC. 

Meteorological data were also acquired in order to take into account the possible 
influence of meteorological conditions on air pollution evolution. 

The network has been operating since the beginning of 1993. Data collected 
from October 1993 to March 1994 were used for the case study, along with hourly 
acquired data. During this time, 15 stations out of 22 were working. 

For some pollutants, Italian law refers to the average daily value, while for 
others the hourly value must be taken into account. For this reason, models based 
on hourly samples were considered for both CO and NO2 while NMHC and SO2 
were modeled using daily values. 

MLP neural models with four inputs were chosen as a compromise between the 
contrasting needs to obtain good soft sensor performances and as simple as 
possible mathematical models. Models were considered to be acceptable if they 
guaranteed an error index less than a threshold fixed for each pollutant.  

The application of the described procedure allowed two stations out of the 15 
working stations to be declared removable, and then substituted with the 
corresponding soft sensors. The other stations were declared non-removable, 
because either they featured performance index error values higher than the 
allowed value, at least for one pollutant, or data they acquired were used as inputs 
to soft sensors. 

In Figures 8.10 to 8.13, performance obtained by using the designed soft 
sensors for one of the two removed monitoring stations are reported. In particular, 
the level of the four pollutants mentioned above, estimated using the neural-based 
soft sensors, are compared with the corresponding acquired data. 
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Figure 8.10. CO level (in ppm) estimated using the neural network based soft sensors for 
one of the removed stations 

 
Figure 8.11. NO2 level (in ppb) estimated using the neural network based soft sensors for 
the removed station 
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Figure 8.12. SO2 (in ppb) level estimated using the neural network based soft sensors for 
the removed station 

 
Figure 8.13. MNHC (in ppm) levels estimated using the neural network based soft sensors 
for the removed station 

Similar results were obtained for the soft sensors used to model the other 
removed station.  

The two removed stations became available for reallocation in the urban area. 
By using the spline method, a family of two-dimensional static maps for each 
pollutant was determined. Each map in the family allows one to estimate the values 
of pollutant concentration in continuous spatial coordinates in the urban area, at a 
given time. By analyzing the map family with respect to spatial and time 
coordinates, points corresponding to the maximum level for at least one pollutant 
were considered as candidate points for reallocation. 
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As an example, a map of the CO pollutant level at a given time is illustrated in 
Figure 8.14. Points A and B correspond to extreme values of the CO level and are 
therefore possible points for the reallocation of monitoring stations. 

 
Figure 8.14. Two-dimensional map of the CO level used for the reallocation of an air 
pollution monitoring station 

The application reported in this section is a valid example of the potential for 
soft sensors to be used in areas other than industrial environments. Also, in the 
reported study, a distributed model was required. 

8.4 Conclusions 

 
The cases of study reported in this chapter have been introduced with the aim to 
give to the reader a wider view of possible applications of soft sensors. In fact, in 
previous chapters we focused on monitoring of industrial plants. Here two different 
applications have been reported.  

In the first case a dynamic data-driven model was described, designed to 
perform the what-if analysis of an industrial plant. This type of applications 
suggests the possibility to exploit soft sensors as a tool for the design of control 
policies. It is mandatory for this kind of applications to be very restrictive in 
assessing the soft sensor quality. This requires a careful attention in data selection, 
during the design phase, to assure that relevant dynamics are not missed. Also, 
along with the usual model validation step, when possible ad hoc measuring 
surveys should be performed on the plant by using the a representative subset of 
input trends given to the soft sensor. 
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In the second case a set of soft sensors were described that were designed for 

monitoring purposes of air pollution in large urban areas. This shows that soft 
sensors can profitably be used in applications fields different from industrial 
processes.  

The described application shows that soft sensors have interesting application 
possibilities for the management of distributed monitoring networks. In fact, soft 
sensors can be used to optimize used hardware location and to interpolate data in 
points where measuring hardware is not available, thus alleviating the drawbacks 
due to the discrete nature of the hardware monitoring network. 
 



9 

Fault Detection, Sensor Validation and Diagnosis 

9.1 Historical Background 

Since the early 1960s, industrial processes have undergone a huge increase in their 
degree of automation, due to increased demands on performance and the need to 
release human operators from constant attendance at the plant. As a consequence, 
the need for adequate tools for automatic fault detection, diagnosis and supervision 
has been strongly felt since then. 

In the industrial application context, a fault is to be understood as a 
non-permitted deviation of a characteristic property, which leads to the inability of 
a system or a plant to fulfil the purpose it has been designed for (Isermann, 1997). 
A certain amount of effort has been devoted by the scientific community to 
establish a common terminology (Isermann and Ballé, 1997; Omdahl, 1988) which 
is reported at the end of this chapter. Nevertheless, the multidisciplinary peculiarity 
of the topics involved often leads to a terminology which is not unique.  

The development of automatic fault detection strategies took place in the early 
1970s. The first strategies were based on linear observers, operating on linear 
systems. A survey of these techniques is reported in Willsky (1976). One of the 
first books on the subject was published in 1978, about fault detection and 
diagnosis in chemical and petrochemical processes (Himmelblau, 1978). A lot of 
work has been carried out using the so-called analytical redundancy paradigm, 
exploiting well-established automatic control techniques like parameter and state 
estimation. These techniques are summarized in Isermann (1984). In the same 
period, parity-equation-based strategies were treated (Patton and Chen, 1991; 
Gertler, 1991; Hoefling and Pfeufer, 1994). The state of the art in the 1980s is 
summarized in books (Pau, 1981; Patton, Frank, and Clark, 1989), and survey 
papers (Gertler, 1988; Frank, 1990; Isermann, 1994). Many books provide a clear 
idea of the developments in the field (Patton, Frank, and Clark, 2000; Poulizeus 
and Stravlakakis, 1994; Gertler, 1998; Chen and Patton, 1999; Chiang, Russel and 
Braatz, 2001; Simani, Fantuzzi, and Patton, 2002; Isermann, 2006a; Isermann, 
2006b). With the rising interest in fault detection, a certain number of engineering 
associations created workgroups to deal with novel, emerging issues. As an 
example, IFAC (International Federation of Automatic Controls) created in 1991 
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the SAFEPROCESS (fault detection, supervision, and safety for technical 
processes) Steering Committee, which then became an IFAC Technical Committee 
in 1993. An IFAC SAFEPROCESS Symposium is regularly scheduled every three 
years (IFAC, 1991–2006), together with the IFAC workshop for fault detection in 
supervision in chemical industries (IFAC-Workshop, 1986–2001). 

9.2 An Overview of Fault Detection and Diagnosis 

A fault can occur in any of the components of an industrial process. With respect to 
the location of a fault, one can distinguish among sensor faults, actuator faults, and 
component or process faults. When a fault occurs, a chain of actions can be 
undertaken in order to cope with it. These actions can be ordered in a hierarchical 
fashion. 

The first action when a fault occurs is fault detection, which basically consists 
of revealing the presence of a fault, possibly revealing also the time of the faulty 
event. 

Once the fault is detected, the second step is fault isolation, which consists in 
determining the kind, location, and time of the fault. Subsequently, fault 
identification must be performed in order to determine the size and time-variant 
behavior.  

The complex of fault detection, isolation, and identification is called fault 
diagnosis. Some authors refer instead to the term fault detection and diagnosis 
(FDD), thus considering the detection as a separate task, and including only 
isolation and identification in the diagnosis activity. In a broader sense (and maybe 
closer to the commonly held concept), a diagnosis can be seen as an attempt to 
explain system misbehavior by analyzing the relevant features that characterize it 
(Ulieru and Mrsic-Flogel, 1994). These characteristics are often called symptoms, 
or sometimes fault indicators. Essentially, diagnosis is always related with 
symptom observation (clearly, this diagnosis process is better-known and 
established in the case of human diseases rather than in industrial faults). 

A more complex step to perform is fault evaluation, the aim of which is to 
provide an estimate of how the detected and diagnosed fault will affect the future 
life of the process. 

On the basis of the results achieved through one or more of the steps described 
above, decisions have to be made, either by human experts or in an automated 
fashion. In other words, the fault must be managed. Usually, the most common 
decisions are: 

 the fault is tolerable: the system can continue its operations; 
 the system has to change its operational scenario in order to cope with the 

fault (through reconfiguration, maintenance, or repair); 
 the system has to be stopped and the fault eliminated. 

One of the most important issues in the whole fault detection and diagnosis 
process is the concept of redundancy. This is the capability of having two or more 
ways to determine some characteristic properties (variables, parameters, signal 
features, etc.) of the process, in order to exploit more information sources for 
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performing an effective detection and diagnosis action. Whichever fault detection 
technique one wishes to implement, redundancy is the fundamental paradigm to 
exploit. 

The most direct form of redundancy is physical redundancy. This consists of 
physically replicating components of the system, either hardware or software 
modules. Physical redundancy can be a way to achieve fault-tolerant systems, i.e. 
systems which are able to continue to work in a proper way, despite the presence of 
faults, by properly switching the modules affected by faults with spare, back-up 
models. Duplicating modules can also be a first approach to fault detection. If all 
replicated modules behave in the same way, it can be concluded that no one is 
affected by a fault. Comparing the behavior of replicated modules is therefore a 
first strategy to detect a fault. This technique is often used with sensor validation 
(Dorr et al., 1997), which will be dealt with in detail later in this chapter.  

When physical and mathematical relationships among variables of a system are 
known, and causes and effects can then be detected and isolated, physical 
redundancy can be overcome by the presence of another redundant source of 
information, which is called analytical redundancy. In other words, a model of the 
physical phenomena involved (or parts of them) can be built. As stated in previous 
chapters, the process of building a model is usually twofold. 

On the one hand, models can be constructed on the basis of physical and 
chemical laws which describe the system behavior. This approach, also known as 
mechanistic modeling, involves the formulation of assumptions about the nature of 
the system, its causes (inputs) and their related effects (outputs), and the 
establishing of a mathematical description of the system behavior. Very often some 
simplifying assumptions about the process are made in order to reduce the 
complexity of the model, without any significant detriment to the reproduction of 
the system behavior. Moreover, the system is often divided into control volumes, 
connected by suitable connectors (which can be either physical or logical), through 
which the subsystems exchange masses, flows, energy, information, and so on. 
This is called the Eulerian approach. 

The physical laws involved in the description of the system behavior are 
usually the following: 

1. balance equations for masses, energies and impulses; 
2. constitutive physical–chemical state equations; 
3. phenomenological and/or entropy balance equations for irreversible 

processes; 
4. connection equations, describing the interconnection of the modeled 

elements.  

This approach leads to a description of the system behavior in terms of 
differential equations, depending on certain (known or unknown) parameters. The 
complexity of the equations involved (from low-order, linear, time-invariant, 
ordinary differential equations to high-order, nonlinear, time-variant, partial 
differential equations) depends on the nature of the system under analysis and on 
the simplifying assumptions made.  
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On the other hand, one can exploit the availability of process measurements to 
construct models based on the usual identification procedures.  

In practical applications, models can often be derived from a fusion of physical 
knowledge, identification, and heuristic practice. Identification and heuristics may 
be more and more pervasive as long as constitutive laws are unknown or complex, 
as is illustrated schematically in Figure 9.1. 

 
Figure 9.1. Concurrence of both identification and physical modeling in practical 
applications 

When a model of a component is used for fault detection purposes, it is fed 
with the same inputs as the actual component. In normal working conditions, the 
output of the model and that of the actual system should coincide. Therefore, an 
indicator of fault emerges from the comparison between actual and model outputs, 
i.e. the model residual. Residual analysis is the core of all model-based fault 
detection and diagnosis techniques. Model-based fault detection will be dealt with 
in depth in the next section. 

Perhaps the most fascinating (but complex to manage) form of redundancy is 
knowledge redundancy. This derives from: human experience; the results of past 
experiments, faults, repairs; the heuristic knowledge of the phenomena, in terms of 
peculiar noise, colors, smells, and other vague information (including vague values 
for variables); human ability to connect apparently unrelated symptoms and causes. 

Knowledge redundancy is appealing and effective, but needs specific 
computational tools to be integrated in fault detection and diagnosis schemes based 
on mathematical and/or statistical approaches. With this in view, the 
well-established soft computing techniques (Fortuna et al., 2001), are among the 
most effective means to integrate all the kinds of redundancy, including human 
knowledge, heuristics, and past experience, to cope with complex problems, taking 
into account the undetermined and imprecise nature of the real world. 
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9.3 Model-based Fault Detection 

As previously stated, when a model of the process is available, fault detection and 
diagnosis can be performed by comparing the behavior of the model with that of 
the component under analysis. Discrepancies between the behavior of the process 
and the model indicate that a fault has occurred. This is called the model-based 
approach; the form of redundancy emerging from this approach is called analytical 
redundancy.  

The appealing aspect of analytical redundancy relies in the fact that redundancy 
is achieved by a mathematical treatment of available information, rather than 
through the physical replication of components. Obviously, this benefit is offset by 
the cost and effort needed to obtain a reliable mathematical model of the process. 
One of the main issues related to model-based fault detection is the sensitivity of 
the detection system with respect to modeling errors, which are by no means 
avoidable in practice. It seems clear that modeling errors can actually obscure the 
effects of faults or exaggerate slight deviations from the nominal system behavior, 
thus being potential sources of false alarms. 

For an effective implementation of a model-based fault detection and isolation 
(FDI) system, one has to take into account all the causes that can lead either to 
alarms or false alarms, in particular: 

 faults in the actuators, components of the plant, or sensors; 
 modeling errors; 
 system noise and measurement noise. 

A simple conceptual scheme for model-based fault detection is reported in 
Figure 9.2 (Frank, 1990). 

 
Figure 9.2. Conceptual scheme for model-based fault detection (Frank, 1990) 



 Soft Sensors for Monitoring and Control of Industrial Processes 188 

9.3.1 Fault Models 

Different kinds of faults can occur in a system. Like systems, faults can also be 
mathematically modeled. Modeling faults can be useful to develop effective FDD 
tools, especially when they are based on mathematical modeling of the system. In 
fact, once the model of the fault-free system has been developed, determining 
mathematical models for most common faults can lead to the development of 
mathematical models for the faulty system. This is done by studying the effects of 
the mathematically modeled faults on the system model equations. 

The mathematical modeling of faults is done by studying the actual faulty 
system. Faults can arise from many causes; for example, errors made in design or 
assembly, wrong operation, lack of maintenance, corrosion, aging, wear during 
normal operational conditions, or external agents, like noise, disturbance, human 
errors, etc. 

Moreover, they can appear suddenly or gradually, with small or large size. 
Faults which keep acting on the system once they occur are usually called 
deterministic faults, and they are modeled through deterministic changes in the 
system or signal equations. On the other hand, intermittent faults (which are harder 
to detect) are called stochastic faults, and their modeling must generally be 
performed within a stochastic framework. 

A fault is an unpermitted deviation of a characteristic property of the system, 
which can be any physical quantity. Let us assume that this quantity can be 
described by a mathematical law 

 x ),(),()( ttUgtY  (9.1) 

where Y(t), U(t), x(t), are the output variable, input variable, state variable 
vector, and parameter vector, respectively. Faults can therefore occur as changes in 
signals or parameters.  

With respect to the time of appearance of the faults, the following kinds of 
faults can be distinguished:  

 abrupt fault (stepwise); 
 incipient fault (drift); 
 intermittent fault.  

With respect to the way of influencing the equations describing the time 
evolution of the physical quantity, faults can be classified in the following main 
classes:  

 additive faults; 
 multiplicative faults. 

An additive fault modifies the quantity Y(t) by the addition of a quantity f(t), 
representative of the effect of the fault 

 )()()( tftYtY u  (9.2) 
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where Yu(t) represents the nominal time evolution of Y(t) under the effect of the 
input U(t).  

Multiplicative faults modify nominal quantities by multiplication by a quantity 
f(t). For simplicity, let us assume that the nominal relation between Y(t) and U(t) is 
given by Yu(t)=aU(t), where a is a system parameter. In this case, the fault f(t) 
affects Y(t) as 

 )()()()())(()( tUtftYtUtaatY u  (9.3) 

Faults can also affect the input signal, or a state variable, instead of the output 
signal.  

In order to detect the change Y(t) caused by the presence of the fault, it must 
be noted that in the case of additive faults this change is independent of any other 
signal 

 )()( tftY  (9.4) 

whereas, for multiplicative faults, the change Y(t) depends on other signals. For 
example, considering Equation 9.3, we obtain 

 )()()( tUtftY  (9.5) 

This implies that the change in Y(t) depends on the size of U(t). Moreover, in the 
case of a multiplicative fault, it can be detected only if U(t) 0. 

9.3.2 Fault Detection Approaches 

In the model-based framework, once residuals are generated, they must be 
evaluated and a decision must be made, in order to detect the fault. In the simplest 
form, residuals are generated by comparing output variables of the model against 
the corresponding output variables of the system. Several techniques inspired by 
system theory can be applied to generate residuals and perform fault detection. In 
particular: 

 parity checks. The key idea of this strategy consists of checking the parity 
(consistency) of the mathematical equations of the system by exploiting the 
actual measurements (Gertler, 1997;  Gertler, 1998); 

 observer-based schemes (Patton and Chen, 1997; Frank, 1990). This 
technique consists of reconstructing the state or the output of the system 
from the available measurements, by means of Luenberger observers (in 
the deterministic case) or Kalman filters (in the stochastic case, when noise 
must be taken into account), using the estimation error or the innovation, 
respectively, as fault indicators (residuals);  

 parameter estimation techniques (Isermann, 1984; Frank, 1990). These 
techniques rely on the fact that the occurrence of a fault is often reflected in 
one or more physical parameters of the system. If this is the case, some 
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parameters of the process can be continuously estimated, and residuals can 
be generated by comparing the estimated parameters with the nominal 
ones, which had been estimated during a fault-free condition. 
Consequently, residuals are generated by comparing estimated and nominal 
(fault-free) parameters. 

9.3.2.1 Fault Detection with Parity Equations 
The main idea underlying the parity equation approach is to exploit a model of the 
non-faulty system in order to compare its output with the actual output of the 
system. Let us refer to Figure 9.3, which shows two possible parity-equation-based 
fault detection schemes for linear processes, described in terms of transfer 
functions. For the sake of simplicity, let us consider SISO processes.  

 

 
(a) 

          
(b) 

Figure 9.3. Residual generation with parity equation schemes. (a) Output error, 
(b) polynomial error (or equation error) 
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The process under analysis, with input u and output yp, is affected by two 
additive faults, fu and fy, acting on the input and the output, respectively. Moreover, 
an additive noise, n, acts on the output. Process and model are described by the two 
transfer functions, Gp(s) and Gm(s), respectively 
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The transfer function of the process is unknown, whereas that of the model is 
obviously known. Therefore, the two transfer functions are related by means of a 
transfer function describing modeling errors, Gm(s) 

 )()()( sGsGsG mmp  (9.8) 

A first approach to define residuals is to compute the output error, that is the 
difference between process and model output, as illustrated in Figure 9.3(a). 
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If neither faults, nor noise, are present, the residual in Equation 9.9 is zero. A 
residual value different from zero may be caused by modeling errors, noise, or 
faults. The effect of faults fy on the output are directly reflected onto the residual 
changes, whereas faults on the input fu influence the residual changes after being 
filtered by the process Gp. Moreover, the effect of modeling errors on the residuals 
depends on the input signal, u, and noise is directly propagated, by addition, onto 
the residual. 

An alternative method to define residuals is through the polynomial error (or 
equation error), as illustrated in Figure 9.3(b): 
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If the model is an exact representation of the process (i.e. Gm(s)=0), the residual 
is 

 )()()()()()( sfsBsnsfsAsr umym  (9.11) 
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Also in this case, the residual is affected by both input and output faults, and by the 
noise. Output faults and noise are filtered by the polynomial Am(s), whereas input 
faults are filtered by the polynomial Bm(s). Unlike in the output error approach, the 
filtering polynomial involved in the equation error approach can lead to problems 
related to realizability and to amplification of the noise, especially if its spectrum is 
located at high frequencies. 

Equations 9.9 and 9.10 are called parity equations, and r and r’ are called 
primary residuals (Gertler, 1998).  

A drawback of the parity equation approach is that primary residuals are 
affected by input and output faults, by the noise, and by the modeling errors. 
Usually, the effects of these causes are hardly separable. A slight improvement can 
be achieved if more output measurements are available, which is the case for 
MIMO systems. The approach can easily be extended by considering adequate 
transfer function matrices (Gertler, 1998). Consequently, the residuals in Equations 
9.9 and 9.10 become residual vectors, with the same size as the output vector. In 
this case, it may happen that different kinds of faults affect different elements of 
the residual vector, leading to a separation of the possible faults.  

The parity equation approach can be reformulated within different frameworks, 
such as input–output models (Gertler and Singer, 1985), state-space (Chow and 
Willsky, 1984; Gertler, 1991), and enhanced state-space models (Patton and Chen, 
1991). 

Concerning nonlinear systems, because of the vast amount of possible 
nonlinear processes and models, there are no general approaches to the problem of 
generating parity equations. The way of generating residuals is strongly related 
with the structure adopted for the nonlinear model.  

If the nonlinear model can be described by 

 ),(),(),(;),(),()( tutututytygtym  (9.12) 

we can consider output residuals such as  

 )()()( tytytr mp  (9.13) 

where yp(t) is the process output. In the nonlinear case, the study of the effect of 
faults, noise, and modeling error on residual changes is more complicated than in 
the linear case.  

The process can also be described by discrete-time polynomial models like 
Hammerstein or parametric Volterra models (Eykhoff, 1974; Haber and 
Unbehauhen, 1990), and output and equation errors can be correspondingly 
defined. Also in this case, the study of the effects of faults, noise and modeling 
errors on residual changes is not straightforward. 

Alternatively, artificial neural networks, fuzzy or neuro-fuzzy models can be 
adopted to model nonlinear processes (Chen, Billings and Grant, 1990; Takagi and 
Sugeno, 1985; Fortuna et al., 2001).  
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9.3.2.2 Residual Properties 
As stated above, in the parity equation approach residual changes are caused not 
only by faults, but also by modeling errors, noise, unknown inputs and 
disturbances. Clearly, one might wish, instead, that residual changes were only 
caused by faults.  

As the ideal condition cannot be achieved (i.e. the residual is identically equal 
to zero if faults are not present), an effective fault detection scheme requires also 
that thresholds for residual checks are fixed. The choice of a threshold always 
comes from a trade-off between accuracy and robustness of the detection scheme, 
as greater thresholds lead to fewer false alarms, but do not allow us to detect small 
faults. 

Several techniques can be adopted to generate residuals which convey better 
information about faults, thus allowing the designer to choose smaller thresholds 
without affecting robustness:  

1. adequate low-pass filtering for high-frequency disturbances;  
2. robustness against modeling errors;  
3. adaptive thresholds; 
4. enhanced residuals for specific faults; 
5. enhanced sensitivity of residuals with respect to faults. 

The first three items of the list can be achieved using well-known signal 
processing or system modeling techniques. The main idea underlying the 
generation of enhanced residuals is to design the parity checks such that the 
residual vector has specific properties which characterize the residual according to 
the fault which has occurred. In this way, faults may be distinguished from each 
other. Two main approaches to generate enhanced residuals are the generation of 
structured and directional residuals (Gertler, 1998).  

Structured residuals have the property that only some elements of the residual 
vector are different from zero when a specific fault occurs. This means that each 
kind of fault causes changes only in certain subspaces in the vector space spanned 
by the residual vector. This implies that different residual patterns emerge from the 
residual vector in correspondence with different faults. The residual patterns are 
often called fault signatures.  

On the other hand, directional residuals are designed to make the residual 
vector assume a given direction in vector space under the occurrence of a specific 
fault. Therefore, the direction of the residual vector indicates the type of fault. 
Moreover, the modulus of the residual vector is an indicator of the fault size.  

Concerning the last item of the list, the enhancement of the sensitivity of 
residuals with respect to faults is treated within the state-space approach through a 
typical sensitivity analysis of the analytical formulation of the residual vector. The 
topic is well addressed in Hoefling and Isermann (1996). 

9.3.2.3 Fault Detection with Observer-based Schemes 
As stated above, observer-based fault detection exploits the observer estimation 
error as fault indicator (residual). In order to show the basic technique, let us focus 
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our attention on a linear time-invariant MIMO system, described by the state space 
model 

 )()()( ttt BuAxx  (9.14) 
 )()( tt Cxy  (9.15) 

where u(t) is the input vector, y(t) is the output vector, and x(t) is the state vector. 
It is well known that, if the system is observable, a full-order observer can be 
designed. Observer inputs are input and output measurements of the system (u(t) 
and y(t)); observer output is an estimate )(ˆ tx  of the state x(t). The observer 
dynamics is governed by the equations 

 )()()(ˆ)()(ˆ tttt HyBuxHCAx  (9.16) 
 )(ˆ)(ˆ tt xCy  (9.17) 

where H is the observer feedback gain matrix, which must be properly chosen in 
order to achieve the desired observer performance. Under the assumption that 
process and model parameters are exactly known, the estimation error 

 )(ˆ)()(~ ttt xxx  (9.18) 

is governed by 

 )(~)(~ tt xHCAx  (9.19) 

Consequently, the estimation error tends asymptotically to zero for any initial state 
deviation )0(ˆ)0( xx  if HCA  is asymptotically stable. This can always be 
achieved by pole placement with a suitable choice of the matrix H , if and only if 
the couple CA,  is observable.  

Let us now assume that the process is affected by unmeasurable state and 
output disturbances, v(t) and n(t), and by additive state and output faults, fl (t) and 
fm(t) , as follows 

 )()()()()( ttttt lLfVvBuAxx  (9.20) 
 )()()()( tttt mMfNnCxy  (9.21) 

where L, M, V, N are fault and disturbance entry matrices. Application of the full-
state observer expressed in Equation 9.16 to the model described by Equations 9.20 
and 9.21 leads to the reconstruction error 

 )()()()()(ˆ)()(ˆ tttttt ml HMfHNnLfVvxHCAx  (9.22) 
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and to the output error 

 )()()(ˆ)(ˆ)()( tttttt mMfNnxCxCye  (9.23) 

Observing Equations 9.22 and 9.23, it is clear that, after a suitable time interval 
such that the initial state deviation )0(ˆ)0( xx  vanishes, the estimation error )(~ tx  
and the output error e(t) are affected both by disturbances and faults. In particular, 
after the asymptotic vanishing of the initial state deviation, the estimation and 
output errors are zero if neither faults nor disturbances are present, and are 
different from zero if faults or disturbances are present. Therefore, the estimation 
and output errors can be considered as suitable residuals for fault detection 
purposes.  

If the input–output relation of the state observer described by Equation 9.16 is 
derived, an interesting similarity with the parity equation approach can be noticed: 
while in the output error approach based on parity equations, faults on the input 
influence the residual changes after being filtered by the process transfer function 
Gp(s), in the observer-based scheme they are filtered by the observer dynamics 

1HCAIs . 
For multiplicative faults, performing fault detection is more complicated. As an 

example, let us consider changes A, B, C in the parameters of the state-space 
model. Consequently, the system model is  

 )()()( ttt uBBxAAx  (9.24) 
 )()( tt xCCy  (9.25) 

and, neglecting disturbances, the state and output error equations become 

 )()()(~)(~ tttt BuxCHAxHCAx  (9.26) 
 )()(~)( ttt CxxCe  (9.27) 

In Equations 9.26 and 9.27 it can be clearly noticed that faults are reflected onto 
the residuals after being multiplied by the input signal and by the state variables. 
This makes the analysis of multiplicative faults more complicated.  

The introductory material presented so far about observer-based fault detection 
schemes illustrates the working principle of the approach. In the design of an 
observer for fault detection, the main design issue is to optimize the choice of the 
feedback gain matrix H in order to achieve good fault detection capability. Many 
different observer-based approaches have been developed, including reduced-order 
observers, observer banks, dedicated observer schemes, Kalman filters, and so on.  

Some approaches are of particular interest for fault detection as they allow the 
concept of structured and directional residuals to be incorporated into the observer-
based framework. This is the case of the fault detection filter (FDF) approach, 
which relies on a particular choice of the feedback gain matrix H such that the 
residual due to a particular fault is constrained to a single direction or plane in the 
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residual space. To achieve this goal, a state augmentation of the system and 
observer model is often needed. State augmentation is a well-known technique in 
which some system parameters are interpreted as further state variables, thus 
increasing the order of the system. Consequently, if the augmented state is 
observed by an (augmented) observer, the fault occurring in a particular parameter 
can be detected and isolated as if it were detected in a state variable. For an 
extensive survey on observer-based fault detection techniques, refer to Chen and 
Patton (1999), Patton and Chen (1997), and Frank (1990). 

9.3.2.4 Fault Detection with Parameter Estimation  
The two techniques described above belong to the framework of signal estimation 
techniques. Alternatively, parameter estimation techniques may be adopted for 
fault detection purposes. Fault detection with parameter estimation relies on the 
fact that very often faults in a dynamic systems have an effect on the value of 
physical parameters, like for example mass, friction, electric resistance, etc. 

The approach is based on comparison of the estimated (actual) parameters with 
the nominal ones. In what follows, we outline the procedure for fault detection 
based on parameter estimation (Isermann, 1984), leaving aside the specific 
techniques for parameter estimation, as they are part of well-established 
identification techniques (Ljung, 1999): 

1. Choice of a suitable parametric model of the system. The simplest choice 
that can be made is a linear, lumped parameter, input/output differential 
equation of the form: 

 
m

j
j

j

j

n

i
i

i

i dt
tudb

dt
tyda

00

)()(  (9.28) 

2. As parameter identification techniques usually rely on black-box modeling, 
physical parameters p do not always coincide with model parameters ai, bj. 
Therefore, a relationship between physical parameters and model 
parameters must be established as 

 )(pf
b
a

 (9.29) 

3. Identification of the model parameter vector on the basis of available 
input/output measurement by means of a suitable identification technique 
(Ljung, 1999). 

4. Determination of the physical parameter vector as 

 )(1fp  (9.30) 
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5. Comparison of the estimated parameter vector p with the nominal 
parameter vector p* worked out from the nominal (fault-free) system or 
model. Calculation of the fault indicator 

 *ppp  (9.31) 

6. Detection of the occurrence of a fault on the basis of the fault indicator p 
and the known relationships between faults and parameter changes.  

9.3.3 Improved Model-based Fault Detection Schemes 

A more detailed conceptual scheme for fault detection based on analytical 
redundancy is shown in Figure 9.4. It is important to notice that for effective fault 
detection and isolation, three models are often needed (Isermann, 1984), namely 
the model of the nominal system, the model of the actual (observed) system, and 
that of the faulty system. Moreover, in order to keep the performance of the 
detection and isolation at an acceptable level, the nominal model must itself be 
monitored, and updated by novel information about the actual system coming from 
the observation model (i.e. in the case in which the system undergoes an important 
change in its operational state, without entering a faulty state, the nominal model 
must be updated). 

As previously stated, inaccuracies in modeling may affect the performance of 
fault detection algorithms. In fact, due to modeling inaccuracies, nonzero residuals 
may be generated without the occurrence of a fault. This is in practice unavoidable. 
Therefore, residuals must be evaluated more thoroughly, through the adoption of 
suitable thresholds or other accurate checks. It is obvious that the design of a fault 
detection and isolation system involves a trade-off between the accuracy of the 
fault detection and the generation of false alarms. An important issue in the design 
of fault detection systems is the reduction of the residuals sensitivity with respect 
to modeling uncertainties. Strategies devoted to the improvement of robustness in 
model-based fault detection systems are reported in Patton, Frank and Clark 
(1989), Chow and Willsky (1984), Lou, Willsky and Verghese (1986), Patton and 
Chen (1997). The issues related to a proper choice of thresholds on the residuals, 
also providing adaptation, are reported in Emami-Naeini (1986), Patton, Frank and 
Clark (1989). 
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Figure 9.4. General scheme for model-based fault detection and diagnosis (Frank, 1990) 
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9.4 Symptom Analysis and Fault Diagnosis 

After a fault has been detected, the next step to perform is diagnosis. The aim of 
diagnosis is to provide as much information as possible about the fault that has 
occurred (or is occurring), like time of detection, location and size of the fault. 
Fault diagnosis implies the extraction of suitable features about the status of the 
system to be monitored. These may come from several sources of redundancy 
(physical, analytical, knowledge), being, for example, estimated parameters or state 
variables, residuals, etc.  

Subsequently, features are compared with their nominal value. If feature 
changes are detected, a fault is detected and the feature change is called a 
symptom. Therefore, symptoms are information which reflects changes from 
normal system behavior. The first kind of symptoms that can be considered are the 
residuals generated within a model-based approach, but the field is not limited to 
this. Effective fault detection and diagnosis strategies may often involve both 
mathematical processing of variables and their thorough evaluation by skilled 
personnel with a good heuristic knowledge. This often leads one to consider fault 
detection and diagnosis within a knowledge-based approach (Rasmussen, 1993;  
Struss, Malik and Sachenbacher, 1996; Isermann, 1994; Isermann, 1997). From a 
more general point of view, symptoms can be classified into three main classes 
(Isermann, 1997; Isermann, 2006a):  

 analytic symptoms;  
 heuristic symptoms;  
 symptoms emerging from process history or fault statistics.  

Analytic symptoms are generated by exploiting the analytical knowledge about 
the system under analysis, in order to generate quantifiable, analytical information. 
In other words, analytic symptoms can be generated when data processing are 
performed on measurable process quantities. Consequently, characteristic values 
able to indicate the presence and possibly the nature of the fault are generated. 
These characteristic values are mainly generated through three techniques: 

 process analysis using mathematical models of the process, through the use 
of state estimation, parity checks or parameter estimation; 

 signal analysis of directly measurable signals by exploiting suitable signal 
models, like correlation functions, frequency spectra, ARMA signal 
models, and so on; 

 limit checking performed on directly measurable quantities of the process. 
The symptoms are the signal tolerances exceeded.  

Heuristic symptoms can be generated in addition to analytic ones, by taking into 
account qualitative information coming from human experience. For example, 
heuristic knowledge about the process in terms of changes in colors, smells, special 
noises, vibrations, wear and tear, and so on, can be considered. The obvious 
difficulty in taking into account heuristic symptoms is their formalization in a 
machine-friendly format. Heuristic symptoms are usually expressed in terms of 
linguistic variables, or as vague quantitative information, typically around a certain 
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nominal value with undefined tolerance. For this kind of symptoms, one of the 
most used paradigms is fuzzy logic (Fortuna et al., 2001; Isermann and Ulieru,  
1993; Ulieru and Mrsic-Flogel, 1994; Dexter and Benouarets, 1997; Ballé, 1998). 

Process history and fault statistics can be exploited in order to generate 
symptoms which take into account the past life of the process. This can include, for 
example, information on running times, load measures, maintenance, and repairing 
activity. If statistics on faults have been performed, information concerning the 
frequency and location of specific faults can be generated, in order to evaluate 
symptoms based on these statistics. Actually, this third category of symptoms can 
fall either in the analytical class or in the heuristic one, depending on the accuracy 
and reliability of measurements and statistics. However, generally, the information 
collected through process history is rather vague and inaccurate, and is usually 
taken into account in terms of heuristics information. 

In the field of fault diagnosis and classification, soft computing techniques 
(Fortuna et al., 2001) can be extremely useful in integrating all kinds of symptoms 
in a unified fashion. For example, a fuzzy representation of the symptoms is 
suitable for both heuristic and analytical symptoms. In fact, it allows the designer 
to describe heuristic symptoms in terms of vague, linguistic concepts; and to 
incorporate the unavoidable uncertainties into the description of analytic 
symptoms.  

Once symptoms are generated, the association between the occurrence of a 
specific fault and its related symptoms must be identified.  

If no or little information about this association is available, classification or 
pattern recognition approaches can be suitable to cope with this problem. Let us 
consider a system in which m different faults can occur, and n different symptoms 
can be generated. Symptoms can be collected in a symptom vector 

 nSSSS 21  (9.32) 

and the faults occurring can be considered as a fault vector, indicating the 
occurrence of faults 

 mFFFF 21  (9.33) 

The generic element of the fault vector F can be considered as either a binary 
variable ( ]1,0[jF ), in which the value 1 indicates the occurrence of a fault; or as 
a continuous variable ( 10 jF ), in which a gradual measure indicating both the 
presence and the size of the fault occurring can be incorporated. When the 
relationship between faults and symptoms is not known, there exist learning 
techniques in order to establish the correct associations, and to form an explicit 
knowledge base. Among the techniques in use are statistical or geometrical 
classification methods (Tou and Gonzales, 1984) and artificial neural networks 
(Lippmann, 1987; Bishop, 1995; Looney, 1997; Fortuna et al., 2001). 

If the relationships between faults and symptoms are partially known, the 
causal chain:  
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 symptoms    events  fault  

can be established. On the basis of this relationships, the heuristic knowledge can 
be formalized in the form of rules (Frost, 1986; Torasso and Console, 1989) like 

 IF <condition> THEN <conclusion> 

This leads to the so-called fault-tree analysis (FTA). This is a knowledge-based 
scheme, based on trees, in which symptoms, events, and faults are considered as 
binary variables, and the rules are established via the application of Boolean 
equations for parallel–serial connections (Barlow and Proschan, 1975). Recently, 
approximate reasoning methodologies have received increasing interest to deal 
with approximate causality knowledge (Isermann and Ulieru, 1993). 

The rules obtained in a knowledge-based automatic reasoning system can be 
chained in two ways. The straighter one is forward chaining. Known facts are 
matched with the premises and conclusions are derived on the logical 
consequences imposed by the rules (modus ponens). When approximate reasoning 
is considered, the symptoms are considered as uncertain indicators of faults, with a 
related degree of truth. This can be taken into account by using confidence 
functions, fuzzy sets, or probability density functions. On the other hand, backward 
chaining assumes the conclusions to be known, and searches for all relevant 
premises (modus tollens). This method is particularly useful when symptoms are 
incomplete or not accurate enough. In practice, forward chaining is usually 
performed as a first attempt. Then, the user is informed with the possible events 
and faults that can have occurred. Diagnosis can be further refined by performing a 
backward chaining that takes into account, as hypotheses, the most plausible events 
and faults. This procedure can be re-iterated, by interacting with the user, and is 
usually terminated by the user himself (Freyermuth, 1991). 

Another distinction in the automatic reasoning domain has to be made between 
probabilistic and possibilistic reasoning. The former approach is usually based on 
Bayesian networks, with associated conditional probabilities for the causality 
relationships (Pearl, 1988). With this approach, in order to reduce the 
computational effort, one should consider statistically independent symptoms. On 
the other hand, possibilistic reasoning is not based on probabilities, but on the 
concept of degree of truth of logic predicates. This is the basis for the fuzzy logic 
paradigm. The features or symptoms are represented by linguistic variables, and 
related to faults via a set of if-then fuzzy rules (Jang, Sun and Mizutani, 1997; 
Isermann and Ulieru, 1994; Fortuna et al., 2001). 

9.5 Trends in Industrial Applications 

The survey by Isermann and Ballé (1997) illustrates the trends in fault detection 
and diagnosis up to 1996, by analysing more than 100 papers submitted to 
international conferences, dealing with applications on real processes (thus 
excluding all simulation work). They concluded that in nearly 70% of the work 
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examined, observers and parameter estimation were adopted. Neural networks and 
parity space, or combined methods were significantly less applied. Moreover, 
linear models were used much more than nonlinear ones. According to the 
common trend in every field of system engineering, the number of nonlinear 
process applications studied through nonlinear models has been clearly increasing 
over the years, while nonlinear process applications with linearised models have 
been decreasing. On the other hand, the most common use of soft computing tools, 
like neural networks and fuzzy logic, up to 1996 was for fault classification and 
diagnosis (Leonhardt and Ayoubi, 1997), whereas little use of neural networks for 
residual generation or system modeling was made at that time. 

Recent works from the second half of the 1990s dealt with the intrinsic 
nonlinear nature of systems, introducing nonlinear tools for modeling and fault 
detection, especially artificial neural networks and fuzzy logic. At present, neural 
networks are used to build nonlinear models or nonlinear observers, which 
substitute their linear counterpart in previous approaches. Relevant work has 
recently been carried out through these approaches (Polycarpou and Vemuri, 1995; 
Borairi and Wang, 1998; Alessandri and Parisini, 1997; Vemuri, Polycarpou and 
Diakourtis, 1998; Demetriou and Polycarpou, 1998; Maky and Loparo, 1997; 
Marcu and Mirea, 1997).  

Fuzzy logic is often used for fault classification (Ballé, 1998), implementing 
the possibilistic reasoning described above. Nevertheless, work has been carried 
out in which artificial neural networks and fuzzy logic are used as a valuable 
nonlinear modeling tool (Bucolo et al., 2002; Fortuna et al., 2003; Caponetto, 
Fortuna and Rizzo, 2003; Esposito, Fortuna and Rizzo, 2004; Maione, Lino and 
Rizzo, 2005). 

9.6 Fault Detection and Diagnosis: A Hierarchical View 

Moving to a higher level of abstraction, a hierarchical framework for fault 
detection and diagnosis systems can be defined. The FDD system can be seen as a 
hierarchy of machines (as for each level a completed fault detection, diagnosis, and 
preferably recovering activity is supposed to be implemented), where only 
contiguous levels can communicate through bidirectional channels.  

Three main levels can be identified in a fault detection and diagnosis system:  

 Sensor validation: the function of this level is to provide reliable 
measurements to the upper level, through integration of the available kinds 
of redundancy. This level should also be able to perform recovery or 
reconfiguration actions; for example, to exclude faulty measurements, or 
replace the missing measurement channels with reconstructed variables, 
obtained by exploiting redundancy and modeling capabilities. At this level, 
soft sensors are valuable tools to enhance redundancy. Sensor validation 
will be dealt with in detail below. 

 Process fault detection: this level should provide relevant information 
about the correct behaviour of the process (i.e. the plant), or its subsystems. 
In this level, model-based fault detection and diagnosis can be performed. 
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 State detection and supervision: this level is often a decision support 
system (DSS) to operators, with the aim of achieving the best performance 
within the current operational scenario.  

9.7 Sensor Validation and Soft Sensors 

Sensors are very important components in any application, as they provide the data 
needed to implement all the required control, supervision, coordination, 
optimization, and management activities. Before the 1990s, they were considered 
as mere signal generators, and it was assumed that measurement errors could be 
overcome by the feedback loop (Henry and Clarke, 1993). At present, reliability of 
measurements is considered a fundamental requirement in order to achieve:  

 better product quality, plant efficiency and availability;  
 enhanced safety or environmental protection;  
 better performance of feedback control loops.   

The consequences of a sensor fault strictly depend on the application 
considered: they could range from a reduction in performance or product quality, 
up to an environmental disaster. It is at present well known that acting on data 
provided by faulty sensors can lead to much design and optimization effort being 
wasted. In many applications the only expedient adopted is to replicate sensors, 
thus achieving physical redundancy. Unfortunately, this is not enough, as it does 
not ensure measurement quality, reliability, and availability: in fact, it is nearly 
useless to provide a set of redundant measurements without knowing which sensor 
to rely on during a specific activity.  

The need to apply fault detection and diagnosis strategies to sensors is strongly 
felt in industrial application. When applied to sensors, fault detection and diagnosis 
is called sensor validation (SV). Sensor validation becomes challenging when 
measurements are part of a feedback loop, as the feedback control tends to 
compensate measurement deviations, thus attempting to hide the sensor fault.  

A recent trend in sensor design is to integrate validation activity at the system 
level. That is to say, a sensor is designed that is able to provide in real time both 
measurements and extra information about the measurement reliability. This extra 
information can be exploited in the control loop to perform special control actions 
in the case of faulty measurement, or at a higher level to schedule maintenance and 
repair. This kind of sensor design took the name of SElf VAlidating sensor 
(SEVA) (Henry and Clarke, 1993).  

Almost any of the fault detection and diagnosis techniques reported in the 
literature can be applied to sensor validation: 

 Physical Redundancy. Process fault detection cannot generally rely on 
physical redundancy, because replicating whole parts of the process is very 
expensive and ineffective. On the contrary, a designer of sensor validation 
tools can often exploit physical redundancy, as in many industrial 
applications the installation of redundant sensors is a common fact. It is fair 
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to say that in most industrial applications, the need for redundant sensors is 
felt and satisfied long before realizing that suitable tools for assessing the 
reliability of measurements and selecting healthy sensors are absolutely 
necessary.   

 Analytical Redundancy. Sensors can be paralleled by mathematical models 
which describe the static and dynamic relationship between measurements 
and sensor inputs, that is to say soft sensors. All the techniques described 
above for model-based fault detection can be applied to sensor validation. 
Moreover, on the occurrence of a fault, soft sensors can provide an estimate 
of missing measurements, at least during a finite time horizon. 

 Knowledge Redundancy. As in process fault detection, knowledge 
redundancy can be exploited to develop qualitative models for sensor 
validation. Knowledge is usually acquired by interviewing human 
operators or by analyzing historical fault statistics.  

 Measurement Aberration Detection. This technique is based on the analysis 
of only the output of a sensor, without considering its input–output 
constituting laws. To validate sensors by means of this technique, it is 
necessary to assume that the fault-free sensor output has specific properties 
in the time and/or frequency domain, and that the occurrence of a fault 
causes changes in these properties. Concerning sensor validation, this 
approach was first introduced in Yung and Clarke (1989). Also, this 
technique has a correspondent in the process fault detection domain, which 
is fault detection with signal models. Many measurable process signals 
show peculiar features, like oscillations at certain frequencies, biases, and 
so on. The basic assumption of fault detection with signal models is that the 
occurrence of a fault causes changes in these features. Therefore, a 
mathematical model for the signals under analysis is built in order to 
extract the features from the actual signals and compare them with their 
nominal value. The related symptoms are therefore analytical. 

Effective sensor validation tools are often designed by combining the 
techniques described above. Very often, the use of a certain form of redundancy 
gives better results in the detection of some faults, whereas another form might be 
exploited more effectively in order to detect other kinds of faults. 

One of the approaches to sensor validation presented in this chapter, is to merge 
different sensor validation techniques in a knowledge-based framework. Within 
this approach, the partial results achieved by single validation techniques devoted 
to the effective detection of specific faults, are evaluated by a fuzzy inference 
system (FIS) able to perform a judgement about the measurement quality from a 
global point of view.  

9.8 Hybrid Approaches to Industrial Fault Detection, Diagnosis 
and Sensor Validation 

Although many efforts have been made to set a general methodology for fault 
detection and diagnosis, it has been recognized that when attention is switched to 
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industrial problems, the related solutions become more and more customized to the 
specific application. After a thorough analysis on a large number of industrial 
cases, some common issues can be highlighted: 

 most of the phenomena are nonlinear, and the nonlinearities are often not 
known, or difficult to model; 

 physical modeling is hard; very often causal relationships are (partially) 
known, but exact physical laws governing the phenomena are too 
complicated for an effective model to be built; 

 redundancies are “partial”. None of the kinds of redundancy explained 
previously is really fulfilled. For example, in a chemical plant there can be 
several sensors, placed at different locations of a circuit, able to measure 
the concentration of a reagent. In this way, physical redundancy is not 
strictly speaking achieved, but the measurements are closely related to each 
other. Moreover, the relation between these measurements can only be set 
in a qualitative fashion, as physical details about the relation might be 
poorly known or too complicated. This is a case in which partial physical 
redundancy and knowledge redundancy coexist. Soft sensors can help in 
exploiting this kind of redundancy. 

 Industries often require diagnostic systems to be installed in a non-invasive 
fashion, i.e. they must exploit the existing resources without any 
modification. For example, diagnostic tools often have to be designed 
without installing new sensors, nor changing the sampling rate of 
measurements or the data format in the measurement database. Moreover, 
it is often impossible to reconstruct specific scenarios for design or testing 
purposes, or to simulate faults, etc. In fact, the only resource the designer 
of fault detection and diagnosis tools can access is the measurement data 
stored in the industry database. 

 Measurement databases are often the only resource available, but they are 
not accompanied by useful additional information, like a log of the 
occurrence of faults (size, time, location and type of the fault). This kind of  
information, together with heuristic knowledge, is usually kept in the 
operator’s mind, or in personal logbooks. Consequently, interviewing 
operators and experts to acquire knowledge redundancy is a key point for 
an effective design of diagnostic tools. 

It is fair to say that, in industrial applications, effective design of a fault 
detection and diagnosis system must be driven both by experimental data and 
human experience. We have already stated in this chapter that fault detection and 
diagnosis can be developed in a knowledge-based framework. The majority of 
early work (in the 1970s and 1980s) in the field of knowledge-based diagnosis 
revolved around a manual construction of the knowledge base (Milne, 1987). An 
underlying assumption of an application-oriented approach is its ability to 
assemble the knowledge required for a particular task in a cost-effective manner. 
Although there is a great variety of tasks for which extensive knowledge 
engineering is justifiable, this is only one class of problems, and is too small to 
take advantage of the full capabilities of artificial intelligence, and also to build a 
reasonable quantity of economically viable systems that prove beneficial to 
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industry. Unfortunately, there is a large class of problems for which solutions seem 
achievable, but the extensive manual knowledge engineering approach is 
unjustifiably expensive. 

These considerations lead to the development of hybrid approaches, like those 
presented below in this chapter. Hybrid approaches try to conjugate the benefits of 
knowledge engineering with those of approximate reasoning, nonlinear black-box 
modeling, and optimization tools. As previously stated, soft computing techniques 
seem particularly suitable for this purpose. For example, thanks to the ability of 
neural or neuro-fuzzy networks to interpolate nonlinear functions, the expert 
(partial) knowledge can be refined by exploiting the presence of stored 
experimental data. In this way, experimental data can make up for the lack of 
knowledge about the system behavior. 

As an example, the first application presented in what follows is based on a 
hybrid approach, which exploits the advantages both of signal models and system 
models for fault detection. Instead of designing a model of the system under 
analysis, i.e. a mathematical tool able to predict the trend of the system output 
under nominal operational conditions, it has proved possible to exploit human 
knowledge and experimental data in order to predict directly the nominal signal 
features on the basis of experimental measurements. Predicted symptoms can then 
be compared to actual symptoms by means of a diagnosis tool to generate the fault 
vector.  

Within hybrid approaches, the algorithms designed are often based on soft 
computing tools. Consequently, they are able to incorporate human knowledge (in 
terms of fuzzy if-then rules) and the ability to learn from data (through neural or 
neuro-fuzzy tools).  

In conclusion, the hybrid approach to fault detection and diagnosis proposed in 
this chapter can be developed through the following steps: 

 conducting interviews with experts, in order to acquire the knowledge 
about the involved phenomena, the known causalities relationships, the 
faults, their known causes, and all the heuristic knowledge available; 

 defining the symptoms and the algorithms to derive them from the 
available measurements; 

 designing suitable detection tools, able to exploit the different kinds of 
(partial) redundancy present in the system, the available data and the 
heuristic knowledge;  

 comparing the expected symptoms and the actual ones, and evaluating the 
difference by means of either fixed or adaptive thresholds, or via a 
diagnosis tool (which can also be tuned on the basis of existing diagnosis 
data stored in the database).  

It is worth noting that hybrid approaches do not exclude the presence of traditional 
fault detection and diagnosis techniques, which can be integrated into the design of 
a more complex tool. As stated in the previous section concerning sensor 
validation, also in the case of fault detection and diagnosis the partial results 
obtained by single fault detection tools can be evaluated and merged by a FIS, in 
order to provide a diagnosis based on the analysis of the results of individual, 
specific techniques. 
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In what follows, two applications developed by means of hybrid approaches 
will be shown. In particular, the design of two sensor validation tools for nuclear 
fusion applications will be described. The first is designed to validate a set of 
measurements of mechanical stress, performed by strain gauges, of the vacuum 
vessel where nuclear fusion takes place. The second is designed to validate the 
measurement of plasma density during fusion reactions, performed by an 
interferometer. The tools developed are currently installed at JET Joint 
Undertaking (Culham, UK), and at FTU Frascati Tokamak Upgrade (ENEA 
Frascati, Italy), respectively. 

9.9 Validation of Mechanical Stress Measurements in the JET 
TOKAMAK 

The Joint European Torus (JET) is the world’s largest fusion facility. It is a project 
in the coordinated fusion program of the European Atomic Energy Community 
(EURATOM), whose long-term objective is the creation of a prototype of a fusion 
reactor, complying with the ever more challenging  safety and environmental care 
requirements. It is now managed by EFDA (European Fusion Development 
Agreement) and hosts scientists from all over the world, to conduct experimental 
campaigns in the nuclear fusion domain. Many disciplines are involved in the 
achievement of the fusion reaction. Consequently, JET, like many other physics 
laboratories, is also a great test bed for most of the science and engineering fields 
(e.g. robotics, mechanics, electromagnetic fields, power supplies, computer 
science, algorithms, computer networks, optimization, automatic control, 
instrumentation and measurements, etc.) 

At JET, sensor validation is felt to be a primary task to be accomplished, for 
several reasons, briefly listed below: 

 the JET machine has worked for a long time above its nominal design 
limits, and a further extension of the toroidal field (the field necessary for 
plasma confinement) to 4 T was carried out in 1999. Thus, the need for 
reliable diagnostic systems is more and more important due to the high 
energy involved; 

 due to the experimental nature of the JET machine, a remarkable number of 
sensors has been installed, and is currently increasing, in order to evaluate 
the machine’s performance, improve the availability of measurements 
(during deuterium–tritium operations access to the operational area to 
repair a sensor is not allowed), and study nonaxes-symmetric machine 
behavior; 

 the considerable reduction in staff requires a new approach to fault 
analysis, in which automatic tools, which take human experience and all 
kinds of redundancy into account, can help operators to monitor thousands 
of variables; 

 testing new techniques in fault detection and sensor validation is very 
important for use in other plants with a huge number of variables, like the 
ITER tokamak, other physics laboratories, or industry. 
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The application of automatic sensor validation techniques is rather new in the 
field of nuclear fusion and experimental physics, due to the complexity of the 
phenomena involved and the almost total absence of accurate models of the plant 
or parts of it. So far, almost all fault detection activity has been carried out 
manually by experts, with the help of simple signal processing operations, 
threshold-based alarms, and the experience acquired by plant operators. 

The aim of the application presented in this section is to build an automatic 
sensor validation system for a sensor set which measures the vertical mechanical 
stresses on the supports of the JET tokamak vacuum vessel. Experts are interested 
in the reliability of these measurements during specific time intervals, 
corresponding to the occurrence of particular physics phenomena called 
disruptions. During the usual operational life of the tokamak, in fact, mechanical 
stresses are relatively weak and do not need to be monitored. During disruptions, 
on the contrary, fast dynamic vertical displacement events (VDE) occur, causing a 
great swing to and mechanical oscillations of the vacuum vessel, which must be 
monitored to ensure the mechanical integrity of the machine. One of the actions 
related to the monitoring of the mechanical stresses is to suspend the experimental 
campaign when more than a fixed number of VDEs exceeding a certain stress 
threshold occur in any day. The reliability of the measurements is therefore very 
important to avoid both unnecessary suspension of experiments and dangerous 
experiments carried out beyond operational limits. In what follows, the design of 
the sensor validation tool is described. After a brief description of the measurement 
system, a classical approach based on physical redundancy is presented. 
Subsequently, a hybrid sensor validation system designed according to the 
guidelines described in Section 9.8 is presented and, finally, validation results are 
evaluated and compared. 

The measurement system under analysis is a set of 32 strain gauges located 
along the vertical port restraints of the vacuum vessel. Measurements taken by 
these sensors are very significant, as they properly reflect the mechanical 
behaviour of the machine during disruptions. Vertical forces measured through 
these strain gauges are subsequently used to compute the overall stress of the 
vessel at disruption. It is obvious that the inclusion of faulty measurements into the 
computation algorithm lead to misunderstandings of the physical phenomena that 
occur. 

The details concerning the process and the measuring system are given in the 
Appendix. 

9.9.1 Heuristic Knowledge 

Under the occurrence of a plasma disruption, plasma confinement is suddenly lost 
and the plasma current falls to zero in a very short time. Consequently, high 
mechanical and thermal stresses are produced in the machine structure (Buzio et 
al., 1996). Disruption-induced loads are characterized by radial and vertical 
components of several millions of newtons, with typical timescales ranging from 
20 to 50 ms. Since the installation of additional restraining rings (1989), the vessel 
has become more rigid with respect to radial axisymmetric forces and the most 
important mechanical loads are now due essentially to vertical loads. Because of 
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the particular configuration of the supports, vertical forces exert a torque around a 
rotation centre, generating a vessel axisymmetric motion (called rocking motion by 
the experts), with a frequency of oscillation at about 14 Hz. Experts summarize the 
force history into the following stages (Buzio et al., 1996): 

1. initial steady phase; 
2. upward force; 
3. large downward swing; 
4. slow decay at 14 Hz. 

The downward swing occurring in phase 3 is the most important with regard to 
the fatigue life of the machine. Experts estimate this swing by computing the so 
called F-number (JET, 1998), a nonlinear function of seven currents, which are 
part of the settings of the experiment. More details about these currents are given 
in the Appendix. 

The vessel in which the reaction takes place has a toroidal shape, and is divided 
into eight octants. Strain gauges are replicated in each octant (eight sensors per 
octant, four are installed in the upper restraints and four in the lower restraints), 
and experiments are generally symmetrical along the toroidal direction. Therefore, 
the measurements performed should exhibit this symmetry. Even though 
measurements along the vessel are strongly related by toroidal symmetry 
relationships, this cannot be strictly considered a case of physical redundancy, 
where multiple sensors are installed in order to perform exactly the same 
measurement. This has already been referred to in the previous section as a case of 
partial physical redundancy. 

In the next section, a simple algorithm to exploit this kind of redundancy is 
described. 

9.9.2 Exploiting Partial Physical Redundancy 

In nominal operational conditions, the 32 lower strain gauges, which are in 
principle related by toroidal symmetry, should perform very similar measurements 
at the same time, apart from the initial offset, which depends on sensor calibration. 
The following approach allows us to check whether a sensor is performing a 
measurement which does not respect the symmetry criterion. This is a model-free 
approach, in which the reference behavior is not generated by a model.  

The algorithm is based on the computation of an average behavior (Dorr et al., 
1997) of the sensor set. Subsequently, the difference between each sensor output 
and the average behavior is evaluated. Even if this is a model-free approach, this 
difference accomplishes the same function as a residual. Subsequently, if the 
residual is too big according to some criterion, a fault condition for the 
corresponding sensor is raised. 

The algorithms can be formalized as follows: 

 consider the measurement performed by the set of n sensors 

 )(txi , with i=1,2, …, n 
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 subtract from each measurement its initial offset 
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Once the residuals 9.35 are generated, they must be checked according to a 
fault detection criterion.  

The first criterion which can be adopted is to fix a threshold K and time 
window T. An alarm is then raised if |ri(t)|>K during the whole time window T. The 
time window T is set to add robustness to the detection, thus avoiding a false alarm 
from being raised if the threshold is exceeded for a very short time interval. 
Obviously, the choice of threshold and time window is based on a trade-off 
between accuracy and robustness.  

As previously stated, strict physical redundancy of sensors is not available, and 
the algorithm is based on the assumption that the sensors should be measuring the 
same quantity. It can happen that, in certain experiments, toroidal symmetry can be 
less evident. In this case, with a fixed threshold, most of the sensors may be 
declared faulty due to the lack of symmetry of the specific experiment, whereas 
they are performing a correct measurement. Therefore, an adaptive threshold may 
be more suitable. A lower threshold is needed when sensor outputs are similar, 
whereas a higher one must be fixed in order to tolerate cases in which symmetry is 
missing. With this in view, let us consider  
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Then, a fault condition on the ith sensor is raised if |ri(t)|>k (t) (with k>0) during a 
fixed time window T. In our application, satisfactory results are obtained with 
2<k<3 and a time window between 10 and 50 samples of the sensor output. Fixing 
a time window can be avoided if integral functions of residuals and adaptive 
threshold are compared, that is checking whether 
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This can be a suitable approach to avoid fixing a time window and to cope with 
different kinds of faults, like big spikes over short time intervals, or constant, small 
biases over long time intervals. Moreover, the detection performance may be 
improved by introducing a forgetting factor, i.e. a low-pass filter with a suitable 
time constant instead of a pure integrator.  

This approach is simple to implement. Nevertheless, it is suitable for coarse 
fault detection, and certain kinds of fault cannot be easily detected, unless the 
sensitivity of the algorithm is increased, thus leading to the frequent raising of false 
alarms. Moreover, this algorithm can perform fault detection, but is unable to 
perform fault classification or diagnosis. In the next section, a hybrid sensor 
validation strategy for the same set of sensors will be described (Rizzo and Xibilia, 
2002; Fortuna et al., 1999), based on the hybrid methodology described in Section 
9.8. 

9.9.3 A Hybrid Approach to Fault Detection and Classification of Mechanical 
Stresses 

The design of the sensor validation tool follows the steps described in Section 9.8. 
A functional scheme for the tool is illustrated in Figure 9.5. The algorithm 
hybridizes the signal model with model-based techniques. After having acquired 
knowledge about possible sensor faults, adequate signal features for sensor fault 
detection are defined. Actual signal features can easily be computed from 
measurements with standard signal processing operations. On the other hand, 
unlike fault detection with signal models, nominal signal features cannot be fixed, 
as JET is an experimental physics plant and experiments can be very different from 
each other. Consequently, the fault-free behavior of sensors can be very 
changeable. Therefore, nominal features depend on the specific experiment. To 
overcome this problem, nominal features are predicted with a neural model trained 
on experimental data, thus obtaining a nominal feature model, which can be fed 
either by the sensor inputs or, as in this application, by other quantities related with 
the sensor response. Subsequently, actual and predicted nominal features are 
compared to generate analytical symptoms. Finally, symptoms are evaluated by a 
fuzzy inference system able to perform the validation.  

 
Figure 9.5. Conceptual scheme for the sensor validation of mechanical stresses at JET 
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9.9.3.1 Knowledge Acquisition 
As already stated in Section 9.9.1, plasma disruption produces a vertical 
displacement event (VDE) of the vacuum vessel, followed by a so-called rocking 
motion at a frequency of about 14 Hz. The characteristic downward swing is a 
function of seven currents, which are part of the setting of the experiments. The set 
of 32 strain gauges is installed to monitor this mechanical stress when a disruption 
occurs, and sensor faults must be correctly detected and classified, in order not to 
include faulty measurements in the computation of the overall stress of the 
mechanical structure.  

After a thorough investigation, four classes of faults for the installed strain 
gauges were identified: 

 gain fault, in which the faulty signal denotes the same shape as the 
non-faulty ones, but it is magnified or scaled by a multiplicative factor; this 
is caused by a sudden change of gain in the acquisition system; 

 bias fault, in which the faulty signal has the same shape as the non-faulty 
ones, but its trend is broken in several parts separated by steps; this is 
caused by sudden introduction of constant biases in the measurement; 

 spike fault, in which the faulty signal presents large and occasional spikes; 
this can be caused by bad adherence of the strain gauge to its support; 

 noise fault, in which high frequency noise is superimposed on the 
measurement. This noise is occasionally caused by certain radiofrequency 
amplifiers installed in the machine (fast radial field amplifier, FRFA). 

It has been found that noise and spike faults never occur simultaneously in the 
same measurement. 

9.9.3.2 Symptom Definition 
As stated before, the approach adopted is a hybridization of model-based fault 
detection with signal models. In particular, the model developed allows the 
nominal value of the signal features to be predicted on the basis of the operational 
condition, in order to compare them with the actual feature values. Analyzing the 
waveforms of typical sensors responses, four features were reckoned to be 
sufficient to isolate and classify the faults described above. Denoting with xi(k) the 
sensor time-discrete output of the ith sensor and with k the discrete time index, 
they can be listed as follows: 

 Maximum peak of the oscillations which, together with the next symptom, 
is a suitable indicator of gain and bias faults; 

 )(max kxM iki  (9.39) 

 Average value of the sensor response (where Ns is the total number of 
samples of the sensor output during an experiment); 
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 Maximum of the absolute value of the prime difference function, which 
is a suitable indicator for the detection of spike faults;  

 )1()(max kxkxP iiki  (9.41) 

 Sum of the magnitude of FFT samples between 100 and 130 Hz, which 
is a suitable indicator of the detection of noise faults. Since 
Xi(f)=FFT{xi(k)}, it is 
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9.9.3.3 Design of the Detection Tool: Nominal Features Model 
The aim of this subtask is to build a hybrid model able to predict the nominal 
features of the sensor response, on the basis of the specific operational condition. 
With this aim in view, a neural model is designed to establish directly the 
correspondence between the causes of the mechanical stress and the nominal 
features expressed in Equations 9.39 to 9.42. We have already mentioned that the 
main mechanical event after the occurrence of a disruption, which is the large 
downward swing, is caused by the value of seven currents, which are part of the 
setting of the experiment. Moreover, the swing is determined by the instantaneous 
value of the seven currents at the disruption time (for practical reasons explained in 
the Appendix, the instantaneous value is actually taken 200 ms before the 
occurrence of the disruption). Therefore, as the mechanical behavior of the system 
is determined by these currents, we conjectured that it is possible to find a 
correspondence between the instantaneous value of the currents at the disruption 
time and the features 9.39–9.42 in fault-free conditions. 

To design the hybrid model, an MLP was used (Fortuna et al., 2001). The MLP 
adopted has therefore seven inputs and four outputs. By trial and error, the size of 
the hidden layer was fixed at two neurons. As our aim is to build a feature model 
for a healthy sensor, the network was only trained on healthy data. With this 
purpose in view, the manual validation data log was browsed, and calculation of 
the correct values of the features was performed on the basis of manually validated 
strain gauge measurements. The MLP was trained on 60 experiments, covering 
most operational scenarios. A very large checking set, comprising 200 
experiments, was selected to validate the model for a wide range of situations. 
Figure 9.6 shows the distribution of errors made by the network on the four 
features, for the whole set of 260 experiments. 
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  (a)           (b) 
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Figure 9.6. Error distribution of the nominal features model, for the features expressed in 
Equations 9.39–9.42, respectively 

As can be seen, this distribution is quite uniform, except for a few experiments, 
belonging to the checking data set, in which the error is extremely high. After a 
thorough analysis of the patterns on which the error made by the model is high, it 
was recognized that this behavior is caused by mistakes made by the automatic 
system for detection of the disruption time. As a consequence, the model input was 
not evaluated at the correct time for these experiments. Although, in principle, 
these experiments should not have been taken into account in the checking set, in 
the real application this fact can occur, even though with a low probability. In these 
cases the sensors may be detected as faulty (false alarm).  

The difficulty of detecting the correct disruption time with an extremely high 
accuracy depends on the nature of the phenomena involved. In fact, a disruption is 
detected on the basis of observation of some precursors. Sometimes the precursors 
observed do not lead to an actual disruption, or do not reveal the main (strongest) 
disruption. As the current quenches during a disruption are very steep, a small error 
made in evaluation of the disruption time involves a large error in the actual 
current values, which cannot be related to the chosen features, leading to model 
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misbehavior. In any case, the patterns denoting an unacceptable modeling error 
constitute about 5% of the whole pattern set. In validating the model, the maximum 
error figures obtained in the remainder of the measurements (thus constituting 95% 
of the total) are given in Table 9.1. 

Table 9.1. Maximum estimate errors made by the neural symptom model and range of 
measurement 

Feature Max. Err. Range 
Mi 16 kN 400 kN 
Ai 8 kN 400 kN 
Pi 3 kN 400 kN 
Ni 1000 10000 

The figures given in Table 9.1 confirm the satisfactory performance of the model, 
considering that strain gauges have a measurement scale ranging from 0 kN to 
400 kN. The maximum error of 16 kN is therefore less than 5% of the 
measurement range. Concerning the last parameter, in Table 9.1 the error made is 
quite small, given that it has been checked that the indicator Ni for a noisy signal 
differs from that related to a non-noisy one by at least 5000. 

Once the features Mi, Ai, Pi, Ni are predicted, they are compared with the 
corresponding features computed from the actual sensor outputs. The differences 
between predicted and actual features are the analytical symptoms which have to 
be analyzed for fault diagnosis, as will be shown in what follows. 

9.9.3.4 Fuzzy Fault Diagnosis 
The symptoms generated can be analyzed using several methodologies, like one of 
those mentioned in Section 9.4. As Figure 9.5 shows, the approach presented in 
this chapter is modular, with separated detection and diagnosis functional blocks. 
In this application, a fuzzy inference system is adopted, because a linguistic model 
for fault diagnosis is available. The linguistic model is based on both the analysis 
of the symptoms generated and investigation of the expert knowledge. As 
mentioned previously, four main faults can be isolated. For the same sensor, they 
can occur either alone or concurrently, on the basis of the various combinations of 
the symptoms computed by the neural model. 

To perform the fuzzy diagnosis, a Takagi–Sugeno fuzzy system was chosen 
(Jang, Sun and Mizutani, 1997). Let PKerror, AVerror, SPerror, and NSerror 
be the difference between the actual and estimated features expressed in Equations 
9.39 to 9.42. These differences are the inputs of the fuzzy inference system. Each 
input has three associated membership functions, called pos, zero, and neg, 
defining the fuzzy concepts of positive, negative, or null error. The shapes and 
overlaps of the membership functions are fixed by trial and error, considering 
heuristics, performance, and sensor and model accuracy. 

The four faults described in the previous section can be classified through three 
indicators, Amplification, Bias, and Disturbances, which are the outputs of the 
fuzzy system. Each of the outputs can assume three crisp values:  
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 Amplification and Bias: high (1), low ( 1), ok (0); 
 Disturbances: noise ( 1), spikes (1), ok (0).  

The indicator Disturbances accounts for the diagnosis of both spike and noise 
faults because, as mentioned previously, these faults do not occur simultaneously 
in the same measurement. 

The following set of rules was designed:  

1. if PKerror is pos and AVerror is zero then Ampli 
is hi and Bias is ok 

2. if PKerror is neg and AVerror is zero then Ampli 
is lo and Bias is ok 

3. if PKerror is not neg and AVerror is pos then 
Ampli is ok and Bias is hi 

4. if PKerror is not pos and AVerror is neg then 
Ampli is ok and Bias is lo 

5. if PKerror is zero and AVerror is zero then Ampli 
is ok and Bias is ok 

6. if SPerror is not pos and NSerror is notpos then 
Disturb is ok 

7. if SPerror is zero and NSerror is pos then Disturb 
is noise 

8. if SPerror is pos and NSerror is pos then Disturb 
is spikes 

Rules 1 to 4 allow the presence of amplification and bias faults to be revealed, 
analyzing the error on both the maximum peak and the temporal average. As an 
example, Rule 1 says that if the error on the peak is positive and the error on the 
average is zero, then the signal is magnified but not biased, i.e. this is the case of a 
gain error. Rule 5 describes the condition of a sensor not affected by faults. Finally, 
Rules 6 to 8 deal with the diagnosis of spikes or noise faults. 

9.9.3.5 Performance Assessment 
The sensor validation tool was implemented in Matlab® on a UNIX platform. A 
short Fortran routine was needed to retrieve signals from the JET database.  

In order to compare the performance of the hybrid approach and that based on 
partial physical redundancy, explained in Section 9.9.2, both algorithms were run 
on a new set of 96 experiments, where manual validation performed by experts 
found that four strain gauges were actually affected by different kinds of faults. 

A comparison between the two methods is shown in Table 9.2, where the 
average number of faulty measurements over the total number of measurements 
(number of sensors multiplied by number of experiments considered) is given. This 
can also be considered as the average number of faulty sensors per experiment 
(denoted as AFSE in Table 9.2). 

 



 Fault Detection, Sensor Validation and Diagnosis  217 

Table 9.2. Comparison between the two strategies: based on physical redundancy (Phys. 
Red.) and hybrid 

Method Total (Number of sensors ×  
number of experiments) 

Number 
of faults AFSE 

Phys. Red. 3072 51 0.5 
Hybrid 3072 375 3.90 

From Table 9.2, an AFSE of 3.9 faulty sensors per pulse obtained through the 
hybrid approach is realistic. In fact, as stated above, in the period considered, four 
sensors were faulty. On the other hand, the figure of 0.5 provided by the classical 
method, referring to the same operational period, is incorrect. Moreover, 
significant improvements in the traditional method were not achieved with further 
tuning of the thresholds and time window. 

The AFSE is a suitable performance index with regard to the quantitative 
aspects of the detection task. An in-depth analysis through the single experiments 
revealed that the sensors detected as faulty by the hybrid approach correspond to 
those really affected by faults. The diagnosis task was manually validated by 
examining the sensors declared faulty, providing good performance in all cases. 

In conclusion, the results obtained by the hybrid approach were considered 
comparable to those obtained by thorough manual validation performed by plant 
experts. 

9.10 Validation of Plasma Density Measurement at ENEA-FTU 

In this section, we deal with the design of a sensor validation tool for the plasma 
density measurement of the FTU (Frascati Tokamak Upgrade) Tokamak, located in 
Frascati (Rome), Italy, at the ENEA Laboratories. While mechanical stress 
monitoring treated in the previous section is essential for machine safety, correct 
sensor validation of plasma density measurement is essential for the evaluation of 
the physics results achieved by the nuclear fusion experiment (Buceti et al., 2001a; 
Buceti et al., 2001b; Buceti et al., 2002). Plasma density measurements are 
performed by a deuterium–carbon–nitrogen (DCN) interferometer, an instrument 
able to perform the measurement of plasma electron line density. It is a 
five-channel instrument, in which each channel performs a measurement along a 
different chord of the plasma column (which has a circular section). More details 
about interferometry and plasma density measurement are given in the Appendix.  

As seen below, the validation system designed fits well into the hybrid 
development framework described in Section 9.8, as model-based validation, 
signal model validation, knowledge-based redundancy, physical redundancy, are 
concurrently exploited. The main idea underlying the design of the validation tool 
is to perform single validation operations by using different strategies, each 
specialized in the analysis of specific aspects of the measurement. Subsequently, 
the results from single validations are merged by a fuzzy inference system to draw 
global conclusions about the quality of measurement. One of the techniques 
adopted to perform fault detection is based on the development of a soft sensor, 
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used to implement a model-based fault detection strategy. The soft sensor in this 
application is implemented by means of an MLP trained on experimental data. The 
design and development of the tool is described below, through the development 
steps outlined in Section 9.8. 

9.10.1 Knowledge Acquisition 

During a fusion experiment, plasma density is evaluated by integrating the line 
densities measured by the DCN interferometer along five parallel chords. After a 
thorough analysis of the physical phenomena involved, and interviews with 
experts, the following considerations can be listed:  

1. plasma line density is mainly related with the plasma current and with the 
amount of gas injected into the vacuum vessel; 

2. the plasma column is denser near its centre; this implies that line density 
measured along lines which are far from the plasma centre is smaller than 
line density measured along lines which are near the plasma centre; 

3. line density measurements have a similar trend along all lines (and also 
similar to the plasma current trend); 

4. line density measurements should not be affected by important 
discontinuities, like steps or spikes; steps can be frequent because they are 
caused by a well-known sensor fault, typical of interferometers, called 
fringe skip (see Appendix). 

It can be noticed that the availability of five line measurements along five 
different chords of the same plasma column constitutes a case in which partial 
physical redundancy exists. Moreover, a cause–effect relationship between plasma 
density and its main causes can be established. Therefore, this knowledge 
redundancy can lead to the development of a model, thus achieving analytical 
redundancy. Finally, some additional knowledge redundancy is available, like 
considerations of the measurement trends or the presence of discontinuities.  

A block scheme of the validation tool is illustrated in Figure 9.7  

 
Figure 9.7. Block scheme of the sensor validation system for plasma density measurements 
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9.10.2 Symptom Definition 

The functional blocks of the scheme are illustrated in Figure 9.7. The block called 
Main Fuzzy Validator consists of a fuzzy inference system able to evaluate 
symptoms generated by the blocks placed at its inputs. It has the same function as 
the fuzzy inference system described in Section 9.9.3.4. Three different symptoms 
are generated and evaluated:  

 The first symptom refers to the first point in the list of acquired knowledge, 
which establishes a causal relationship between plasma line density and 
other variables. The symptom is generated by considering the residual of a 
model for the plasma line density. The model developed is nonlinear, 
black-box, based on a MLP neural network, with a NARX structure. Two 
different analytical symptoms are generated (which are two features of the 
model residual), and subsequently analyzed by another fuzzy inference 
system, called Fuzzy Model Validator in Figure 9.7, which performs a first 
analysis and generates a symptom which will be the input of the Main 
Fuzzy Validator.  

 The second analytical symptom refers to the third point of acquired 
knowledge, which establishes a relationship between the temporal trends of 
plasma current and plasma density. It is denoted Xc and is computed as 

 )),(max( dIxcorrX pc  (9.43) 

where Ip is the plasma current, d is the plasma line density and xcorr is the 
normalized cross-correlation function. This indicator assumes high values 
as long as the density measurement and plasma current have similar 
temporal trends. 

 The third symptom takes into account the fourth point of the knowledge 
basis, and is designed to detect the occurrence of spikes or discontinuities 
on the sensor output. In order to compute this indicator, a high-pass filter is 
applied to the sensor output, and the maximum of the resulting signal is 
considered to be an analytical symptom. This value is high as long as the 
measurement is affected by discontinuities. 

In the following section, the neural model, the fuzzy model validator, and the 
main fuzzy validator are described in greater depth.  

9.10.3 Design of the Detection Tool: Soft Sensor and Fuzzy Model Validator 

As stated in Section 9.10.1, plasma line density is mainly related with the plasma 
current and the amount of gas introduced into the tokamak. A physical model 
cannot be designed as the physical relations between variables are not available, 
therefore a NARX model is developed in order to obtain a soft sensor for the 
plasma density. The model structure is:  
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where k is the discrete time index, d(k) is the plasma line density, Ip(k) is the 
plasma current, and gas(k) is the total amount of gas introduced up to time k. 

The nonlinear model was identified using a MLP neural network with six 
inputs and one output. By trial and error, the number of neurons in the hidden layer 
was set at nine. The data set used to train the model was built using data selected 
from the experimental database of FTU. To build the nominal model, only data 
manually validated by experts were considered. Moreover, they were selected in 
order to cover as many operational scenarios as possible.  

The model performance was subsequently tested by a new set of experimental 
data. This consists of 177 experiments in which the sensors are not affected by 
faults, and 227 experiments in which sensors are faulty. The average modeling 
error, computed on the test data set and normalized in the range [0,1] is 5.4 × 10-5 
on the fault-free cases, and 2.1 × 10-2 on the faulty data set. The great difference 
between the average error made by the model on the fault-free data and that made 
on the faulty data indicates that the model is able to distinguish between faulty and 
fault-free data. 

It may happen that the residual related to a fault-free signal exceeds a fixed 
threshold for a short time, or by a small amount. Moreover, it is hard to fix a 
threshold with a good trade-off between accuracy and robustness. To reduce the 
possibility of generating false alarms and provide a more reliable symptom for the 
final validation stage, two features of the residual are analyzed by the fuzzy model 
validator. They are: 

 the average value of the residual over the whole experiment (called avgerr 
in what follows);  

 since  is the standard deviation of the model error on the whole set of 
fault-free data, the second parameter is the maximum number of samples in 
succession out of a bound of ±2.5  (called outbound in the following). 

The Fuzzy Model Validator takes as inputs the two variables avgerr and 
outbound. Five linguistic values have been defined for the variable avgerr: 
neghigh, negative, zero, positive, poshigh; and three for the variable outbound: 
small, medium, high.  

The following set of rules has been designed. The output fuzzy variable model 
is the symptom which is fed as input to the Main Fuzzy Validator.  

1. if Avgerr is Zero and Outbound is Small then Model 
is Ok 

2. if (Avgerr is Positive or Avgerr is Negative) and 
Outbound is Small then Model is Warning 

3. if (Avgerr is Poshigh) or (Avgerr is Neghigh) then 
Model is Faulty 
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4. if (Avgerr is Negative) or (Avgerr is Zero) or 
(Avgerr is Positive) and Outbound is High then 
Model is Faulty 

5. if (Avgerr is Negative) or (Avgerr is Zero) or 
(Avgerr is Positive) and Outbound is Medium then 
Model is Warning 

It can be seen from the set of rules that the output variable model can assume 
three fuzzy values: Ok, Warning, Fault. The Warning value has been introduced to 
highlight cases in which computation of the symptom leads to an uncertain result.  

9.10.4 The Main Fuzzy Validator 

The Main Fuzzy Validator block was designed to take into account the three 
symptoms previously described, and to draw conclusions about the status of the 
sensor on the basis of the symptoms fed in at its inputs. It consists of a fuzzy 
inference system with three inputs and one output. The inputs are the three 
symptoms generated by the Fuzzy Model Validator, the check on the cross-
correlation between plasma line density and plasma current, and the check for the 
presence of discontinuities. The three symptoms are called Model, Xc, and Spikes, 
respectively. Each of them has a set of associated linguistic (fuzzy) values, as 
follows: 

1. Model: Ok, Faulty, Warning; 
2. Xc: Low, Medium, High; 
3. Spikes: Low, Medium, High, Very High. 

The output variable of the fuzzy inference system is called Sensor, and can 
assume three values: Ok, Warning, Fault. The variable Sensor indicates the final 
validation result. On the basis of the experts’ knowledge, according to a linguistic 
description of the manual validation process, the Main Fuzzy Validator rules have 
been designed as follows. 

1. if Xc is High and Model is Ok and Spikes is Low 
then Sensor is Ok 

2. if Xc is Not(High) and Model is Faulty and Spikes 
is Not(Low) then Sensor is Faulty 

3. if Xc is Low and Model is Ok then Sensor is 
Warning 

4. if Xc is High and Model is Warning and Spikes is 
Low then Sensor is Ok 

5. if Xc is Medium and Model is Warning then Sensor 
is Warning 

6. if Model is Warning and Spikes is Not(Low) then 
Sensor is Faulty 

7. if Xc is High and Model is Faulty and Spikes is 
Low then Sensor is Faulty 
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8. if Model is Ok and Spikes is Not(Low) then Sensor 
is Warning 

9. if Xc is Low and Model is Ok then Sensor is 
Faulty 

10. if Model is Ok and Spikes is VeryHigh then Sensor 
is Faulty 

11. if Xc is Medium and Model is Ok then Sensor 
Warning 

12. if Model is Ok and Spikes is High then Sensor is 
Warning 

13. if Xc is Small and Model is Warning then Sensor 
is Faulty 

14. if Xc is Medium and Model is Faulty and Spikes is 
Not(Low) then Sensor is Faulty 

15. if Xc is High and Model is Warning and Spikes is 
Medium then Sensor is Warning 

9.10.5 Performance Assessment 

The performance of the validation system has been assessed on a set of 300 
experiments, containing either faulty or non-faulty measurements, manually 
validated by experts. These experiments were not used in the design phase. 
Validation results are shown in Table 9.3. The second and fifth columns (i.e. the 
columns labeled Ok Ok and Fault Fault) report the success rate of the tool in 
sensor validation and fault detection, respectively. The second column reports the 
percentage of successful validation, that is the number of measurements detected 
by the validation tool as not affected by fault, with respect to the total number of 
fault-free measurements. The fifth column reports the percentage of successful 
fault detections, that is the number of measurements detected by the validation tool 
as faulty, with respect to the total number of faulty measurements. The third and 
fourth columns (Ok Fault and Ok Warn) report the percentage of failures in the 
validation process, which is the percentage of misclassification of fault-free 
measurements, classified as being in a faulty or warning state, respectively, by the 
automatic tool. The sixth and seventh columns (Fault Warn and Fault Ok) 
report the percentage of failures in the fault detection process, which is the 
percentage of misclassification of faulty measurements, classified as being in a 
warning or a fault-free state, respectively, by the automatic tool. 
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Table 9.3. Performance of the validation tool 

#Ch 
Ok     

     
Ok 

Ok     
    

Fault 

Ok     
  

Warn 

Fault   
   

Fault 

Fault   
  

Warn 

Fault    
       

Ok 

1 92.4 3.4 4.2 95.5 2.7 1.8 

2 90.0 6.2 3.8 95.2 1.6 3.2 

3 94.4 5.6 0 72.9 19.4 7.7 

4 90.9 5.6 3.5 98.1 0 1.9 

5 85.4 6.7 7.9 86.0 8.3 5.7 

Table 9.3 shows good performance in both validation and fault detection. 
Performance can be improved during the experimental life of the plant by re-tuning 
the fuzzy membership functions as more experimental data become available.  

9.11 Basic Terminology in Fault Detection and Diagnosis 

In the following, the terminology established by the IFAC Technical Committee 
SAFEPROCESS is reported (Isermann and Ballé, 1997; Omdahl, 1998). 

1. States and Signals 

a. Fault: Unpermitted deviation of at least one characteristic 
property of the system. 

b. Failure: Permanent interruption of a system’s ability to perform 
a required function under specified operating conditions. 

c. Malfunction: Intermittent irregularity in fulfillment of a system 
desired function. 

d. Error: Deviation between a computed value (of an output 
variable) and the true, specified or theoretically correct value. 

e. Disturbance: An unknown (and uncontrolled) input acting on a 
system. 

f. Perturbation: An input acting on a system which results in a 
temporary departure from steady state. 

g. Residual: Fault indicator, based on deviations between 
measurements and model equation based calculation. 
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h. Symptom: Change of an observable quantity from normal 
behaviour. 

2. Functions 

i. Fault Detection: Determination of faults present in a system and 
time of detection. 

j. Fault Isolation: Determination of kind, location and time of 
detection of a fault by evaluating symptoms. Follows fault 
detection. 

k. Fault Identification: Determination of the size and time-variant 
behaviour of a fault. Follows fault isolation. 

l. Fault Diagnosis: Determination of kind, size, location and time 
of detection of a fault by evaluating symptoms. Follows fault 
detection. Includes fault detection, isolation, and identification. 

m. Monitoring: A continuous real-time task of determining the 
possible conditions of a physical system, recognizing and 
indicating anomalies of the behaviour. 

n. Supervision: Monitoring a physical system and taking 
appropriate actions to maintain the operation in the case of faults.  

o. Protection: Means by which a potentially dangerous behaviour 
of the system is suppressed if possible, or means by which the 
consequences of a dangerous behaviour are avoided.  

3. Models 

p. Quantitative model: Use of static and dynamic relations among 
system variables and parameters in order to describe a system’s 
behaviour in quantitative mathematical terms. 

q. Qualitative model: Use of static and dynamic relations among 
system variables and parameters in order to describe a system’s 
behaviour in qualitative terms such as causalities or if-then rules;  

r. Diagnostic model: A set of static or dynamic relations which link 
specific input variables – the symptoms – to specific output 
variables – the faults. 

s. Analytical redundancy: Use of two, but not necessarily identical 
ways to determine a quantity where one way uses a mathematical 
process model in analytical form. 

4. System Properties 

t. Reliability: Ability of a system to perform a required function 
under stated conditions, within a given scope, during a given 
period of time. Measure: MTTF = Mean Time To Failure. Also, 
MTTF=1/ where is the rate of failure (i.e. failures occurring 
in a time unit). 
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u. Safety: Ability of a system not to cause danger for persons or 
equipment or environment. 

v. Availability Probability that a system or equipment will operate 
satisfactorily and effectively at any point of time:  

MTTRMTTF
MTTFA  

where MTTR is the Mean Time To Repair (MTTR=1/ ; where  
is the rate of repair, i.e. the repairs made in a time unit). 

9.12 Conclusions 

The need to apply fault detection and diagnosis strategies to sensors is strongly 
felt in industrial applications. When applied to sensors, fault detection and 
diagnosis is called sensor validation. Although much effort has been devoted to set 
a general methodology for fault detection and diagnosis, it has been recognized 
that when attention is switched to industrial problems, the related solutions become 
more and more customized to the specific application. In this framework, soft 
sensors can be valuable tools to develop effective sensor validation tools. 
Nevertheless, in most cases, a successful sensor validation strategy cannot rely 
only on the development of an accurate soft sensor. 

The applications presented in this chapter, developed in the nuclear fusion field, 
are based on a hybrid approach, which is able to conjugate the benefits of 
knowledge engineering with those of approximate reasoning, nonlinear black-box 
modeling, and optimization tools. Even though a general methodology cannot be 
set, suitable guidelines for an effective design are outlined in the chapter.  

The tools presented are conceived in a modular structure, in which different 
validation strategies can be applied to cope with specific aspects of sensor 
validation. Subsequently, judgements about the measurement quality, computed 
through different techniques, can be finally merged to perform a global validation 
and fault classification. To this aim, soft computing techniques seem particularly 
suitable. In particular, artificial neural networks are useful tools to design nonlinear 
black-box models, whereas fuzzy logic is particularly suitable to incorporate 
linguistic knowledge about the phenomena involved, to represent both linguistic 
and numerical knowledge in a unified fashion, and to develop expert systems for 
fault diagnosis and classification. Moreover, thanks to their adaptation and learning 
ability, soft computing tools are useful to cope with those cases in which a lack of 
knowledge can be filled through the exploitation of experimental data.  

It is worth noting that a hybrid approach does not exclude the presence of 
traditional fault detection and diagnosis techniques (i.e. techniques based on 
traditional signal processing and system analysis theory), which can be integrated 
as further modules in the validation tool. 

This approach allows the designer to develop or update the various functional 
blocks separately, or to add new blocks if necessary. Moreover, through the use of 
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a modular hybrid approach and soft computing tools, the following achievements 
can be highlighted: 

 Human expertise: it is possible to transfer human knowledge about the 
phenomena involved to automatic validation tools, both for detection and 
classification purposes. 

 Flexibility: if new kinds of fault appear, it is possible to detect and/or 
classify them just by modifying the rule set of fuzzy inference systems, 
training the models to provide additional features (symptoms), or adding 
extra estimation capability via signal processing, fuzzy analysis modules, 
and so on. 

 Adaptation: when nonlinear black-box models (often based on neural 
networks) are used, if model performance worsens for some reason 
(typically because of totally new operational scenarios), it can easily be 
improved by an additional training session, to let the model auto-adapt to 
the new operational reality. Regular training sessions can be planned to 
keep models always at its best performance. 

 High degree of automation: the approach proposed is particularly suitable 
to achieve a high degree of automation, strongly felt in plants where the 
huge amount of variables, the extreme variability of the experiments, the 
fast transients involved, and the primary need for safety are facts which 
strongly limit the ability of traditional methods of fault detection and 
classification. 

 



 

Appendix A 

Description of the Plants 

A.1 Introduction 

In this Appendix, real processes used as case studies in the various book chapters 
are described in some detail. Nevertheless, the tags of the variables involved in the 
following descriptions will be omitted for reasons of confidentiality. Care has been 
taken to keep to descriptions that will be as useful as possible for the reader to 
follow. 

One set of processes described concerns a large refinery where soft sensors 
were required to monitor and control routine production. The final two case studies  
refer to two experimental nuclear fusion plants, where model-based sensor 
validation strategies were required to assess the quality of experimental 
observations made during research experiments. 

A.2 Chimneys of a Refinery 

The atmosphere contains a number of nitrogen oxides. Among these, nitric oxide 
(NO) and nitrogen dioxide (NO2) are collectively given the name NOx. The level of 
nitrogen oxides in general, and of NOx in particular, in the atmosphere has been 
increasing in the last century, mainly due to human activities. Unfortunately, 
nitrogen oxides have a number of negative effects on air quality: they contribute to 
photochemical smog, cause reduction of visibility and acid rain and, last but not 
least important, they have a negative impact on human health. 

The main source of NOx is fossil fuel combustion, caused by human activities 
both in urban and industrial areas. However, it has a short lifetime in the 
atmosphere so that its effect tends to be regional, with greater concentrations in 
urban and industrial areas than in rural ones. 

In past decades, a number of industrialized nations enforced more and more 
restrictive limits on NOx emissions and, as a consequence, sophisticated 
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monitoring strategies for NOx emissions are now a matter of interest.  It is also 
worth noting that they are included in the Kyoto treaty.  

Stationary sources, such as power plants and refineries, significantly contribute 
to the emission of nitrogen oxides by means of chimney fumes produced by the 
combustion of residuals deriving from a number of processes. Hence, industries are 
deeply interested in the development of measurement and/or estimation strategies 
for these pollutants.  

 In particular, Italian laws establish a limit on the monthly average NOx 
emission level, computed on the base of hourly recorded data. Moreover, the 
average value is considered valid if the minimum percentage of acquired hourly 
data is 80% or greater. In the event that  such a percentage is not reached, e.g. due 
to failure of  on-line analyzers used for NOx measurements, Italian laws require the 
use of mathematical models that estimate their level on the basis of  chimney 
inputs.  

Liquid (called fuel oil, FO) and gaseous residuals (called fuel gas, FG), 
produced by a large number of processes, are burnt in a number of reactors and the 
resulting fumes are conveyed to the refinery chimneys, as schematically reported in 
Figure A.1, in order to minimize NOx emission. In fact, it is generally accepted that 
conveying a large number of process residuals into big chimneys has a positive 
effect on the total amount of emitted NOx. 

NOx emissions are measured using an on line analyzer, located as reported in 
Figure A.1, where it is indicated with an arrow. The measuring instrument is a gas 
chromatograph that measures the NOx level with a sampling time Ts = 1 min. 

To have comprehensive information about emitted pollutants, other chemicals 
are also monitored. In particular, measuring instrumentation is also used by the 
refinery to acquire data on: 

 hash; 
 sulfur oxides (SO2); 
 carbon oxide (CO). 

Data produced by the analyzer are collected in a refinery database, marked with 
a corresponding validity flag, and subsequently used to compute the monthly 
average value. Due to the harsh environment, the analyzer is frequently off-line for 
scheduled maintenance and during these periods mathematical models need to be 
used to estimate the NOx level. 
Eighteen fuel gas and fuel oil flows considered in the models described in this 
book represent the inputs to the reactors. 
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Figure A.1. A schematic view of chimneys used in the refinery to reduce the total amount of 
NOx emission in the atmosphere. FG and FO from a number of refinery plants are burnt in 
reactors and the fumes obtained are conveyed to the chimneys. The arrow indicates the 
location of the on-line gas chromatograph used to acquire data on NOx concentration. 

Data considered in the design of soft sensors described here were obtained 
using records produced by the gas chromatograph during a period lasting about six 
months; they were collected in the plant database and used by plant operators for 
the estimation of mean monthly average emission values. 

A.3 Debutanizer Column 

The debutanizer column is part of a desulfuring and naphtha splitter plant, shown 
in Figure A.2, where two gray circles, A1 and A2, can be recognized. They 
represent the location of two gas chromatographs whose data were used to design 
soft sensors, while the two white circles, N1 and N2; indicate the points where soft 
sensors were required. 

In particular, data acquired by the device A2, i.e., the C4 (butane) content in the 
bottom flow to stock have been used in Chapter 6 as a study case for the design of 
the Soft Sensor named N2. 
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Figure A.2. Schematic view of the debutanizer column and connected plants. The location 
of two gas chromatographs (A1 and A2) is shown with two gray circles. N1 and N2 indicate 
the points where soft sensors were required 

In the debutanizer column C3 (propane) and C4 (butane) are removed as 
overheads from the naphtha stream.  

The debutanizer column is required to: 

 ensure sufficient fractionation in the debutanizer;
 maximize the C5 (stabilized gasoline) content in the debutanizer overheads 

(LP gas splitter feed), while respecting the limit enforced by law; 
 minimize the C4 (butane) content in the debutanizer bottoms (Naphtha 

splitter feed).

A detailed scheme of the debutanizer column is shown in Figure A.3.  
A number of sensors, indicated with circles in Figure A.3, are installed on the 

plant to monitor product quality. The subset of sensors relevant to the application 
described, indicated with gray circles in Figure A.3, is listed in Table A.1, together 
with the corresponding description. 
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Figure A.3. Block scheme of the of the debutanizer column. Variables, as used in the case 
study described in Chapter 6, are indicated, along with the corresponding names, with gray 
circles. Open circles indicate variables, measured by instrumentation used by the refinery, 
but not used in the applications described  

Table A.1. List of variables used in the design of soft sensors for the debutanizer column 
described in Chapter 6. Instrumentation location is reported in Figure A.3 

Variable Description 

u1 Top temperature 

u2 Top pressure 

u3 Reflux flow  

u4 Flow  to next process 

u5 6th tray temperature 

u6 Bottom temperature  

u7 Bottom temperature  

 
The C4 content in the debutanizer bottoms, i.e, the Soft Sensor output, is 

measured on the overheads of the deisopentanizer column, as can be observed in 
Figure A.2, where the location of the measuring device is indicated by the gray 
circle named A2. It measures the C4 content in the flow to stock that can all 
assumed to be coming out of the debutanizer bottoms.  



 Appendix A 232 

A.4 Powerformer Unit 

The powerformer unit used as a case study in Chapters 5 and 7 is shown 
schematically in Figure A.4. 

The powerformer unit is designed to produce reformed gasoline with specified 
RON values. The RON value of the reformed gasoline, used to monitor the product 
quality and to control the powerforming process, is measured using a NIR 
analyzer. It receives as input the heavy virgin naphtha (HVN) flow from the 
Naphtha Splitter bottom that, combined with H2, feeds the first of four cascaded 
reactors; furnaces between them are used to obtain the designed temperature 
profile during the catalytic process. 

The output flow is a liquid high in octane number (RON) and rich in aromatic 
composites. Hydrogen, oil gas, and liquefied petroleum gas (LPG) are also 
obtained. The output flow feeds the de-ethanizer and debutanizer distillation 
columns. 

Depending on the input flow, two different RON target values are defined. 
Also, the catalytic reactors need to be periodically regenerated and this phase is 
monitored on the basis of the four reactor temperature profiles. During the 
regeneration phases, the RON value drops below the desired level and flow is 
conveyed to an off-spec tank.  

The process variables used in soft sensor design described in Chapters 5 and 7 
are reported in Table A.2. 

Table A.2. List of variables used in the design of soft sensors for the powerfomer unit 
described in Chapters 5 and 7 

Variable Description 

u1 RX1 Temperature 

u2 RX2 Temperature 

u3 RX3 Temperature 

u4 RX4 Temperature 

u5 Input flow 

u6 Top debutanizer pressure 
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 Figure A.4. A block scheme of the Powerformer Unit 

A.5 Sulfur Recovery Unit 

The sulfur recovery unit (SRU) removes environmental pollutants from acid gas 
streams before they are released into the atmosphere. Furthermore, elemental sulfur 
is recovered as a valuable by-product.  

Acid gases are among the most dangerous air pollution factors and are one of 
the main causes of acid rain. Hydrogen sulfide is particularly dangerous because it 
prevents the cells of the human body from breathing.  

The SRU takes in two kinds of acid gases as input. The first, rich in H2S, called 
MEA gas, comes from the gas washing plants; the second, called SWS gas, rich in 
H2S and NH3 (ammonia), comes from the sour water stripping (SWS) plant. Acid 
gases are burnt in reactors, where H2S is transformed into pure sulfur via a partial 
oxidation reaction with air. Gaseous combustion products from furnaces are 
cooled, causing the generation of liquid sulfur, which is collected in catch basins, 
and then passed through high temperature converters, where a further reaction 
leads to the formation of water vapor and sulfur. The remaining, non converted gas 
(less than 5%), is fed to the Maxisulfur plant for a final conversion phase. The final 
gas stream (tail gas) from the SRU contains residual H2S and SO2.  
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A simplified scheme for the SRU whose data have been used in the book is 
illustrated in Figure A.5. It is made up of a reaction furnace, which is divided into 
two separate combustion chambers.  

The main chamber is fed with MEA gas, and combustion is regulated, in air 
deficiency, by supplying an adequate air flow (AIR_MEA). The secondary 
combustion chamber is mainly fed with SWS gas and a suitable air flow is 
provided (AIR_SWS). 

The combustion of SWS gas occurs in a separate chamber with excess air, in 
order to prevent the formation of ammonium salts in the equipment, thereby giving 
rise to the generation of nitrogen and nitrogen oxides. The gas input flow in the 
secondary chamber is kept constant by adding some MEA gas (MEA_SPILLING) 
when the SWS gas flow is too low. Thus, an adequate air flow is added 
(MEA_SPILLING_AIR). Air flows are controlled by plant operators to guarantee 
a correct stoichiometric ratio in the tail gas. Control is improved by a closed-loop 
algorithm which regulates a further air flow (AIR_MEA_2) on the basis of analysis 
of the tail gas composition. 

Air, which supplies oxygen for the reaction, is an important parameter in the 
conversion of H2S, being responsible for the tail gas composition. In particular, an 
excessive air flow tends to increase the concentration of SO2 with respect to H2S, 
whereas a low air flow leads to the opposite situation.  

On-line analyzers are used to measure the concentration of both hydrogen 
sulfide and sulfur dioxide in the tail gas of each sulfur line. The analyzers adopted 
are able to measure the quantity [H2S]-2[SO2] (where the brackets indicate 
concentration), in order to monitor the performance of the conversion process and 
control the air-to-feed ratio in the SRU with the aim of improving the sulfur 
extraction process.  

Hydrogen sulfide and sulfur dioxide frequently cause damage to sensors, which 
often have to be removed for maintenance. The design of soft sensors able to 
predict H2S and SO2 concentrations is therefore required, as in the case study 
reported in Chapter 5. 

 
Figure A.5. Block scheme of the SRU 

In order to predict the concentration of H2S and SO2 in the tail gas using soft 
sensors, the variables listed in Table A.3 were used. 



  Appendix A 235 

Table A.3. List of variables used in the design of soft sensors for the SRU described in 
Chapter 5 

Variable Description 

u1 gas flow MEA_GAS 

u2 air flow AIR_MEA 

u3 secondary air flow AIR_MEA_2 

u4 gas flow in SWS zone 
(SWS_GAS_TOT=SWS_GAS+MEA_SPILLING) 

u5 air flow in SWS zone 
(AIR_SWS_TOT=AIR_SWS+MEA_SPILLING_AIR) 

A.6 Nuclear Fusion Process: Working Principles of Tokamaks 

In a nuclear fusion reaction, the nuclei of light elements (such as hydrogen) fuse 
together to form heavier ones, producing energy as a by-product. Nuclear fusion 
can be considered, in some sense, as the opposite of nuclear fission, a well-
established technology in which energy is released by splitting heavy nuclei, such 
as uranium, in controlled chain reactions. The drawbacks of nuclear fission are 
related to the risk of nuclear meltdown with a large, uncontrolled release of energy, 
followed by heavy nuclear contamination. Moreover, fission reagents and by-
products are highly radioactive and must be stored, handled, and disposed of with 
special care; in addition, they need to be kept under control for thousands of years. 
Unlike the case of fission, the loss of control in a fusion process naturally leads to 
the end of the reaction, without causing any disastrous nuclear meltdown; reagents 
and by-products can be safely stored and disposed of within a few decades. Fusion 
appears to offer many advantages over any other form of power production. 
Nevertheless, to control fusion for effective power production is an extremely 
challenging activity, involving scientists and engineers from all over the world. At 
present, only reactor prototypes exist, which are not designed to produce energy, 
but only have the aim of investigating various aspects of fusion technology.  

Below, the basic principles underlying nuclear fusion are described, and the 
working principles of one of the most promising reactor prototypes, the tokamak, 
are given (Wesson, 1987). Finally, the measurement systems which are the subject 
of the sensor validation strategies presented in this book are described. 

A.6.1 Nuclear Fusion 

A typical fusion reaction can occur between two heavy isotopes of hydrogen, 
deuterium and tritium: 

 D + T  4He + n + Energy (A.1) 
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Most of the energy released in this reaction is possessed by the high speed neutron, 
indicated in (A.1) with n. The remaining energy is carried by the helium nucleus 
4He, also called alpha-particle. In a fusion reactor, a lithium jacket or blanket 
around the reactor region would slow down the neutrons, converting their energy 
into heat. This heat could be extracted to raise steam for conventional electricity 
generation.  

As deuterium is a common and readily separable component of water, there is a 
virtually inexhaustible supply in the oceans of the world. In contrast, tritium does 
not exist naturally in significant quantities, and must be manufactured. This can be 
done by exploiting chemical reactions between the neutrons formed during the 
fusion reactions and the lithium present in the blanket. As a consequence, although 
the fusion reaction occurs between deuterium and tritium, the consumables will be 
deuterium and lithium, as described by the following reactions, where 6Li and 7Li 
indicate heavier lithium isotopes: 

 6Li + n  T + 4He 
 7Li + n  T + 4He + n (A.2) 

Experts agree that the reserves of lithium available are sufficient to enable 
world electricity generation using fusion reactors, to be maintained at present 
levels for several hundreds of years. 

Under a fusion reaction, hydrogen isotopes change their state, becoming a 
gaseous mixture of ionized particles, which is called plasma. An important 
property of plasma, which makes it very different from a gas, is that it can be 
shaped and moved by magnetic fields. Plasma is often referred to as the fourth 
state of matter. 

Fusion reactions can only take place if the nuclei are brought close to one 
another. However, this requirement is opposed by the fact that all nuclei carry a 
positive electric charge and therefore repel each other. By heating the gaseous fuels 
to very high temperatures, sufficient energy can be provided to the atoms to 
overcome the repulsive force and make them fuse together. In the deuterium–
tritium reaction, temperatures in excess of 108 K are required, several times hotter 
than the center of the sun. Below 108 K, the D–T reaction rate falls off very rapidly: 
to one-tenth at 0.5×108 K, and 20000 times lower at 107 K. Concurrently, the 
plasma must be kept under very high pressure, in order to keep the particles very 
close to each other and increase the frequency at which they collide and 
consequently fuse. 

In an effective reactor, the fusion reaction must obviously be self-sustained, i.e. 
more energy must be produced than that consumed to initiate and maintain the 
reaction. 

A straightforward performance parameter for a reactor is Q, which is the ratio 
between output and consumed power. In a reactor for power production, the 
condition Q>>1 should obviously be achieved. Q=1 has already been achieved in 
experimental plants. In the so-called burning plasma, the high-temperature 
alpha-particles produced by the fusion reaction carry more energy than that 
supplied by external heating. This condition corresponds roughly to Q>5. When 
the alpha-particles can provide sufficient heat to self-sustain the reaction without 
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external sources of heating, the ignition condition is achieved, which corresponds 
to Q= . 

Reactor power output depends on the square of the density of nuclei ni, and on 
the volume of the gas. Power losses must also be kept to a minimum acceptable 
level by holding the hot gases in thermal isolation from their surroundings. The 
effectiveness of this isolation can be measured by the energy confinement time E, 
which is the time taken for the system to cool down once all external forms of 
heating are switched off. Energy confinement time typically takes into account the 
capability of a reactor to achieve a steady-state operational condition. 

In a fusion reactor, the values of density, energy confinement time, and 
temperature must be such that their product ni · E·Ti exceeds 5×1021 m-3·s·keV. 
Typical values for the parameters that must be attained simultaneously for a reactor 
are: 

 Central ion temperature Ti=10–20 keV; 
 Central ion density ni =2.5×1020 m-3; 
 Energy confinement time E=1–2 s. 

Extremely high temperature and density are mandatory elements to obtain a 
self-sustained plasma. At the same time, they are the main causes of instability: the 
more temperature and density increase, the more unstable is the plasma. 
Consequently, the fundamental challenge in fusion technology is to discover 
adequate methods for confining and heating the plasma, without undergoing 
destructive instabilities.  

Under the name of plasma confinement we refer to all the techniques able to 
maintain a plasma within a prescribed volume. Because of its nature, plasma 
cannot be contained in a volume in the usual sense, that is to say, plasma cannot 
physically touch the walls of the volume in which it is created. The interaction with 
the walls, in fact, leads to plasma destruction and, consequently, to an abrupt 
ending of the reaction. 

A plasma can be confined through three different physical principles: 

 Gravitational confinement. This is the way the sun confines plasma around 
itself. Plasma is confined because of extremely high gravitational forces.  

 Inertial confinement. With this technique, hydrogen gases are compressed 
through a controlled implosion. The consequent inertia is able to keep 
particles close enough to make the reaction occur.  

 Magnetic confinement. As the plasma is a mixture of charged (ionised) 
particles, magnetic fields can be exploited to maintain, shape, and control 
plasma. 

Magnetic confinement is one of the most promising confinement techniques. A 
very effective structure in which plasma can be magnetically confined is the 
tokamak. The next section deals with the basic working principles of tokamaks. 
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A.6.2 Tokamak Working Principles 

A.6.2.1 Main Phases of a Fusion Reaction in Tokamaks 
Tokamak is originally a Russian acronym for toroidal chamber and magnetic coil. 
As the name implies, in a tokamak plasma is confined within a toroidal structure, 
by means of suitable magnetic fields generated by electric currents flowing in 
coils. There are usually several coils placed around the plasma, with the purpose of 
generating, shaping, heating plasma, and driving current in the plasma column.  

Several tokamaks have been installed all over the world, each of them with its 
peculiar characteristics. Nevertheless, all of them share the same working 
principles, which are described below.  

All tokamaks are pulsed devices, in which plasma is created and maintained for 
a period of time ranging from a few seconds to a few minutes. However, it has not 
been envisioned yet whether a power reactor will be working in a real steady-state 
or in a pulsed fashion with very long pulses.  

Each experiment on a tokamak, called pulse, or shot, or discharge, consists 
mainly of the same sequence of events. To illustrate the working principles of a 
tokamak pulse, we refer to the JET machine, the largest fusion facility in the world, 
managed by EFDA, located in Culham, Oxfordshire, UK.  

Plasma is confined in a toroidal chamber, the vacuum vessel. The JET vacuum 
vessel is made up of eight identical sectors or octants. Each octant is composed of 
thick rigid box sections and bellows. Into the vacuum vessel, a vacuum condition 
of 10-9 mbar has been achieved through strict manufacturing and cleanliness 
procedures. The vessel is bakable up to 500°C under vacuum, to remove gas and 
impurities adsorbed on the inner wall surface.  

In a tokamak, two main magnetic fields must be distinguished: the toroidal field 
is a magnetic field, acting along the toroidal axis of the vacuum vessel. All the 
magnetic fields acting on a plane which is orthogonal to the toroidal axis of the 
vessel are referred to as poloidal fields.  

The toroidal field is generated by a set of 32 identical, D-shaped, conventional 
copper wound, water-cooled coils. The toroidal coils are wound around the minor 
circumference of the torus and equally spaced around the machine. At the 
beginning of the experiment, prior to plasma formation, the toroidal field is 
brought to a constant value, in order to confine the plasma when it is initially 
created. After the toroidal field has reached a steady value, either hydrogen or 
deuterium is puffed into the vacuum vessel. 

Simultaneously with the gas puffing, the current in the inner poloidal coil 
located at the center of the torus is brought up to its maximum value in preparation 
for pulse initiation. Subsequently, its current is driven down very quickly to 
produce a large electric field able to provide the energy needed for plasma creation. 
As plasma is made up by charged particles free to move, it is actually a conductor. 
Therefore, a transformer effect is established, in which the inner poloidal coil is the 
primary one and the plasma column is the secondary. At JET, this effect is 
enhanced by a transformer iron circuit, made up of eight limbed transformer cores 
surrounding the vessel. The transformer effect causes an electric current to flow 
into the plasma along the toroidal axis (called plasma current, Ip), by means of the 
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opposing flows of oppositely charged particles. The combination of toroidal and 
poloidal fields on the one hand, with the plasma current on the other, produces a 
helical magnetic field which, in principle, is able to keep the plasma away from the 
vessel walls and confined in a toroidal shape. 

The initial plasma heating is produced by the plasma current, as the collisions 
of the plasma electrons and ions make the plasma resistive. Therefore, this form of 
plasma heating is called ohmic heating. The current in the inner poloidal coil is 
now regulated in order to maintain the plasma current at a target flat-top value. 
Unfortunately, the ohmic heating effect is reduced as the electrical resistance of the 
plasma decreases with increasing temperature. Therefore, the plasma must be 
supplied with additional heating by several means. Two common ways of 
achieving this are the injection of neutral particles beams, commonly referred to as 
neutral beam heating or the emission of high-power radiofrequency waves.  

The three phases, during which the plasma current Ip increases, is kept constant, 
and decreases, are often referred to, respectively, as ramp-up, flat-top, and ramp-
down phases of the plasma.  

In addition to the inner poloidal coil, outer poloidal field coils are installed. 
Their task is to control the shape and position of the plasma. The inner poloidal 
coil is actually divided into two sections. The outer sides of the coil are used 
exclusively for driving current into the plasma and for ohmic heating, whereas the 
central portion of the coil works together with the outer coils in shaping and 
controlling the position of the plasma column. Plasma position and shape are, in 
fact, unstable and the helical field arising as a combination of the toroidal field, the 
main poloidal field and the plasma current is not sufficient to reach a stable 
condition. The greatest instability of the plasma is along the vertical direction, and 
control of the vertical position of the plasma is a challenging task. 

A.6.2.2 Plasma–Surface Interactions: Limiter and Divertor Configuration 
A fusion reaction must occur in an environment free from impurities of any kind. 
Since the very first experimental studies on tokamaks, it has been found that a 
vessel in strict vacuum condition is not sufficient to guarantee pure plasma. 
Impurities can arise from the interaction of plasma with components located at the 
interior of the vessel, and they can also be released within the reaction. In 
particular, the helium by-product of the fusion reaction (also called helium ash) can 
interfere with subsequent fusion reactions. All impurities tend to remain in the 
plasma for a finite time before leaking out. When impurities leave the plasma, they 
are still charged and tend to follow magnetic field lines. 

A first strategy for coping with impurities is to limit the plasma confinement 
region by inserting a material structure, called a limiter, into the vacuum vessel. 
The limiter intercepts a fraction of the magnetic lines and creates a separation 
between the plasma and the interior plasma-facing wall of the vessel (also called 
the first wall). As a consequence, the last closed flux surface which confines the 
plasma is kept separated from the first wall. Therefore, the limiter acts by 
protecting the chamber wall from plasma bombardment and helps in defining the 
edge of the plasma. The high energy impurity particles which leave the plasma 
collide with the limiter and can dislodge atomic impurities (i.e. the process of 
sputtering). Particular care must therefore be adopted in the choice of limiter 
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material, and pumping devices (such as cryocondensation pumps) must be installed 
to remove the impurities created by the sputtering process. 

Alternatively, it is possible to exploit the fact that impurities are electrically 
charged and tend to follow a magnetic field line. Consequently, they can be 
removed by designing adequate divertor regions, in which nonhydrogen particles 
can be diverted away from the plasma and subsequently cooled down and pumped 
out from the vacuum vessel. A tokamak endowed with divertors has additional 
coils (i.e. divertor coils), able to create a drop-shaped plasma, in such a way that 
the external magnetic lines are guided away from the main plasma and collide with 
a collector plate. With this magnetic configuration, impurities leave the plasma and 
subsequently strike against the first wall at fixed locations called strike points. 

A.6.2.3 Plasma Disruptions 
Fusion experiments performed in tokamaks are intrinsically unstable. Large-scale 
plasma instabilities, which in most cases are the main causes of an abrupt end of 
the pulse in a tokamak are called plasma disruptions. These are fast events in 
which most of the plasma thermal energy is rapidly lost. Most disruptions, called 
major disruptions, lead to almost instantaneous termination of the plasma current, 
whereas, more rarely, minor disruptions can occur, in which the energy loss is less 
important and the experiment can be recovered.  

Plasma disruptions can be preceded by a loss of vertical stability. This is the 
most frequent case in tokamaks producing vertically elongated (D-shaped) 
plasmas, which are intrinsically unstable along the vertical direction, like that 
produced in the JET apparatus. In this case, the event which triggers the disruption 
is called a vertical displacement event (VDE), and occurs when vertical position 
control is lost. Then, the position instability tends to grow, the plasma strikes the 
internal surface of the vessel, eventually producing a large-scale instability which 
causes the loss of all plasma thermal energy. Consequently, the plasma becomes 
too cold and resistive, the transformer effect induced by the main poloidal field is 
no longer able to sustain the plasma current, and the plasma current is suddenly 
terminated. Disruptions always cause important thermal and mechanical stress on 
the tokamak structure, which must be carefully monitored. In view of this, the JET 
machine has been endowed with a measurement system, called the machine 
diagnostic system (MDS). A subset of MDS sensors, in particular a set of 32 strain 
gauges located at the vertical restraints of the vessel, is the subject of the first 
sensor validation strategy presented earlier in this book. The measurement systems 
and the background needed to develop the related sensor validation strategy is 
introduced in the next section. 
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A.7 Machine Diagnostic System at JET and the Monitoring of 
Mechanical Stresses Under Plasma Disruptions 

A.7.1 The MDS Measurement System 

The MDS is a measurement system developed at JET by the Magnet and Power 
Suppply Division (Marchese et al.,1997). It was installed during the 1995/96 JET 
shutdown and is devoted to performing a large set of mechanical measurements, 
such as forces, displacements, accelerations, and pressures, along the mechanical 
structure of the JET machine. At present, it consists of 512 measurement channels. 
All the installed probes are passive, due to the high neutron fluxes expected during 
operation under active conditions, and the noise induced by the high magnetic 
fields is reduced by means of a carrier at 5 kHz, followed by demodulation and 
filtering. 

The top and bottom main vertical port (MVP) restraints (lockable brakes), 
equipped with 64 strain gauges, support most of the vertical force acting on the 
vacuum vessel during plasma disruptions caused by VDEs. The axial movement of 
the brakes is measured with 32 linear variable resistors (LVRs). Up to 62 LVRs are 
used to monitor a wide set of radial, vertical and tangential movements of vertical 
ports, horizontal ports, and inner walls. 

The lateral restraints of the main horizontal ports (MHPs), recently introduced 
to reduce the vessel’s sideways displacements, are monitored by 16 pressure 
gauges, together with four triaxial accelerometers, with a measurement range of 0 
to 50 g (g=9.81 m/s2), installed at the MHPs of octants, 2, 4, 6, and 8. 

The measured data are sent to a host computer via a dedicated network. 
Measurements are performed at a sampling rate of 2.5 kHz, and are stored, after 
smoothing and filtering, at different rates, according to the different operational 
status of the machine. Three sample ratings are used: 

 Fast (2.5 kHz). This rate is used when either a disruption or a major plasma 
instability or misbehavior occurs. Related data are stored in a database 
called Jet Pulse File (JPF) for about 800 ms. 

 Slow (25 Hz). This rate is used during the active phase of the pulse (from 
ramp-up to ramp-down), lasting about one minute. 

 Continuous (0.25 Hz). This rate is used to evaluate statical properties of the 
experiment. Related data are continuosly stored. 

The MDS data, flowing through a VME bus, are accessible in real time via a 
PC equipped with a double Pentium 300 MHz board, a VME-PCI adapter, and the 
LabViewTM software package. Both thresholding and the algorithm based on 
physical redundancy described in Section 9.9.2 are continuously run on this PC and 
duty officers are warned via e-mail of the occurrence of detected sensor faults.  

On the occurrence of a disruption, the validation algorithms described 
previously do not allow one to validate the vertical stress measurements, performed 
at fast rate by the set of 32 strain gauges installed on the bottom supports of the 
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vacuum vessel. In view of this, the validation system described in Section 9.9.3 
was developed. 

A.7.2 Disruptions and Mechanical Stresses 

With a disruption caused by a VDE, high mechanical and thermal stresses are 
produced on the machine structure (Buzio et al., 1996). Disruption-induced loads 
are characterized by radial and vertical components of several millions of newtons, 
with typical time scales ranging from 20 to 50 ms. Since the installation of 
additional restraining rings (1989), the vessel has become more rigid with respect 
to radial axisymmetric forces and the most important mechanical loads are now 
due essentially to vertical forces. Because of the particular configuration of the 
supports, vertical forces exert a torque around a rotation centre, generating a vessel 
axisymmetric oscillating motion around a centre, called rocking motion, with a 
frequency of 14 Hz. Experts summarize the force history into the following phases 
(Buzio et al., 1996): 

1. initial steady state phase, during pulse flat-top, due to the interaction 
between plasma and the divertor coils; 

2. upward force, due to eddy and halo currents induced by the plasma vertical 
instability; 

3. large downward swing, due to the plasma current quench and to the 
currents induced in the divertor coils;  

4. rocking motion at 14 Hz, caused by the fact that the vertical forces exert a 
torque around a rotation centre located near the root of the main vertical 
ports of the vessel, in the inner side. 

The downwards swing occurring in phase 3 is the most important, with regard to 
the fatigue life of the vessel, considering that the machine is now operating above 
its original design goals. This swing is estimated by computing the so called F-
number. This is a simple nonlinear function of seven typical currents, that are part 
of the settings of the experiments. They are: 

1. The plasma current Ip 
2. The current in the inner poloidal coil, that provides the energy to create the 

plasma by a transformer effect in which the inner poloidal coil is the 
primary and the plasma is the secondary, Ipfx 

3. The current in the plasma shaping circuit (shaping current), multiplied by 
the effective number of turns in the shaping circuit, Nsh Ish 

4. The four divertor coil currents, ID1, ID2, ID3 and ID4.  

A good estimate of the downward swing is obtained by evaluating the F-number 
formula at a time known as STIME, 200 ms before the detected disruption time. 
This choice is adopted in order to avoid considering corrective actions, which are 
performed on the relevant currents by the plasma position control circuit in an 
attempt to recover from the disruption, that actually modifies the natural trend of 
the experiment. Consequently, the currents measured at STIME reflect the effective 
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current values at the disruption more than the current values taken at the actual 
disruption time. For this reason, the input of the neural network described in 
Section 9.9.3 consists of the currents evaluated at STIME.  

A.8 Interferometry-based Measurement System for Plasma 
Density at FTU 

The measurement system described above is useful to investigate the mechanical 
stresses of the vessel. This issue is extremely helpful for engineers, who are 
concerned with keeping the plant in good and safe working condition.  

Physicists, instead, are interested in the study of many aspects of the reactions. 
Many other measurement systems must therefore be developed in order to 
investigate all the physical phenomena involved in the reaction. These kinds of 
measurement systems are called diagnostics (Hutchinson, 1990) in the fusion 
community. However, we prefer not to use this term in this book, as when we refer 
to diagnosis it has a more extensive meaning (see Chapter 9). Diagnostics can be 
used in nuclear fusion for studying problems in five main areas:  

1. Methods of setting up stable plasmas. 
2. Determination of important plasma parameters such as energy, density, 

temperature, and particle confinement time. 
3. Study of additional heating techniques. 
4. Study and control of plasma impurities.  
5. Control of plasma shape and position. 

Plasma density measurement is of fundamental importance. To measure this 
quantity, one of the most widely used techniques is based on laser interferometry. 
Lasers are exploited as good diagnostic tools in plasma studies, as they are 
sufficiently bright and monochromatic to compete with the self-emission of the 
plasma in a narrow band; their use does not require electrodes, probes, or other 
protuberances inside the vessel, and they offer good spatial and temporal 
resolution, due to their natural collimated beams and the short duration of their 
pulses. A laser beam can interact with a plasma producing different modes of 
interactions: scattering, absorption, reflection, refraction and transmission. Many 
measurement systems can be designed and implemented by exploiting each of the 
basic interaction modes.  

In a laser interferometer, the plasma electron density is measured by exploiting 
the change in the refractive index of the laser caused by the presence of the 
electron gas (i.e. the plasma). In a high temperature plasma, the refractive index is 
dominated by the electron contribution, as the ion to electron mass ratio is very 
large. In a plasma without external magnetic field, or collisions, the solution of the 
wave equation gives the following dispersion relation for the wave number k 
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where c is the light speed, 0 is the laser frequency, and pe is the plasma 
frequency, which can be expressed as 
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where e is the electron charge, me is the electron mass, ne the plasma electron 
density and is the vacuum permittivity. Generally 0 >> pe. The refractive 
index, , can be derived from equation (A.3) as 
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where 0 is the laser wavelength. As can clearly be seen from Equation A.5, the 
refractive index of a laser interacting with a plasma is a function of the plasma 
electron density. Because of the change in the reflective index, when a laser beam 
is transmitted through a plasma along a line l, it undergoes a phase shift which 
is function of the refractive index and, consequently, of the plasma electron 
density, as 
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where re is the classical electron radius and z the line coordinate.  
The interferometer installed at FTU is based on the Mach-Zehnder type 

(Wesson, 1987). The laser adopted is based on a deuterium–carbonium–nitrogen 
(DCN) gas. In the interferometer, a probing beam is transmitted through the 
plasma, and the phase change is revealed by comparison with an outside reference 
beam. The measurement of the phase shift determines the integrated density along 
the chord through which the laser interacted with the plasma. The phase difference 
is counted by a high-frequency electronic clock, called fringe counter, and when 
the value 2 , i.e. one fringe, is reached the counter reverts to zero. A typical fault 
generated in an interferometer is fringe skip, which consists of missing whole 
fringes in the fringe counts. This leads to measurements affected by step-like 
discontinuities. After counting, fringes are converted into absolute line densities. In 
order to obtain the radial distribution of the plasma density, several measuring 
channels are used at varying distance from the plasma centre. A mathematical 
inversion procedure (Abel inversion) can then be used to find the density as a 
function of plasma radius. At FTU, a five-channel interferometer has been installed 
to measure plasma electron density. It performs the plasma line density 
measurement along five parallel lines.  
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