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Preface

This book is a revision of my earlier book Signals, Noise, and Active Sensors.
As indicated in the title, the present version is directed toward the fundamental
operations that are carried out in general, for any application, in the processing
of radio-frequency, optical, and acoustic signals, rather than toward any specific
applications themselves. The material is based on notes for a course on this
subject that I taught at the Polytechnic University of New York. None of the
earlier material dealing specifically with radar, sonar, and laser radar, however,
has been omitted.

The technical activity that has come to be known as signal processing, in
fact, originated during World War II with the development of radar and
continues to be influenced by sensing systems applications. Since in radar one
deals with pulsed signals, the early efforts that led to the development of the new
mathematical concepts, analytical schemes, and computational techniques—
necessitated by the problem of detection and extraction of information from
the inevitably weak radar echoes in the presence of random interference—
provide much of the theoretical basis for the digital age. Now, of course, there
are many diverse applications requiring the processing of signals, one of the
most important of which is communications. Also, in addition to radio-
frequency systems, optical and acoustic systems have become equally important
with the development of optical communications, and numerous medical appli-
cations, including ultrasonics, as well as sonar. Physical differences in these
three types of signal waves give rise to different problems in the processing of
these signals, which are dealt with here, as they were in the earlier version.
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1
Introduction—Fundamentals of
Receivers
1.1 Scope and Purpose of the Book
This book has been written for readers with backgrounds in physics, engineering,
or mathematics who wish to learn about the detection and extraction of informa-
tion from radio-frequency (RF), acoustic, or optical signals in the presence of
noise. Noise has been defined by Noah Webster as ‘‘sound without agreeable
musical quality’’ [1]. Here we shall take it to mean random—that is to say,
unpredictable—interfering signals encountered in the reception process, which
cause all values of observations and measurements to become randomly fluctuat-
ing variables. As a result, for all quantities of interest only estimates rather than
deterministic values are possible.

Scientific study of noise probably began in the first half of the twentieth
century along with the invention of vacuum-tube amplifiers and advances in
telephony. Specifically, W. Schottky in 1918 described [2] a form of interference,
termed the ‘‘shot effect,’’ observed in the current of vacuum tubes as a result
of the random emission of electrons from the anode. In 1928, J. B. Johnson
of the Bell Telephone Laboratories demonstrated that another type of noise
observed in electrical circuits was distinct from the shot effect, and, in fact,
arose from the Brownian motion of electrons in electrical components [3]. In
the accompanying paper in the Physical Review [4], Nyquist gave quantitative
theoretical treatment of ‘‘Johnson’’ noise, which has come to be more familiarly
known as thermal, or Gaussian, noise. Given these early efforts to characterize
noise, it remained to determine what to do about it. Work along such lines
progressed steadily through the 1930s, in parallel with work to improve the
quality of electrical communications. With the outbreak of World War II,
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2 Signal Processing Fundamentals and Applications

however, there was a very great and sudden increase in these efforts necessitated
by the development of radar. Even from the very beginning in the development
of radar it was recognized, not for the first time, that the amount of information
that can be obtained from an observation is fundamentally limited by the
random processes affecting it. Therefore, development of new mathematical
concepts, analytical schemes, and computational techniques was necessitated
by the problem of the detection and extraction of information from the inevitably
weak radar echoes in the presence of random interference [5].

It is difficult to overestimate the importance and impact of radar on
modern technological development [6]. Among other things, since in radar one
deals with discrete pulsed signals, these efforts provide much of the theoretical
basis for the modern era of digital signaling and communications. Such concepts,
schemes, formulations, and techniques can be categorized under the general
heading, Signal Processing, and as may be seen in the IEEE Transactions on
Signal Processing, now include a very wide range of fields and specialized activities.
Common to all such activities, however, is the necessity to perform certain
fundamental operations including the detection and transformation of signals
into forms suitable for processing, filtering, extracting information, and so on.
These, including optical and acoustic as well as RF signals, comprise the subjects
of Chapters 1–7 of this book.

The material covered is general in scope, applicable to communication
systems, signaling and sensing systems, and so forth. Making use of this material,
in the remaining chapters we deal with subjects more specific and fundamental
to radar and optical and acoustic sensing systems, for which there is a very large
and continually increasing number of interesting applications for commercial,
scientific, and military purposes. Because of their influence on the origin and
continuing development of this subject and its applications, it is worthwhile
to present a brief history of the origin and evolution of these systems. This
will also serve to provide a framework within which the treatment, on a unified
basis, of three such distinctly different physical entities as RF, optical, and
acoustic signal waves, can be understood; for example, there are major differences
in the noise and interference environments experienced in the reception of
these signals. This will be presented in Section 1.2, which also includes a
description of fundamental receiver components and definitions of commonly
used terms.

The material is organized as follows. As noted, Chapters 1–7 constitute
a text on signal-processing fundamentals. The problems dealt with are those
of detecting and extracting information from signals in the presence of random
interference, which transforms what may originally have been a deterministic
quantity into a random variable. Thus the problem is fundamentally statistical,
requiring statistical methods to be applied. Therefore, Chapters 2 and 3 present,
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respectively, a review of probability and of noise and random processes. The
material is entirely self-contained, but not meant to be a substitute for a
first course in these subjects, which, in addition to some exposure to Fourier
transforms, would be advisable. Chapter 4 deals with the conversion of continu-
ous-time to discrete-time signals, the sampling theorem and the need for
oversampling, and the special problems that arise when digital [e.g., fast Fourier
transform (FFT)] filtering is employed. The relationship between signal duration
and bandwidth is discussed and the analytic-signal formulation is introduced.
Detection of signals in the presence of noise in RF, optical, and acoustic receivers
is dealt with in Chapter 5, by application of statistical decision theory to a binary
channel employing the likelihood ratio test, for which the Bayes, maximum-
likelihood, and Neyman-Pearson decision criteria are each analyzed. The
matched filter is introduced here. Both the Gaussian and Poisson shot-noise
channels are covered. Chapter 6 presents a comprehensive treatment and com-
parison of coherent and noncoherent detection and processing, in which the
important difference between the coherent matched filter and filtering with
amplitude-matching only, and the associated difference in signal-to-noise ratio
(SNR) and performance, is discussed. The necessary analytic expressions are
derived to enable the selection of system parameters to achieve specified levels
of performance in terms of detection and false-alarm probabilities, or bit-error
rates. In particular, the subject of coherent and noncoherent integration is
treated in detail. Chapter 7 deals with parameter estimation, within the context
of generalized statistical estimation theory and the limits imposed by the Cramer-
Rao lower bound on the variance of an estimator. The method of maximum
likelihood is introduced and applied to parameter estimation in the presence
of noise. The formulations that are developed are applied to estimation of the
position in range and angle and the velocity of a target, and also to target
tracking error and error in predicting target position.

Chapter 7 concludes the generalized exposition of signal-processing
fundamentals. Chapter 8 deals with waveform analysis in terms of range and
velocity-resolution capability and the measurement ambiguity inherent in sensor
observations with the use of periodically pulsed waveforms in transmission.
The ambiguity diagram and its properties are discussed, including a generalized
form of the diagram that may be required in sonar applications. The distortion
of the transmitted signal that occurs with scattering from a moving target is
also discussed, together with the differences in these effects for radar and sonar.
Chapter 9 continues this exposition, and introduces the subject of large time-
bandwidth-product waveforms, including linear FM (chirp), hyperbolic FM,
and pseudorandom signals. Chapter 9 is also applicable to communication
systems employing large time-bandwidth waveforms, such as code-division
multiple access (CDMA) modulation commonly employed in cellular wireless.
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Chapter 10 presents a generalized treatment of the material of Chapter 6,
using arbitrary complex waveforms, thereby establishing the completely general
theoretical validity of these results. Finally, Chapter 11 deals with basic system
issues that arise in the design and operation of active and passive sensing systems
and some communication systems. These include beam patterns and gain of
antennas; array antennas and sonar arrays; the radar and sonar equations; and
the search-radar equation and search-related issues, including the effect of false-
alarm probability and the criteria for its specification.

1.2 A Brief History of Sensing Systems, Their Influence on
Signal Processing Development and Applications,
and Receiver Fundamentals

Sensing systems are either active or passive. In active systems a signal is trans-
mitted with the intent that it will be scattered by an object of interest. The
purpose is to derive information about the object on the basis of the received
scattering, which is often referred to as the echo. In radar the signal is some
form of electromagnetic wave in the RF range, hence the name, which is an
acronym for RAdio Detection And Ranging. In sonar the signal is generally
an acoustic wave transmitted in water with frequencies ranging from tens to
thousands of hertz, and in laser radar—the optical sensor to be considered,
sometimes also referred to as ladar or lidar—the signal is an electromagnetic
wave at frequencies beginning at, and extending beyond, the infrared. In contrast
to active systems, passive systems do not transmit a signal, but, for the aforemen-
tioned purpose, ‘‘listen’’ for electromagnetic or acoustic waves emanating from
an object.

Of the three types of active systems, the earliest to be used was sonar,
whose development was initiated during World War I for the purpose of
detecting submarines under the name Allied Submarine Detection Investigation
Committee (ASDIC). The assumption here of propagation in water is not a
necessary restriction. For example, bats employ a very sophisticated form of
sonar to maneuver around obstructions while in flight and to locate prey. Also,
there are numerous medical applications, some that employ acoustic waves
propagating in animal tissue at ultrasonic frequencies (∼1–10 MHz). In these
applications such instruments are essentially ultrasonic sonars that can be used
for diagnostic and other purposes. Their usefulness arises from the relatively
low sound speeds (essentially that of sound in water ∼1,500 m/s), yielding
ultrasonic wavelengths of the order of 10−3–10−4m. This permits the imaging
of the structures in the body that have larger dimensions, which of course
includes most organs. In other applications, the rate of blood flow is measured
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noninvasively by means of the Doppler shift imparted to the acoustic signal
by the motion of the blood. These sensors employ the same signal-processing
techniques used in ordinary sonar, which are dealt with here. The aforemen-
tioned early sonar work, in which Lord Rutherford participated, did not actually
bear fruit until after the war, in the early 1920s, when the first experiments
with operational active submarine-detection systems were actually carried out.
The name sonar, an acronym in obvious parallel to radar, was adopted later
in the American development of the technique during World War II.

The possibility that electromagnetic waves could also be used to detect
the presence of objects—in addition to their use for communication—was
recognized from the beginning of the development of radio early in the twentieth
century and was actually proposed by Marconi in 1922 as a means to detect ships.
During the 1920s American scientists at the U.S. Naval Research Laboratory
proposed the use of an electromagnetic fence consisting of a continuous wave
(CW) transmission across a body of water. On being interrupted by the presence
of a ship this would serve as a detector of ships. Also during this period the
technology of transmitting short RF pulses and observing their echoes was
developed for ionospheric research, primarily in England and in the United
States. By the 1930s, investigation of RF scattering, with a view toward the
development of practical detection systems, was taking place in the United
States and throughout Europe. British radar development was begun in the
mid-1930s explicitly for the purposes of air defense in response to the rapidly
worsening political situation in Europe at the time. It was evidently initiated
by the director of scientific research at the British Air Ministry as a result of
his request that the Radio Research Establishment advise ‘‘. . . on the practicabil-
ity of proposals of the type colloquially called ‘death ray’ ’’ [7]. The idea was
that a sufficiently strong electromagnetic wave could possibly be used to heat
up attacking aircraft to the extent that living tissue onboard would be destroyed
and bombs exploded. That such a weapon in principle is possible has since
been demonstrated with lasers, but at the time it was of course found to be
not feasible. However, it was quickly recognized that if radio waves could not
be used to destroy attacking aircraft, they could be used to detect their presence
at long ranges, long before they were visible optically, at night, and under
conditions of poor visibility. Development proceeded rapidly, owing in no
small part to the experience gained by the development of the aforementioned
pulse techniques for ionospheric work. Also, this effort was unique at the time
in its integration of radar into an overall coordinated, efficient air-defense
system. This, as is well known, was a key element in the victory by the British
in the Battle of Britain.

Although radar development in the United States was initially not as
advanced as in England, with the outbreak of World War II in Europe in 1939
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the U.S. effort was intensified to the extent that relatively high-performance
radars were available by the time of America’s entry into the war 2 years later.
As evidence of this, the aircraft that attacked Pearl Harbor were detected and
tracked by a mobile radar on the island of Oahu while they were still over 100
miles from their destination. Unfortunately, owing to the perceived unlikelihood
of this event, the information provided by the radar was misinterpreted. We
shall see that the a priori probability of an event can be an important quantitative
factor in the interpretation of information concerning the event. Subsequent
to the United States’ entry into the war, radar development was increased
enormously, taking place primarily at the MIT Radiation Laboratory, of which
the MIT Lincoln Laboratory is an outgrowth, and at Bell Telephone Labora-
tories. Significant development also took place at the Service Laboratories,
which emphasized the lower frequency ranges (e.g., < 800 MHz); the MIT
effort was concentrated mostly in the microwave range (roughly 103–104 MHz).

After World War II, sensor development continued, primarily in the
United States, stimulated for the most part by the Cold War environment. In
1946 it was demonstrated for the first time, at Fort Monmouth, New Jersey,
that radar development had progressed to the point where detection of echoes
reflected from the moon was possible; this discovery has ultimately led to the
science of radar astronomy. Another interesting development took place around
the end of the 1950s, when it was discovered that radars operating in the high-
frequency (HF)1 range (∼3–30 MHz, roughly corresponding to the shortwave
radio band) were capable of detecting and tracking targets at very long ranges
(e.g., 2,000 km) by means of reflection of transmissions, and reception of
reflected target echoes, from the Earth’s ionosphere. This discovery, made and
originally developed under great secrecy at the U.S. Naval Research Laboratory,
has led to the technology of over-the-horizon (OTH) radar, which is active
today in military and in other applications. OTH signals scattered from the
ocean surface can be used to provide information about wind velocities at remote
locations, which can be useful in oceanography and in weather prediction. A
very innovative effort in the 1950s that used, and greatly improved, techniques
associated with optical holography led to the development of the side-looking,
or synthetic-aperture radar. In this type of radar a moving platform, such as
an aircraft or a satellite, illuminates an area of land or water and, by means of

1. Other nomenclature for radio/radar frequencies is very high frequency (VHF) at 30–300
MHz and ultra high frequency (UHF) at 300–1,000 MHz. The microwave range and above
is divided into ‘‘bands,’’ initially introduced during World War II for reasons of security.
These are the L band at 1,000–2,000 MHz, the S band at 2,000–4,000 MHz, the C band
at 4,000–8,000 MHz, the X band at 8–12.5 GHz, the Ku band at 12.5–18 GHz, the K
band at 18–26.5 GHz, the Ka band at 26.5–40 GHz, and millimeter waves, which are
greater than 40 GHz.
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appropriate signal-processing techniques, effectively synthesizes a very large
antenna aperture. This technique, which has also been applied in sonar, yields
an angle resolution (see Chapter 11) orders of magnitude greater (better) than
that which could be provided by the physical aperture actually employed. The
improvements in holography that were achieved through the side-looking radar
program enabled a great number of practical applications of optical hologra-
phy—which until that time was for the most part an interesting theoretical
curiosity—to become realizable and commercially available, which continues
today.

The early Cold War interest in the air defense of the continental United
States, for which the first NIKE radar/guided-missile systems were developed,
was, with the demonstration in the late 1950s by the then Soviet Union of
the feasibility of accurate targeting of intercontinental ballistic missiles
(ICBMs), expanded to include defense against ICBMs and submarine-launched
missiles (SLBMs). This led to the development of the ballistic missile early
warning system (BMEWS), which followed the earlier distant early warning
(DEW) line. This is a network of sensors at high latitudes for the purpose of
detecting and tracking possible missile attacks originating from over the north
pole in the eastern hemisphere; the DEW line, also a high-latitude network,
was essentially limited to air defense. OTH radars have been included in
BMEWS.

Because of the extremely high speeds of ballistic missiles—approximately
7 km/second—and the overwhelming number of them that can be deployed,
it would become impossible for radars operated by humans in such applications
to be effective. During this period therefore, which continued at a high level
into the 1970s, there was significant development of digital computer-controlled
sensor operations, particularly as applied to the use of large multifunction array
antennas for simultaneous detection, tracking, and prediction of the positions
of large numbers of vehicles traveling at hypersonic speeds. In addition, there
were significant developments in the design of sophisticated processing tech-
niques for detecting and tracking targets in the presence of junk produced by
breakup after reentry into the Earth’s atmosphere of spent rocket-delivery
systems. Also, scientific capabilities of sensing systems were significantly
advanced by application of these techniques to investigation into the physics
of high-velocity bodies entering the atmosphere. There have been numerous
commercial and scientific applications of this work—for example, in the areas
of satellite-based remote sensing, monitoring of weather conditions and Earth
resources, and air-traffic control.

In the years following World War II there was also significant development
of schemes for processing and extracting information from signals collected by
acoustic systems employing very large underwater acoustic arrays. Chief among
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these systems was SOSUS, which made use of thousands of hydrophones
positioned on the floor of the ocean for the purpose of detecting acoustic
radiation emanating from submarines and tracking their positions. Detection
of signals hundreds, and in some cases thousands, of miles from their origins
and identification of the radiating objects, was possible because of the SOFAR
channel, effectively a natural low-loss acoustic waveguide in the ocean, created
by the physical interdependence of temperature and pressure profiles as functions
of depth. This, however, required the means for dealing with the extremely
rich and complex underwater reverberation environment and the presence of
interfering radiating sources, such as ships, drilling rigs, and so on. For this
purpose, schemes were developed for rejecting signals from all angular directions
other than those associated with objects of interest [8, 9]. These techniques
are currently being employed in cellular wireless for dealing with multipath.
These passive-system efforts were carried out primarily at ATT Bell Telephone
Laboratories. Complimentary signal-processing developments, for active sonar
systems, were carried out at the Columbia University Hudson Laboratories.

With the development of high-power lasers in the 1960s, it was of course
apparent that lasers could also have applications as signal sources in communica-
tions systems and in active sensing systems under conditions of good visibility.
Laser radars are currently being used to measure spatial distributions and concen-
trations of atmospheric constituents, including pollutants. In these cases it is
the wavelength range required for these applications—ranging from the infrared
to the ultraviolet—that makes lasers suitable for the physics of these applications.
Also because of the very short wavelengths, very high angular-measurement
resolution and accuracy can be achieved by relatively small laser systems with
apertures of, say, 5–10 cm, which could be accomplished only with much larger
apertures at radar frequencies (see Chapter 11). With this capability, very
accurate tracking and targeting of objects can be achieved by laser systems
mounted on small platforms such as satellites or aircraft, which is important
for commercial, scientific, and military applications. Also because of the short
wavelengths, very wideband (i.e., in effect, short) pulses are possible, enabling
data rates orders of magnitude greater than those possible in conventional
electrical communications. Wide application of lasers to communication sys-
tems, however, also required the development of the optical-fiber transmission
medium, which of course has been accomplished on a very large scale and
which continues today.

The MIT Radiation Laboratory Series, which documents the radar-
development work carried out at MIT during World War II [10], encompasses
28 volumes—[5] is Volume 24. It is therefore clear that the subject of radar
and sensors in general, as well as communication systems, covers a very wide
range of science and technology. Subjects such as power generation, waveguides,
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transmission characteristics, electrical circuitry, and the like, are of course essen-
tial to any sensing system, or any communication system. Once these parameters
are established, however, the ultimate capability of the system is determined
by the waveforms and signal-detection schemes employed, and by the algorithms
and signal-processing techniques utilized to detect and extract the desired infor-
mation from the inevitably randomly fluctuating observables. In addition to
noise, however, there will also be other forms of interference experienced by
sensing systems, passive as well as active, and by communication systems such
as cellular wireless not employing enclosed, shielded transmission media such
as wire, cable, or optical fiber. Namely, in propagating to and from an object
or location of interest, transmitted, scattered, and radiated signals can experience
random density gradients in the propagation medium as well as reflections
from mountains, buildings, and other obstructions. When the propagation path
includes reflections this can give rise to multipath, which is experienced in
cellular wireless systems and in television, where it is manifested as ghost images.
Multipath is a very important consideration in sonar, as are atmospheric density
gradients for laser radar and optical communications through the atmosphere.
Unwanted reflections in radar are generally termed clutter. In sonar such effects
are termed reverberation, which, in addition to multipath, is a particularly
severe problem because of the possibility of reflections from the ocean bottom
and surface, as well as scattering from shipping and marine life. It could be
argued that, under stationary conditions, such phenomena are not actually
random. However, since the propagation paths will generally not be known a
priori, they must in any case be treated as random.

Also, the scattering or radiating object will in general be moving, and
therefore possibly vibrating, pitching, and tumbling, and this motion imparts
additional random fluctuations to the observables that are experienced in the
reception process. At RFs these effects are referred to as scintillation, and with
lasers they are known as speckle. This phenomenon is particularly severe in
laser radar, since, because of the extremely short wavelengths, very small, even
microscopic, movements of an object can cause violent fluctuations in the
strength of the scattered signal in any given direction. This can be a major
limiting factor on target-tracking accuracy for laser radar. Fluctuations in the
observed signal amplitude, whether due to scintillation, speckle, reverberation,
or propagation conditions, are commonly referred to as fading, a familiar
phenomenon in shortwave, AM, and FM radio.

As indicated, these phenomena vary widely among the systems under
consideration. Depending on the situation they can sometimes be eliminated
or reduced by appropriate measures, but in any case they are highly specialized,
requiring different treatments tailored to the particular system and situation of
interest. On the other hand, the more fundamental question regarding the
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means for dealing with noise can be treated generally, for all systems, if certain
differences are accounted for. These differences arise because of physical differ-
ences in the signal waves employed. In particular, (1) the energy of an optical
photon is greater than that of an RF photon by a factor of about 108, and (2)
the speed c of signal propagation for electromagnetic waves, 3 × 108 m/s,
exceeds that of sound in water by a factor of about 105.

With regard to (1), for any optical signal the number of photons incident
on a detector per unit time is a random variable. Therefore, since optical
receivers essentially count the number of photons that arrive during a given
detection interval, optical signals incorporate a degree of essential randomness
in themselves, which is phenomenologically identical to the aforementioned
randomness in emission of electrons from anodes of vacuum tubes, referred to
as shot noise [2]. Thus, in optical systems shot noise must be considered in
addition to the noise arising from Brownian-motion electron currents in lossy
receiver components. Shot noise, being an inescapable component of the signal,
is fundamentally different from noise due to random currents, which is additive.
Furthermore, shot noise can be the more important consideration in laser radars,
and in optical communications, because there are techniques for effectively
eliminating noise due to random currents in such systems (see Section 3.5).
In addition, photodetectors can be made to be extremely quiet. Thus, in optical
systems, the random photon arrival rate can be the fundamental limiting factor.
In RF systems, the signal of course is also an electromagnetic wave and therefore
also a collection of photons. However, because the RF photon energy is so
small, the number of signal photons arriving per second capable of being
observed in the presence of noise due to random currents must necessarily be
extremely large, and the fluctuations in individual photon-arrival times therefore
become smoothed out and effectively eliminated (see Section 3.4). In RF
systems, therefore, shot noise is not a consideration. In contrast, because the
energy per optical photon is so large, and other forms of noise may be very
weak, the required photon-arrival rate for the power levels employed in practical
laser-radar or optical communication systems can be very low. Hence, the
fluctuations in photon arrival times can be very much in evidence. This is
discussed in greater detail in Section 3.6.

With regard to (2), the formulation of scattering from a moving object
involves approximations expressed in terms of the parameter v /c , where v is
the range rate of the object (i.e., the component of target velocity along the
sensor line of sight) and c the signal propagation speed. For radar and laser
radar, even for targets traveling at orbital escape velocities, approximately
7 km/second, the ratio v /c is very small, about 2 × 10−5. On the other hand,
for sonar systems, even for slow targets, say, with v = 10 knots, we have v /c
of ∼3 × 10−3, which is orders of magnitude larger, and sufficiently large to
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result in important differences in the means used to extract the desired informa-
tion from acoustic as opposed to electromagnetic signals.

A second difference arises because the fractional bandwidth—that is, the
ratio of the signal bandwidth2 to the nominal transmitted signal frequency—
is usually, though not always, quite small in electromagnetic systems, but most
often rather large (i.e., closer to unity) in acoustic systems.

To summarize, a great many factors come into play in the design and
operation of sensing and communication systems. Once various system parame-
ters such as transmitted signal power and power losses in the circuitry have
been established, however, we are primarily concerned with what takes place
in the receiver, specifically with regard to detecting the presence of a signal
and extracting the information conveyed by it in the presence of random
interference. The interference can consist of two components. One component,
which can arise outside the receiver in the propagation and scattering processes,
is highly specific to the type of system, the particular propagating conditions,
and the nature of the target or radiating object, as are the means of ameliorating
its effects. The second component, noise, is more fundamental since it depends
on the basic thermodynamic characteristics of the receiver components and the
statistical laws governing photon emission. For this reason it is possible to deal
with the noise problem in generality, for all systems, provided the aforemen-
tioned differences are taken into account.

A diagram of a receiver system that is representative of that used in
communication and sensing systems is presented in Figure 1.1, together with

Figure 1.1 Diagram of a generic receiver.

2. The frequency range within which most—say, 90%—of the signal energy is contained. There
are a number of such definitions. This will be made more precise in what follows, as needed.
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descriptive material for the purpose of introducing certain common, traditional
nomenclature and concepts. The sketch in Figure 1.1 is presented for tutorial
purposes and should not necessarily be taken as an actual exact diagram of a
modern receiver.

The parts of the system are described as follows.

1. Signal collector and transducer: In RF systems not employing wire or
cable the antenna collects the signal and converts the electromagnetic
wave to currents that drive the front-end amplifier. In sonar the collec-
tor is a hydrophone—an underwater microphone—or an array of
hydrophones by which the incident acoustic signals are converted to
electrical signals. In nonfiber optical systems, the collector is the optical
aperture. In radar and sonar and many communication systems there
is the question of the ‘‘gain’’ of the antenna or the array, which is
discussed in Chapter 11.

2. Front-end amplifier: This stage of amplification is almost always
required in RF systems because the received signal is usually too weak
to overcome the noise of the receiver components that follow, including
the cable from the signal collector to the receiver. In optical systems,
if there is amplification it is achieved by means of photo multipliers.

3. Local oscillator and mixer: A signal at the output of the receiver front
end might typically be of the form a (t ) cos 2p f0 t , where the modula-
tion a (t ) is a function that is slowly varying in time in comparison with
f0. This stage is needed because, among other reasons, the frequency f0
is generally too high for effective implementation of the subsequent
receiver operations. The local-oscillator signal is of the form cos 2p fLO t
and multiplication by the front-end output would in this case yield
1/2a (t ) cos 2p f IF t + 1/2a (t ) cos 2p ( f0 + fLO)t . The signal frequency
f0 is thereby translated down to the more manageable intermediate
frequency (IF) given by f IF = f0 − fLO; the unwanted f0 + fLO
term is rejected by the intermediate frequency stage that follows. This
frequency-translation process is known as heterodyning. Heterodyne
receivers are customary in radio and can also be used in optical systems,
in which the local oscillator is a coherent light source.

In sonar systems the signal frequency is not too high in the sense
just described. However, heterodyning is sometimes employed with
fLO = f0, in which case for the foregoing example the mixer output
is 1/2a (t ) + 1/2a (t ) cos 2p (2f0)t . In this way the signal amplitude
a(t), which in general may be complex, can be recovered directly.

4. Intermediate frequency stage: This stage may include further amplifica-
tion of the frequency-translated output of the mixer if this is necessary.
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In all cases, however, the IF stage includes filtering to reject the
f0 + fLO terms and to reject noise outside the passband of interest, as
defined by the signal bandwidth. This is necessary because the band-
width of the front end can in general be wider than that of the signal.
The intermediate frequency stage is almost always present in radio
and radar receivers, but may not be present in nonheterodyne sonar
and laser-radar receivers.

In all cases, although the signals are real, the observable quantity
can be viewed as a time-varying complex number with information
both in its amplitude and its phase. If the phase information in the
signal is preserved in the process of observation the operation is said
to be coherent. If the phase information in the signal is destroyed or
ignored in the reception process the operation is said to be noncoherent,
and only the magnitude of the signal is observed.

5. Detection stage: In the early days of radio a detector was implicitly a
device with a nonlinear input/output characteristic, such as a rectifier,
that passed only positive (or negative) portions of a signal, thereby
stripping off the audio-frequency amplitude modulation of the trans-
mitted RF carrier. Actually, almost any nonlinear device will do this,
as will other things not designed for the purpose, such as junctions
between components of bed springs, between fillings and teeth, radia-
tor-valve connections, and so forth. These items allow electrical current
to flow across the junction in one direction only. The crystal radio
set operates on this principle, and in the early days of radio in the
United States, before the Federal Communications Commission set
limits on broadcasters’ transmitted power, reports of voices emanating
unaccountably from mattresses, people’s teeth, and wall units were
not uncommon, because the unamplified modulation of the RF signal,
detected in this manner, was often sufficiently powerful to produce an
audible sound wave.

This nomenclature was carried over into the early development of radar,
in which the detector was either a linear rectifier (envelope detector) or a square-
law device, which yielded either the magnitude or the magnitude-squared of
the complex number. Such devices are still in use today, but the detection
process has become much more sophisticated and can include linear phase-
preserving operations, as well as nonlinear ones. Also, all signal-processing
operations were originally performed by circuits consisting of resistors, capaci-
tors, and inductors operating on continuous voltages and currents. Today,
signals are most often sampled and quantized to certain predetermined levels
by analog-to-digital converters, encoded to a sequence of, for example, ones
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and zeros, and all necessary processing steps then carried out on the transformed
discrete-time signal by a computer, often especially designed for the purpose.
Nevertheless, the basic function of what is commonly referred to as detection
has not changed. It is to extract the desired information from the, usually
modified, received signal and to present the information to the user or the
observer.

The final output of the receiver was originally termed the video3 signal
in the early days of radar development because it is at this point that the
information conveyed by the signal can be made available for visual observation
by a human observer in the form of a trace on an oscilloscope. In present-day
systems the observer is, of course, often a computer rather than a human. The
usage however has persisted, and the output of the receiver is commonly referred
to as the video signal, whether it is actually converted to a visual image or not.
In communication systems the receiver output is commonly referred to as the
baseband signal. Both these terms are used, interchangeably, throughout the
text. The mathematical definition of a video or a baseband signal is that its
spectrum (i.e., its Fourier transform) includes dc (i.e., the frequency origin
f = 0). If the detection operation is nonlinear, yielding spurious harmonics,
these must be rejected, along with outputs at the carrier frequency. This is done
by lowpass filtering, which may also include video amplification if necessary. In
contrast to video or baseband signals are carrier signals, whose spectrum is
centered at some carrier frequency and does not include the frequency origin.

In optical systems, the detector is a photosensitive surface that produces
an electrical current in response to the incident signal. With such detectors
there is an option in laser-radar not ordinarily available in radar or sonar.
Because of the extremely short optical wavelength, the angular resolution is
such that closely spaced individual scattering centers on the scattering object
can be resolved, and an optical image of the scattering object can therefore be
formed in much the same way as in the eye. This is accomplished by employing
a mosaic of discrete independent sensor elements—which are usually charge-
coupled devices (CCDs)—in the photodetection plane, the dimensions of each
element are matched to the angular resolution width of the system. These
elements are termed pixels.

3. There was sometimes also an audio signal, in which the receiver output was converted to
audible tones conveyed to the operator by a headset.



2
Review of Probability

2.1 Bernoulli Trials—The Binomial Distribution

An experiment with two possible outcomes is performed in which a certain
event either does occur (a success) or does not occur (a failure). The probabilities
of success and failure on any given trial are respectively, p and q = 1 − p . If
n independent trials are performed, there are

Sn
kD =

n !
k !(n − k )!

(2.1)

possible ways for k successes to occur, and the probability of k successes in n
trials P (k , n ) is

P (k , n ) = Sn
kD pk(1 − p )n−k (2.2)

The binomial theorem

(a + b )n = ∑
n

k=0
Sn

kDanbn−k (2.3)

yields the proper normalization

15
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( p + q )n = 1 = ∑
n

k=0
Sn

kD pk(1 − p )n−k (2.4)

and (2.2) is called the binomial distribution.
In dealing with the subject of probability we speak of a random variable

R which is a function whose value depends on the outcome of an experiment.
The statistical properties of R are described by its probability distribution PR (x ),
the probability that the random variable R takes the value x . For a discrete
random variable R with probability distribution PR (k ) the expected value of
an arbitrary function g (R ) of R , is1

E [g (R )] = ∑
k

g (k )PR (k ) (2.5)

and for a continuous random variable

E [g (R )] = E
∞

−∞

g (x )PR (x )dx (2.6)

with PR (k ) ≥ 0, PR (x ) ≥ 0 and, of course,

∑
k

PR (k ) = 1

E
∞

−∞

PR (x )dx = 1

For Bernoulli trials, let the random variable r i equal the number of
successes on the i th trial. Then r i = 1 with probability p and r i = 0 with
probability q . Hence, by (2.5), the expected values of r i and r2

i are

E (r i ) = 1 ? p + 0 ? q = p (2.7)

E (r2
i ) = 12 ? p + 02 ? q = p

1. Letting g (R ) = 1 for a ≤ R ≤ b and zero otherwise yields the probability that a ≤ R ≤ b .
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The number of successes S in n trials is a random variable

S = ∑
n

i=1
r i (2.8)

And the mean l and variance Var (S ) of the binomial distribution are therefore

l = E (S ) = E1∑
n

i=1
r i2 = ∑

n

i=1
E (r i ) = np (2.9)

Var (S ) = E [S − E (s )]2 = n × [E (r2
i ) − [E (r i )]2] = nqp

where we recall that the variance of a random variable can also be expressed
as the expected value of its square minus the square of its expected value.

The standard deviation of a random variable is equal to the square root
of the variance. If an experiment is performed a large number of times we
generally expect that the results will be reasonably centered around some average
value, as determined by the governing probability distribution. There will,
however, always be some spread in the values of the outcomes of the experiment
around the average value, of which the standard deviation is a measure of what
this spread might be expected to be. A measure of the significance of this spread
is given by the ratio of the standard deviation to the mean. Clearly, we would
expect a standard deviation of, say, unity to be quite significant in an experiment
in which the average value was 2, and much less important if the average value
were 1,000. For the binomial distribution the ratio of the standard deviation
to the mean is √q /np . Thus, as the number of trials increases, the mean value
np becomes a better estimate of the outcome, because the relative magnitude
of the fluctuations around the mean become smaller. This ratio is directly
related to the SNR—see Section 5.5.

2.2 The Poisson Distribution

Given the average number of successes l in an experiment consisting of n
Bernoulli trials, with p = l /n , consider the limit of the binomial distribution
as n becomes very large and p becomes very small.

lim
n→ ∞

P (k , n ) = lim
n→ ∞

n !
k !(n − k )! Sl

n D
kS1 −

l
n D

n−k
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But

lim
n→ ∞

n !
k !(n − k )! Sl

n D
k

= lim
n→ ∞

n (n − 1) . . . (n − k + 1)lk

k !nk =
lk

k !

lim
n→ ∞ S1 −

l
n D

−kS1 −
l
n D

n

= e − l

which yields the Poisson distribution

lim
n→ ∞

P (k , n ) =
lk

k !
e − l (2.10)

which gives the probability of k successes in an experiment in which the average
number of successes is l (the Poisson parameter). If the experiment takes place
over a time T with l the average number of times per second that the event
occurs, then

P (k successes in T s) =
(lT )k e − lT

k !
(2.11)

For the Poisson distribution the variance is equal to the mean. That is,
E (k ) = E [k − E (k )]2 (see Exercise 2.2), and the distribution is therefore
completely specified by the single parameter l . Thus, in the foregoing case the
ratio of the standard deviation to the mean, the significance of which is discussed
in Section 2.1, is (lT )1/2 /lT = 1/(lT )1/2.

2.3 The Exponential Distribution

Let l be the probability per second that an event takes place—that is, the
probability that the event takes place in some interval Dt is lDt . Suppose the
event just occurs. To determine how much time will elapse before it occurs
again, write the waiting time t as t = nDt . Then, assuming independent events,
the probability that t seconds will elapse before the event reoccurs is
(1 − lDt )nlDt , and

lim
n→ ∞

(1 − lDt )nlDt = lim
n→ ∞ S1 −

l t
n DnlDt = l e − l t dt (2.12)
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Thus the probability that the second event will take place immediately after
the first, P (t = 0), is ldt as expected, and the probability of longer waiting
times decreases exponentially. The average waiting time is

lE
∞

0

te − l t dt =
1
l

(2.13)

2.4 The Gaussian Distribution

The probability distribution of a Gaussian random variable with mean m and
variance s2 is

PR (x ) =
1

√2ps
e −(x− m )2 /2s 2

(2.14)

and P {a ≤ R ≤ b }, the probability that a ≤ R ≤ b is

P {a ≤ R ≤ b } =
1

s√2pE
b

a

e −(x− m 2) /2s 2
dx (2.15)

This distribution is of particular importance because of the central limit theorem,
which is proved below using characteristic functions. In speaking of R we say
that R is Gaussian, or normal, (m , s ).

2.5 The Rayleigh and Rice Distributions

The Gaussian distribution is very important in signal detection because it
describes the statistics of thermal noise and ambient ocean noise, which is there-
fore referred to as Gaussian noise. The Rayleigh and Rice distributions describe
the statistics of the interference that is produced when the nonlinear operations
frequently implemented in receiver systems are applied to Gaussian noise. These
distributions however are more appropriately discussed in Chapter 3.

2.6 Joint Distributions, Conditional Distributions, and
Bayes’ Theorem

For two random variables R1 and R2, the probability that a ≤ R1 ≤ b and
c ≤ R2 ≤ d is
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P {a ≤ R1 ≤ b and c ≤ R2 ≤ d } = E
b

a

dx E
d

c

dyPR1 R2
(x , y ) (2.16)

where PR1 R2
(x , y ) is the joint distribution of R1 and R2, and

PR1
(x ) = E

∞

−∞

PR1 R2
(x , y )dy (2.17)

If R1 and R2 are independent,

PR1 R2
(x , y ) = PR1

(x )PR2
( y ) (2.18)

Dropping the subscripts R1 and R2 for convenience, the conditional
distribution of x given y is

P (x | y ) =
P (x , y )
P ( y )

(2.19)

which of course is defined only if P ( y ) ≠ 0. If x and y are independent, then
from (2.18) P (x | y ) = P (x ), as expected.

From (2.19), interchanging x and y yields Bayes’ theorem

P ( y |x ) =
P ( y )P (x | y )

P (x )
(2.20)

which is very important in signal-detection theory. Suppose x represents the
statistical information available to a detection system as the result of observations,
and y represents the statistical condition regarding the presence or absence of
a signal pulse. Equation (2.20) gives statistical information regarding the likeli-
hood of a pulse being present or absent, given the observations [a posteriori
conditional distribution P ( y |x )], in terms of the a priori conditional distribution
relating what is likely to be observed when the pulse is or is not present,
P (x | y ), which can be calculated prior to the observations. Equation (2.20) is
the basis for Chapter 5.

With the use of the conditional distribution the expected value of x given
y , E (x | y ), for the discrete and continuous cases is defined as

E (x | y ) = ∑
x

xP (x | y ) (2.21)
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and

E (x | y ) = ExP (x | y )dx

from which E (x ) can be expressed as a weighted average of conditional expecta-
tions. That is, from (2.19) and (2.21)

E (x ) = ∑
y

E (x | y )P ( y ) (2.22)

or

E (x ) = EE (x | y )P ( y )dy

P (x ) can also be expressed as a weighted average of conditional probabilities:

P (x ) = ∑
y

P ( y )P (x | y ) (2.23)

which is sometimes convenient.

2.7 Characteristic Functions

The characteristic function MR ( f ) of a random variable R is

MR ( f ) = E (e −i2pRf ) = E
∞

−∞

PR (x )e −i2p fxdx (2.24)

the Fourier transform of PR (x ).
The characteristic function is useful for generating the moments of PR (x ).

That is, the first moment of PR (x ), E (x ) = m1 is

m1 = E (x ) = S i
2p D dMR ( f )

dx |
f=0

= E
∞

−∞

xPR (x )dx (2.25)

And in general
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S i
2p D

n
d nMR ( f )

df n |
f=0

= E (xn ) = mn (2.26)

We shall often write the first moment as m , leaving out the subscript 1. In
the terms of moments the variance of R is Var (R ) = m2 − m2.

From (2.18), the joint distribution of n independent random variables is
the product of the n distributions:

PR 1 R 2 . . .R n (x1, x y . . . xn ) = PR 1
(x1)PR 2

(x2) . . . PR n (xn ) (2.27)

Suppose R3 = R1 + R2, where R1 and R2 are independent. Then

MR 3
( f ) = E (e −i2fR 3 ) = E (e −i2p fR 1 )E (e −i2p fR 1 ) = MR 1

( f )MR 2
( f )

(2.28)

by (2.27), and the distribution of R3 is2

PR 3
(z ) = E

∞

−∞

MR 3
( f ) e i2p fz df (2.29)

= E
∞

−∞

MR 1
( f )MR 2

( f ) e i2p fz df = E
∞

−∞

PR 1
(x )PR 2

(z − x )dx

Thus, the probability density function of the sum of n independent random
variables is given by n − 1 convolutions of the respective densities.

The characteristic function of a Gaussian random variable is

M R ( f ) = E
∞

−∞

expF−
(x − m )2

2s2 G exp(−i2p f x )
dx

√2ps
(2.30)

By completing the square in the exponent

−
1

2s2 [(x − m )2 + i2p2s2f x ] (2.31)

= −
1

2s2 [(x − m + i2ps2f )2 + i2ps22m f + 4p2s4f 2]

2. See Section 4.5 for the convolution theorem.
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and

MR ( f ) = exp(−i2pm f − 2p2s2f 2) E
∞

−∞

expF−
(x − m + i2ps2f )2

2s2 G dx

√2ps

(2.32)

Since there are no poles enclosed within the contour in Figure 2.1, then

E
∞

−∞

e −(x− m − i2ps 2 f )2 /2s 2 dx

s√2p
= E

∞

−∞

e −(x− m )2 /2s 2 dx

s√2p
= 1

Hence

MR ( f ) = e −i2pm f−2p 2s 2 f 2
(2.33)

From this we observe that the sum of any number of independent Gaussian
random variables remains Gaussian with mean equal to the sum of the means,
and variance equal to the sum of the variances. Also, the convolution of any
number of Gaussian functions is Gaussian, with the same condition holding
on the mean and variance of the result of the convolution. In general, the result
of any linear operation on Gaussian random variables is Gaussian.

Figure 2.1 Elementary contour integration.
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2.8 The Law of Large Numbers

Let Ri denote the value taken by the random variable R on the i th trial of an
experiment, with for all i

E (R ) = E (Ri ) = m (2.34)

Var (R ) = E (R 2
i ) − m2 = s2

Define the random variable Sn as

Sn =
1
n ∑

n

i=1
Ri (2.35)

then

E (Sn ) =
1
n

E1∑
n

i=1
Ri2 =

nm
n

= m (2.36)

that is the law of averages, and it is left as an exercise to show that, if the Ri
are independent,

Var (Sn ) = s2
n =

1

n2 E1∑
n

i=1
Ri2

2

− m2 =
s2

n
(2.37)

Thus, as n becomes very large the random variable Sn —which also can
be thought of as a limit of a sequence of random variables S1, S2, . . . , Sn —
approaches a constant m ; that is, as n → ∞ the variance of sn

2 of Sn approaches
zero. This is the basis for many practical signal-processing schemes in sensing
systems and many other applications.

As a consequence of (2.36) and (2.37), it can be shown that for any e > 0

lim
n→ ∞

P { |Sn − m | } > e = 0 (2.38)

which is the formal statement of the weak law of large numbers.

2.9 The Central Limit Theorem

Let R1, R2, . . . , Rn be n independent identically distributed random variables
with first two moments finite, that is, for all i
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E (Ri ) = E
∞

−∞

xPR i (x )dx = m1 < ∞ (2.39)

E (R 2
i ) = E

∞

−∞

x2PR i (x )dx = m2 < ∞ (2.40)

Define

Sn = ∑
n

i=1
Ri (2.41)

in which case

E (Sn ) = nm (2.42)

Var (Sn ) = n Var(R ) = ns2

Let

Xn =
Sn − nm

√ns
(2.43)

in which

E (Xn ) = 0 (2.44)

Var (Xn ) =
n2s2

n2s2 = 1

The central limit theorem states that as n → ∞ the probability density of
Xn approaches the Gaussian (normal) distribution, with zero mean and unit
variance—that is,

lim
n→ ∞

PX n (x ) →
1

√2p
e −x 2 /2 (2.45)

This is easily proved using characteristic functions. For the random variable
Xn
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MX n ( f ) = EHexpF−i2p f SSn − nm

√ns DGJ
= expSi2p

√nm f

s DEFexpS−i2p f
Sj R j

√nsDG (2.46)

= expSi2p
√nm f

s DHEFexpS−i
2p fR

√ns GJn

= expSi2p
√nm f

s DFMRS f

√nsDG
n

where the last two steps follow from (2.27) and (2.28). Then

log MX n ( f ) = i2p
√nm

s
f + n log MRS f

√nsD (2.47)

Now, by expanding MR ( f /√ns ) in a Taylor series about f = 0 and using
(2.26),

MRS f

√nsD = F1 −
i2pm f

√ns
−

4p2m2

ns2
f 2

2
+ 2S 1

n3/2DG (2.48)

and we can write, by making use of the expansion:

log(1 − x ) = −x −
x2

2
− . . . (2.49)

n log MRS f

√nsD ≈ −i2p
√nm f

s
−

4p2m2

s2
f 2

2
+

4p2m2

2s2 f 2 + 2S 1

n1/2D
(2.50)

Thus,

log MX n ( f ) = −2p2f 2 m2 − m2

s2 = −2p2f 2 + 2S 1

n1/2D (2.51)

since Var (R ) = s2 = m2 − m2 and
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lim
n→ ∞

MX n ( f ) = e −2p 2 f 2
(2.52)

which may be compared with (2.33) with m = 0 and s2 = 1.

2.10 Approximations to the Gaussian Distribution

Both the Poisson and binomial distributions can be approximated by the
Gaussian distribution under appropriate conditions. For the Poisson distribution

MR ( f ) = E (e −i2pRf ) = ∑
∞

k=0
e −l lke −i2p f k

k !
(2.53)

= e −l ∑
∞

k=0

(l e −i2p f )k

k !
= exp[l (e −i2p f − 1)]

The exponent is

l (e −i2p f − 1) = −il sin 2p f − l (1 − cos 2p f ) = −il sin 2p f − 2l sin2 p f
(2.54)

and

MR ( f ) = e −il sin2p f e −2l sin2 p f (2.55)

Now if l is sufficiently large then MR ( f ) is negligible for all but very small
values of sin p f , in which case sin 2p f ∼ 2p f and sin2 p f ∼ p2f 2 and

MR ( f ) ≈ e −i2pl f e −2p 2l f 2
(2.56)

which may be compared with (2.33) with l = m and l = s2. Hence,

e −llk

k !
∼

1

√2pl
expF−

(k − l )2

2l G (2.57)

Note that the Poisson distribution in the approximation by a Gaussian remains
a single-parameter distribution.
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For the binomial distribution

MR ( f ) = E (e −i2p fR ) = ∑
n

k=0
Sn

kD e −i2p f k p k (1 − p )n−k = ( pe −i2p f + q )n

(2.58)

from the binomial theorem (2.3).
Now the term inside the parentheses on the right-hand side of (2.58) is

a complex number re −iu as shown in Figure 2.2 for which, since s2 = nqp

r2 = p2 + q2 + 2pq cos 2p f = p2 + q2 + 2pq (1 − 2 sin2 p f ) (2.59)

= 1 − 4pq sin2 p f = 1 −
4s2

n
sin2 p f

Hence, in the limit as n becomes large

r n = S1 −
4s2 sin2 p f

n Dn /2

∼ e −2s 2 sin2 p f (2.60)

Once again we make the argument that if npq is large then MR ( f ) will be
nonnegligible only for very small values of sin2 p f ∼ p2f 2 and

r n ∼ e −2p 2 s 2 f 2
(2.61)

Figure 2.2 Geometry for (2.59).
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For the phase

u = tan−1 p sin 2p f
q + p cos 2p f

∼ −2p fp (2.62)

for p f << 1. Hence, for large npq , and using m = np

MR ( f ) ≈ r n e inu ≈ e −i2pm f e −2p 2 s 2 f 2
(2.63)

and from (2.9)

P (k , n ) ≈
exp[−(k − np )2/2npq ]

√2pnpq
(2.64)

A summary of the various distributions which have been discussed, and
conditions under which they can be approximated by the Poisson and Gaussian
distributions, is given in Table 2.1.

The question of how large or how small these parameters must be depends
on the application. Certainly, the approximations could be expected to be valid
for, say, n ≥ 100, p ≤ 0.01, np (1 − p ) > 100, and l or lT ≥ 100. But, often,
less stringent conditions may be satisfactory. For example, in laser radar a value
of lT ∼ 5 photons is often sufficient to justify the Gaussian approximation
for the Poisson distribution.

2.11 Functions of a Random Variable

Consider a probability density function (pdf ) PR (x ). Then P {x ≤ R ≤ x +
Dx } = PR (x )dx . Now suppose y = f (x ). Then clearly PR (x )dx = PS ( y )dy

Table 2.1
Approximation to the Gaussian Distribution

Distribution Conditions Approximation

Binomial
n large Poisson with l = np

P (k , n ) = Sn
kDp k q n−k

p small

Binomial np (1 − p ) large Gaussian with m = np , s 2 = npq
Poisson l or lT large Gaussian with m = s 2 = l or lT
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where S = f (R ). That is, with the change of variables y = f (x ) we maintain
P {x ≤ R ≤ x + Dx } = P { y ≤ S ≤ y + Dy }. The transformation of the pdf with
the change in variables is therefore

PS ( y ) =
PR (x )

| dy
dx |

(2.65)

This transformation can be extended to pdfs of arbitrary dimension as
follows. If PR (x1, x2, . . . , xn ) is an n -dimensional pdf and if y1 = y1(x1, x2,
. . . , xn ), y2 = y2(x1, x2, . . . , xn ), . . . . Then as before

PR (x1, x2, . . . , xn )dx1, dx2, . . . , dxn (2.66)

= PS ( y1, y2, . . . , yn )dy1, dy2, . . . , dyn

But with change of variables, the pdfs therefore transform according to

PS ( y1, y2, . . . , yn ) =
PR (x1, x2, . . . , xn )

JS∂y
∂xD

(2.67)

where J (∂y /∂x ) is the Jacobian of the transformation:

JS∂y
∂xD = det1

∂y1
∂x1

∂y2
∂x1

. . .
∂yn
∂x1

A A
∂y1
∂xn

∂y2
∂xn

. . .
∂yn
∂xn

2
where det signifies the determinant.

Exercises for Chapter 2

2.1

Referring to (2.8) show by direct calculation [using (2.2)] that E (S ) = np and
Var(S ) = nqp .
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2.2

Show for the Poisson distribution (2.10) that E (k ) = Var (k ) = l .

2.3

Show using (2.19) and (2.21) that (2.22) reduces to (2.5).

2.4

Prove that the sum of any number of independent Gaussian random variables
is Gaussian, with mean equal to the sum of the means, and variance equal to
the sum of the variances.

2.5

Prove that the convolution of any number of Gaussian functions is Gaussian.

2.6

Show that the Bayes’ theorem can be written

P (x | y ) =
P (x )P ( y |x )

eP (x )P ( y |x )dx

or

P (x | y ) =
P (x )P ( y |x )

Sx P (x )P ( y |x )

2.7

Prove (2.37), that Var (Sn ) = s2/n .

2.8

Prove (2.44), that E (Xn ) = 0 and Var(Xn ) = 1.

2.9

Find the mean and variance of the exponential distribution l e −l t by direct
calculation and by use of the characteristic function.
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2.10

An event has an average rate of occurrence l . Write an expression for the
probability that at the event occurs at least k0 times in T seconds. If l = 10−3

and T = 90 seconds, calculate the probability that the event occurs at least
three times during this interval.

2.11

Show that

EPR (x |z )dx = 1

for the continuous random variable R .

2.12

Show that

P (u , v |w ) = P (u |v, w )P (v |w )

2.13

If R = log S is Gaussian (m , s ), then S is said to be log normal. Show that

PS ( y ) =
1

√2psy
e −(ln y − m )2/2s 2

y ≥ 0

and that the first and second moments are

E (S ) = e m +
1
2 s 2

E (S 2) = e 2m + 2s 2

2.14

Prove the generalization of Bayes’ theorem

P (x i | y j ) =
P (x i )P ( y j |x i )

Sk P (xk )P ( y j |xk )



3
Review of Noise and Random
Processes

3.1 Introduction—Correlation Functions and Power
Spectral Densities

The previous chapter dealt with random variables, which are functions that
assume specific values with certain probabilities depending on the outcome of
an experiment. We now deal with random time functions. A random process
can be thought of as a system which in the course of an experiment produces
one of an ensemble of time functions. With a random process the outcome of
the experiment is a function of time. A random process can therefore be
represented as an ensemble of functions x (t , a ), with a different time function
corresponding to each value of the parameter a which is selected randomly by
the process. A particular outcome x (t , a ) is referred to as a realization of the
random process. For a continuous variable we have a continuous random
process; for a discrete random process the functions are x (k , a ) where k takes
discrete values. As an example of a continuous random process, consider the
family of time functions cos (2p ft + u ) with u uniformly distributed over
(0, 2p ). In this example the parameter a is represented by u, and once the
experiment is performed the outcome is a time function cos (2p ft + u ). On
the other hand, the process can also consist of an ensemble of time functions
that cannot be so described analytically, in which any given realization itself
appears to be random in time, for example, Gaussian noise. As far as the general
definition of a random process is concerned, such distinctions are, of course,
immaterial.

33
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For a random process, in the most general case the mean is of the form

E [x (t , a )] = m (t ) = EPt (a )x (t , a )da (3.1)

That is, for a given value of t the average is taken over all values of x (t , a ) in
the ensemble, and the result can be different for different values of t . Also, the
probability distribution Pt (a ) can vary with t . In what follows, however, we
shall not be concerned with the most general case, but with a subset, stationary
random process. The necessary and sufficient conditions for a process to be
(wide-sense)1 stationary are

1. Time-invariance of the mean:

Ex (t , a )P (a )da = m (3.2)

where m is constant and P (a ) is also independent of time.
2. The autocorrelation function2 E [x (t1, a )x (t2, a )] must be of the

form

E [x (t1, a )x (t2, a )] = Ex (t1, a )x (t2, a )P12(a )da = r (t2 − t1)

(3.3)

The autocorrelation function is a measure of the degree of dependence between
the random variables x (t1, a ) and x (t2, a ) in the sense that if E [x (t1, a )] =
E [x (t2, a )] = 0 and x (t1, a ) and x (t2, a ) are independent, then r (t2 − t1) =
E [x (t1, a )x (t2, a )] = E [x (t1, a )]E [x (t2, a )] = 0. Equation (3.3) states that
for a stationary process the degree of dependence between the random variables
x (t1, a ) and x (t2, a ) depends only on the interval t2 − t1, independent of
the choice of time origin. The joint probability distribution P12(a ) of the
random variables x (t1, a ) and x (t2, a ), again, must be independent of the
specific values of t2 and t1, but can be a function of t2 − t1.

Writing t1 = t , t2 = t + t , one would expect intuitively that as t gets
very large, the two random variables become independent and

lim
t → ∞

E [x (t , a )x (t + t , a )] = E [x (t , a )]E [x (t + t , a )] = m2 (3.4)

This is often the case, but not always.

1. There are also processes that are strictly stationary that we do not deal with here.
2. A cross-correlation function can also be defined; see Exercise 3.17.
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Henceforth we shall drop the notation a and write the realization as x (t ),
with the understanding that E [x (t )x (t + t )] denotes an average over the
ensemble of time functions that make up the process. In addition to the
correlation function obtained by an ensemble average, the time-autocorrelation
function of a random function x (t ) can be defined as

〈x (t )x (t + t ) 〉 = lim
T → ∞

1
T E

T /2

−T /2

x (t )x (t + t )dt (3.5)

In certain cases, ergodic processes, averaging over the ensemble is equivalent
to averaging over time, and in this case, for an ergodic process:

E [x (t )x (t + t )] = E
∞

−∞

x (t , a )x (t + a , a )P (a )da = 〈x (t )x (t + t ) 〉

(3.6)

The power spectral density W ( f ) of a random process is defined as

W ( f ) = lim
T → ∞

EFXT ( f )XT* ( f )
T G (3.7)

where XT ( f ) is the truncated Fourier transform of the realization x (t ):

XT ( f ) = E
T /2

−T /2

x (t ) e −i2p ft dt

and is therefore a random function of f .
By the Wiener-Khinchine theorem (see Exercise 3.4)

W ( f ) = E
∞

−∞

r (t ) e −i2p ft dt (3.8)

where r (t ) is the correlation function

r (t ) = E [x (t )x (t + t )] (3.9)
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For discrete-time signals the autocorrelation function of a stationary
process x (nDt ) is R (m , n ) = E [x ((m + n )Dt )x (nDt )] = R (m ), a function only
of the time separation mDt . The power spectral density S ( f ) is defined as

S ( f ) = lim
N → ∞

EFXN ( f )XN* ( f )
N GDt

where XN ( f ) is the truncated Fourier transform

XN ( f ) = ∑
N /2

n=−N /2
x (nDt ) e −i2p fnDt

and also

S ( f ) = Dt ∑
∞

m=−∞
R (m ) e −i2pmf Dt

with

R (m ) = E
1/2Dt

−1/2Dt

S ( f ) e i2pmf Dt df

As a consequence of the Wiener-Khinchine theorem, the average power
E [x2(t )] can be expressed alternatively as

E [x2(t )] = r (0) = E
∞

−∞

W ( f )df (3.10)

For a linear system with impulse response h (t ) and input y (t ), the output
x (t ) is given by (see Section 4.5)

x (t ) = E
∞

−∞

h (t ) y (t − t )dt

from which it follows that the power spectral density Wy ( f ) of the output
y (t ) is given by (Exercise 3.5)
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Wx ( f ) = |H ( f ) |2Wy ( f ) (3.11)

where the transfer function H ( f ) is

H ( f ) = E
∞

−∞

h (t ) e −i2p ft dt

and Wy ( f ) is the power spectral density of the input. The average power of
x (t ) is (see Exercise 3.5)

E [x2(t )] = E
∞

−∞

Wx ( f )df = E
∞

−∞

|H ( f ) |2Wy ( f )df (3.12)

An important relationship for Gaussian random variables is

E [x (t1)x (t2)x (t3)x (t4)] = E [x (t1)x (t2)]E [x (t3)x (t4)]

+ E [x (t1)x (t3)]E [x (t2)x (t4)] (3.13)

+ E [x (t1)x (t4)]E [x (t2)x (t3)]

For the special case t1 = t2, t3 = t4 = t1 + t , this reduces to

E [x2(t1)x2(t1 + t )] = 2r2(t ) + r2(0) (3.14)

3.2 Types of Noise

The most important types of noise in communications and sensing systems
that can be treated statistically in a systematic way are thermal noise and shot
noise. Thermal noise arises from random currents due to Brownian motion of
electrons in receiver components such as resistors and, in fact, can arise only
in lossy elements—we recall Kirchoff’s comment on black-body radiation, that
good emitters make good absorbers. Because the duration of the elementary
current pulses which make up thermal noise correspond to the time between
collisions of electrons, which is of the order of 10−14 seconds at room tempera-
ture, the power spectral density is flat over a very wide range of frequencies
and said to be white, since, by analogy to light, all frequencies are equally
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represented. This is one of the major results of Nyquist’s theorem, to be
discussed, which also proves that thermal noise depends only on the temperature.

Radar systems and satellite Earth stations are subject to a second kind of
thermal noise, which might be termed ambient noise, that arises because of
the finite temperature of the background viewed by the antenna. The antenna,
approximately in thermal equilibrium with the background, produces thermal
noise proportionately. It is for this reason that Earth stations of communication-
satellite systems, in which the antenna views for the most part a background
of cold space, employ low-noise amplifiers in the front ends. On the other
hand, in the satellites themselves, which are continually viewing the Earth,
which is effectively a 290K black body, there is no point in employing a front
end cooled much below 290K. In sonar there is also ambient noise, which
arises from random pressure waves that are always present. In both radar and
sonar the statistical properties of the ambient noise are essentially the same as
that of thermal noise and in the mathematical treatment that follows we make
no distinction between ambient noise and thermal noise generated in the
receiver.

Shot noise was first observed in vacuum tubes [2], in which the anode
current was found to exhibit fluctuations due to variations in the emission
times of electrons from the cathode. More recently, this effect has become very
important in optical sensing systems since the rate of arrival of photons in a
laser beam also exhibits random fluctuations about a mean value, and, as
mentioned in Chapter 1, the rate of photon arrival in systems of practical
interest can be sufficiently low such that these fluctuations are very much in
evidence. Thus the signal itself incorporates randomness, which is fundamentally
different from the thermal-noise situation in which a random quantity is added
to a signal that may be purely deterministic. The term shot noise refers to the
random fluctuations observed in the electronic currents produced by photode-
tectors as a result of the randomness in the arrival times of photons on the
detector surface. These fluctuations are dependent only on the statistics of
emission of electrons from the photodetector and are independent of tempera-
ture. Although optical systems are subject both to thermal as well as shot noise,
the latter can be the dominant consideration, as will be seen in the discussion
of optical heterodyne detection. Laser radar is also subject to a form of ambient
noise that is more appropriately discussed in Chapter 5.

Other types of noise, which will not be considered further, are flicker noise,
where W ( f ) ~ 1/f , which is a problem at low frequencies in semiconductors and
which is observed in many various phenomena; impulse noise, short, randomly
occurring spikes that are often man-made; and quantization noise, which occurs
when a continuous time waveform is approximated by a predetermined, finite,
discrete number of voltage or current levels. The quantized signal can be viewed
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as the original continuous function plus quantization noise, which represents
the uncertainty regarding the extent to which the quantized levels actually
correspond to the original continuous values. Conversion of continuous to
discrete-time signals is accomplished by means of analog-to-digital (A/D) con-
verters, which divide the full dynamic range of the signal of interest into some
number m of quantized levels, usually expressed as m = 2n. In this case, the
signal-to-quantization-noise ratio is nominally 3 + 6n dB (e.g., 99 dB for
n = 16), and quantization noise can therefore be eliminated from consideration
if n is large enough.

3.3 Power Spectral Density of Thermal Noise—Nyquist’s
Theorem

The power spectral density for thermal noise was derived by Nyquist in 1928
[4] by treating a conductor connecting two resistors in thermal equilibrium
with their surroundings as a one-dimensional black body (Figure 3.1). Each
resistor generates random currents, and in equilibrium the power generated by
each resistor is equal to the power absorbed. We wish to find an expression
for the power generated by each resistor as a function of frequency.

Recalling the approach used in black-body radiation, the fundamental
mode of vibration in the conductor has wavelength l = 2L and frequency
f = v /2L where v is the velocity of propagation. Higher-order modes have
frequencies nv /2L , n = 2, 3, . . . ; so for large L the number of modes Dn in
a band D f is Dn = (2L /v )D f . Now from the Planck radiation law, the number
of photons per mode of vibration is

1

e hf /kT − 1
≈

kT
hf

(3.15)

Figure 3.1 Diagram for Nyquist’s theorem.
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where h is Planck’s constant (6.62 × 10−27 erg-second) and k is Boltzmann’s
constant (1.38 × 10−16 erg/degree). The approximation in (3.15) holds for
f < 1013 Hz—below infrared frequencies. Since each photon has energy hf ,
the total energy in D f is (2kTL /v )D f , the total energy per unit length is
(2kT /v )D f , and the amount of energy crossing any point per second in either
direction—that is, the power produced by either resistor—is kTD f . Each combi-
nation of thermal-current-generator-resistor can be thought of as a voltage
source V in series with R , each producing a current I = V /2R , from which
V 2D f = 4kTRD f .

Now consider the situation shown in Figure 3.2 where the resistor on
the left is a constant at all frequencies and on the right there is a general
frequency-dependent complex impedance. The power delivered to R ( f ) by
the equivalent voltage source in series with R is

V 2R ( f )

[R + R ( f )]2 + X 2( f )
(3.16)

and for the equivalent voltage source V ( f ) in series with R ( f ) the power
dissipated in R is

V 2( f )R

(R + R ( f ))2 + X 2( f )
(3.17)

But in equilibrium the relationship V 2( f )R = V 2R ( f ) must hold, and therefore

V 2( f )D f = 4kTR ( f )D f (3.18)

Figure 3.2 Transmission line terminated with complex impedance.
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That is, the power that would be dissipated in a 1-ohm resistor in band D f
resulting from random thermal currents generated in a frequency-dependent
resistor R ( f ) is 4kTR ( f )D f ; a function only of temperature and R ( f ). This
is known as (one of) Nyquist’s theorem(s).

In most cases of practical interest there will be conjugate matching condi-
tions as shown in Figure 3.3 where the left side might represent a radar or
satellite Earth station antenna with equilibrium temperature T and the right
side the input impedance of the receiver system, which is conjugate-matched
to the antenna impedance for maximum signal-power transfer. In this case the
noise power dissipated in R ( f ), that is, the noise power at the input to the
front-end amplifier, is

V 2( f )D f
4R ( f )

= kTD f (3.19)

and by (3.12) the power spectral density for thermal noise is simply kT,
a constant, and therefore flat over the frequency range of interest. We also
define the two-sided power spectral density, kT /2, for dealing with negative
frequencies that arise in Fourier analysis. In this case the noise power is
1
2 kT × 2D f = kTD f , as before.

3.4 Power Spectral Density of Shot Noise3

In deriving the power spectral density for shot noise let us consider a stream
of electrons, the effect of which is observed at the output of a unity-gain filter

Figure 3.3 Transmission line terminated with conjugate match.

3. This and the following sections make use of a number of results in Sections 4.3 and 4.5,
which are self-contained and can be read out of sequence.
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(see Section 4.5) with real impulse response h (t ) (see Figure 3.4). Each electron
acts as an impulse on the filter, producing an output current i (t ) consisting
of a sum of pulses

i (t ) = q ∑
N

m=1
h (t − tm ) (3.20)

where tm are the random arrival times of the electrons at the filter, corresponding
to the arrival times of photons at the detector, and eh (t )dt = 1 so that each
current pulse h (t ) accounts for one unit q of electron charge. The current i (t )
in (3.20) is defined with N a very large integer. The duration of each current
pulse will be ∼1/B where B is the bandwidth of the filter h (t ) (see Section
4.3). As discussed further in Chapter 5, shot noise is described by Poisson
statistics. Referring to (2.11), if l is the average number of electrons arriving
per sec, then t = 1/l is the average time between arrivals. The situation illustrated
in Figure 3.4 is for B >> 1/t , thereby enabling individual current pulses to
be resolved in time. If B << 1/t , it is clear that there would be a great deal
of overlap between successive pulses and the output would be smooth.

The shot-noise power spectral density will be derived by considering the
mean-square current 〈 i 2(t ) 〉 , which is the average power dissipated in a 1-ohm
resistor. Using (3.20), this is

Figure 3.4 Shot-noise model.
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〈 i 2(t ) 〉 = lim
T→ ∞

1
T E

T /2

−T /2

i 2(t )dt = lim
T→ ∞

q2 ∑
n

∑
m

1
T E

T /2

−T /2

h (t − tm )h (t − tn )dt

(3.21)

Let

H ( f ) = E
∞

−∞

h (t ) e −i2p ft dt

and

〈 i 2 〉 = lim
T→ ∞

q2 ∑
n

∑
m

1
T E

T /2

−T /2

dt E
∞

−∞

du E
∞

−∞

dvH (u ) e −i2pu (t− t n )H (v ) e −i2pv (t− t m )

= q2 ∑
n

∑
m

1
T E

∞

−∞

|H ( f ) |2 e −i2p f (t n − t m )df

where we have used

lim
T→ ∞ E

T /2

−T /2

e −i2p t (u+v )dt = d (u + v ) (3.22)

where d (x ) is the Dirac delta function (see Section 4.5) and H (u ) = H *(−u )
since h (t ) is real.

Now, since the time tn required for n electrons to arrive at the filter (or
for n photons to arrive at the focal plane of an optical detector) is given by
tn = n /l , then (tn − tm ) = (n − m )t and

∑
N

n=1
∑
N

m=1
e −i2p f (t n −t m ) = ∑

N

n=1
∑
N

m=1
e −i2p f t (n−m )

By making the change of variable k = n − m this becomes
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∑
0

k=1−N
∑

N+k

n=1
e −i2pkf t + ∑

N−1

k=1
∑
N

n=k+1
e −i2pkf t (3.23)

= N ∑
(N−1)

k=−(N−1)
e −i2pkf t + ∑

0

k=−(N−1)
ke −i2pkf t − ∑

N−1

k=1
ke −i2pkf t

It is left as an exercise (see Exercise 3.18) to show that the summations involving
the factor k vanish in the integration. Hence, by making use of the identity
(see Exercise 3.3)

∑
∞

k=−∞
e −i2pkf t =

1
t ∑

∞

k=−∞
dS f −

k
t D (3.24)

it follows that as N → ∞

q 2 ∑
n

∑
m

1
T E

∞

−∞

|H ( f ) |2 e −i2p f (t n − t m )df (3.25)

= q2 N
T E

∞

−∞

|H ( f ) |2 1
t ∑

k
dS f −

k
t Ddf

= q2 N
T

1
t ∑

k
|H (k /t ) |2

Referring to Figure 3.5, since the bandwidth B of H ( f ) is large in
comparison with 1/t , (3.25) can be written as

q2 N
T

|H (0) |2

t
+ q2 N

T
2
t ∑

Bt̄

k=1
|H (k /t ) |2 (3.26)

∼ q2 N
T

|H (0) |2

t
+ q2 N

T E
B

−B

|H ( f ) |2df

But N /T ∼ 1/t = l is the average number of electron arrivals per second,
|H (0) |2 = 1, and we recall that the two-sided noise bandwidth B of H ( f ) is
defined as
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Figure 3.5 Transfer function for h (t ).

2B =
1

|H (0) |2 E
∞

−∞

|H ( f ) |2df (3.27)

Therefore the first term in (3.26) is

q2 N
T

1
t

|H (0) |2 = q2l2 = I 2
dc (3.28)

where Idc is the dc current ql , and the second term is

q2 N
T E

∞

−∞

|H ( f ) |2df = 2BqIdc

Hence

〈 i 2(t ) 〉 = I 2
dc + 2BqIdc (3.29)

and the shot-noise power in a 1-ohm resistor, the variance of the shot noise
current, is

2BqIdc = 〈 i 2(t ) 〉 − I 2
dc (3.30)
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The two-sided shot-noise power spectral density is therefore (3.12)

qIdc (3.31)

which is white, as it is for thermal noise.
The shot noise becomes more severe as B increases. Suppose B << 1/t .

Then (see Exercise 3.3)

〈 i 2(t ) 〉 = q2 N
T E |H ( f ) |2 1

t ∑
k

dS f −
k
t Ddf (3.32)

= q2 N
T

|H (0) |2

t
= I 2

dc

and the noise term vanishes. This takes place because the bandwidth of H ( f )
is so small that all fluctuations due to random arrival times become smoothed
out.

As in all such cases, the major consideration is the ratio of the standard
deviation to the mean which in this case is (2Bq /Idc)

1/2. Hence, the fluctuations,
effectively, become increasingly smoothed out as the average current increases.

3.5 Shot Noise and Optical Receivers—The Quantum Limit

Although optical systems are subject to thermal noise as well as shot noise, in
coherent optical systems, which employ optical heterodyne detection, it is
possible, if the optical local oscillator power is sufficiently large, to effectively
eliminate the thermal noise, whence the ultimate receiver sensitivity, determined
by the randomness in the production of photoelectrons, can be achieved.

A typical optical heterodyne receiver is illustrated in Figure 3.6. In such
receivers the polarization alignment between the local oscillator and the signal
of interest is a major consideration [11]. That is, it is essential that, after the
beam splitter, the polarization vector of the transmitted signal and the reflected
local oscillator signal be aligned to within a fraction of a wavelength over the
detector surface. Specifically, if the mismatch in angle between the two vectors
is a , we require that D sin a << l where D is the detector-surface width.
Otherwise the interference between the two beams will not take place coherently
over D . For example, taking an extreme case, if D sin a ≈ l , an interference
null will occur somewhere on the detector.

The electronic current at the output of the optical detector is proportional
to the power in the light signal and therefore proportional to the square of the
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total field consisting of signal plus local oscillator. Denote the signal and
local-oscillator optical fields as es cos 2p f s t and eL cos 2p fL t , where the signal
amplitude e s is constant. Then

i = k [e 2
s cos2 2p f st + e 2

L cos2 2p fLt + eLe s cos 2p ( f s + fL)t (3.33)

+ eLe s cos 2p ( f s − fL)t ]

where k is a constant defined below. The detector cannot respond to the optical
frequencies f s, fL and fL + f s which are of the order of 1014 Hz. It therefore
produces current proportional to the mean-square values of these terms. On
the other hand, the IF frequency f IF = f s − fL is generally of the order of
∼107 Hz. Hence (3.33) becomes

i = kS e 2
s

2
+

e 2
L

2
+ eLe s cos 2p f IF tD = idc + i IF (3.34)

= idcF1 +
2eLe s

e 2
s + e 2

L

cos 2p f IF tG ≈ idcF1 +
2e s
eL

cos 2p f IF tG
if, as will be the case, eL >> es. The mean-square output current 〈 i 2

IF 〉 of the
IF amplifier is

〈 i 2
IF 〉 =

2e 2
s

e 2
L

i 2
dc =

2Ps
PL

i 2
dc (3.35)

therefore, where Ps and PL are the optical-signal and local-oscillator power,
respectively.

Now, idc = k (Ps + PL) ≈ kPL and

〈 i 2
IF 〉 =

2Ps
PL

k2P 2
L = 2k2PsPL (3.36)

Hence, the IF current which represents the input signal can, ideally, be increased
to whatever value may be desired by increasing the local-oscillator power.

The noise current in at the output consists of shot noise plus thermal
noise and the mean-square value is, from the foregoing results

〈 i 2
n 〉 = 2qk (Ps + PL)B +

kTB
R

∼ 2qPLkB +
kTB

R
(3.37)
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where R is the effective load resistance and T the effective noise temperature,
which includes the amplifier noise temperature—to be discussed below. The
SNR can therefore be defined in this case as

SNR =
2k2PsPL

2qkPLB +
kTB

R

(3.38)

and if the local-oscillator power is made sufficiently large—typically on the
order of milliwatts—the shot-noise term dominates and (3.38) becomes

SNR =
kPs
qB

(3.39)

If Np is the number of photons per second arriving at a detector and Ne
is the number of electrons produced, the quantity k is defined by the relationship

i = qNe = khnNp

where h is Planck’s constant and n the optical frequency. Hence

k =
qh
hn

where h = Ne /Np is the quantum efficiency of the detector. Equation (3.39)
thus becomes

SNR =
hPs
hnB

(3.40)

and the detection system is said to be quantum-limited.
Since Ps = Nphn , (3.40) becomes hN̂p where N̂p is the total number of

photons in the signal, because 1/B is the nominal signal duration. Thus the
minimum signal power (Ps)min—or equivalently the minimum number of
photons (N̂p)min—required to produce a value of SNR equal to unity is

(Ps)min =
hnB

h
(3.41)

(N̂p)min =
1
h
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being dependent only on the quantum efficiency of the detector when thermal
noise is effectively eliminated.

For purposes of this illustration, in which the signal amplitude es is
constant—as is therefore also Ps—the quantity in (3.40) is usually termed
carried-to-noise ratio (CNR) rather than SNR, since in an actual application
the signal amplitude could be fluctuating as described in Chapter 1. Equation
(3.40), however, is actually valid in either case for a heterodyne receiver, except
that if es and therefore Ps exhibit random fluctuations, then SNR becomes a
random variable [12].

Since the shot-noise fluctuations are inherent in the signal itself, (3.41)
represents the fundamental limit on the weakest signal that an optical sensor
is capable of detecting, and the ultimate sensitivity of optical sensors is achieved
using heterodyne receivers. There is, however, another feature of such receivers.
Let the signal and local-oscillator time functions be written as es cos (2p f s t +
us) and eL cos (2p fL t + uL), where us is unknown. The IF output is then of
the form cos (2p f IF t + us − uL), and if uL is known then us can be measured
by measuring the phase of the electrical IF signal.

3.6 Noise Statistics—Shot Noise in RF and Optical Systems

By the law of large numbers and a central-limit theorem discussed in Chapter
2 it is clear that thermal noise has Gaussian distribution given by

P (x ) =
1

√2ps
e −x 2 /2s 2

(3.42)

where, assuming a properly matched impedance condition, s2 = kTB. That
is, the observed value of a thermal noise voltage n (t ), for any t , is the sum of
the contributions from a very large number of elementary electronic current
pulses, and by the central limit theorem the numerical value of the random
variable n (t0) for any time t0 therefore has a probability density function given
by (3.42). In terms of the foregoing discussion, we say that n (t ) is a realization
of a Gaussian random process, and thermal noise is referred to as Gaussian
noise.

For shot noise, fundamentally, Poisson statistics applies [13] with the
probability of k events—such as electron emissions and photon arrivals—in T
seconds given by

P (k , T ) =
(lT )ke −lT

k !
(3.43)
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where l is the average number of events per second. For lT sufficiently large,
the Poisson distribution can be approximated by the Gaussian distribution as
discussed in connection with Table 2.1. In either case, because shot noise is
described by a single-parameter distribution, the ratio of the standard deviation
to the mean is 1/√n where n = lT is the number of photons that are received
during an observation interval. This bears directly on the discussion in Chapter
1 concerning the relative importance of shot noise in radio frequency and
optical systems. Since the energy per photon is hn , where n is the carrier
frequency, then the energy E in the signal is: E = nhn , and 1/√n = √hn /E ,
but optical frequencies exceed RFs by a factor of ∼108. Thus, for a given E ,
1/√n for laser radar exceeds that for a microwave radar by a factor of ∼104.
However, we have seen in the preceding section that thermal noise can be
greatly reduced in optical systems by means of coherent operation and, in
addition, optical detectors can be made to be extremely quiet. As a result, it
is meaningful in laser-radar systems to speak of, say, five photons per detection
interval. On the other hand, in microwave radar E /hn might have to be on
the order of 106 in order for the signal to be observable in the presence of
noise due to random currents. Looking ahead to Sections 5.5 and 6.3.1, this
discussion can be summarized by noting that (E /hn )1/2, the square-root of the
number of photons received during an observation interval, is, effectively, the
shot-noise SNR. In laser radar other forms of noise can be made very low, and
since the photon energy is so large, SNRs for other types of noise can be very
large in comparison and shot noise therefore can be the dominant consideration.
On the other hand, in radar, for the power levels required to overcome thermal
noise the shot-noise SNR is so large because of the relatively low energy per
photon, that shot noise is not a consideration.

We now consider the Rayleigh and Rice distributions which were intro-
duced in Chapter 2. Both deal with Gaussian noise at the output of a bandpass
filter. Noise at the output of a bandpass filter has a very different character
from noise at the output of a baseband, or video filter. As seen in Figure 3.7,
baseband noise, which includes the frequency origin f = 0, or dc, appears simply
as a function which varies randomly in time. Bandpass noise, on the other
hand, has the appearance of a random amplitude modulation of a carrier whose
phase also varies randomly in time. Bandpass noise can therefore be represented
as

r (t ) cos (2p f0t + f (t )) = n c(t ) cos 2p f0t + n s(t ) sin 2p f0t (3.44)

The representation for bandpass noise on the right-hand side of (3.44) although
introduced by Rice [14] was, according to Rice, actually first considered by
Einstein and Von Laue in 1911–1915 [15], who showed that nc(t ) and ns(t )
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Figure 3.7 Baseband and bandpass Gaussian noise: (a) wideband baseband noise and (b)
after passage through a narrow bandpass filter.

are Gaussian with the same mean and variance, are independent, and that f (t )
for any value of t is uniformly distributed over (0, 2p ).

The rate at which r (t ) and f (t ) vary in time depends on the bandwidth
B of the bandpass filter. Because in the early days of radar the fractional
bandwidths B /f0 were quite small, that is B << f0, (3.44) has traditionally been
referred to as the ‘‘narrowband’’ representation for Gaussian noise. However,
there is really no need for such a restriction. As has been shown by Viterbi
[16], it is only necessary that, as illustrated in Figure 3.8, the positive (and
negative) bandpass characteristics do not extend below (or above) the frequency
origin. This means that we must have, nominally, f0 ≥ B /2. But since the
duration T of a sinusoidal pulse of bandwidth B is nominally T ∼ 1/B (see
Section 4.3), the restriction translates to Tf0 ≥ 1

2 , or that there be at least 1
2

cycles of the carrier in each pulse. The notion of an amplitude-modulated
carrier essentially loses meaning if there is less than, say, at least one cycle of
carrier in the duration of the signal. Therefore, with the assumption of ampli-
tude-modulated time functions no other restrictions are necessary.

As is discussed in Chapter 5, for certain types of detection schemes the
magnitude r (t ) is of interest, which is also referred to as the envelope of the
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Figure 3.8 Magnitudes of frequency characteristics of bandpass functions.

output of the bandpass filter. Since envelope detection is a nonlinear operation
the result is no longer Gaussian. Let

n (t ) = nc(t ) cos 2p f0t + ns(t ) sin 2p f0t (3.45)

with E [n (t )] = 0, E [n2(t )] = s2.

Then

E [n2(t )] = E [n2
c (t )] cos2 2p f0t + E [n2

s (t )] sin2 2p f0t (3.46)

+ 2E [nc(t )ns(t )] sin 2p f0t cos 2p f0t = s2

But since E [nc(t )] = E [ns(t )] = 0, and nc(t ) and ns(t ) are independent, then
E [nc(t )ns(t )] = 0, and E [n2(t )] = E [n2

c (t )] = E [n2
s (t )] = s2. Now for any

value of t the two independent random variables nc(t ) and ns(t ) can be repre-
sented as taking values on the x and y axes, respectively, in a plane (see Figure
3.9) with x = nc = r cos f and y = ns = r sin f , and dx dy = rdr df . And since
they are independent and Gaussian, then

P (r , f )dr df = P (x , y )dx dy = e −x 2 /2s 2
e −y 2 /2s 2 dx dy

2ps2 (3.47)

= e −r 2 /2s 2 r dr df

2ps2 = P (r )dr P (f )df
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Figure 3.9 In-phase and quadrature representation of noise with and without signal: (a) no
signal present and (b) signal present.

which proves that r and f are independent, and

P (r ) =
re −r 2 /2s 2

s2 (3.48)

P (f ) =
1

2p
, 0 ≤ f ≤ 2p

Equation (3.48) is the Rayleigh distribution illustrated in Figure 3.10. Here

E (r ) = √1
2ps , E (r2) = 2s2 and Var(r ) = s2(4 − p )/2 = 0.43s2.

The Rayleigh distribution applies to noise alone. The Rice distribution
applies to the statistics of the envelope of the output of a bandpass filter
consisting of signal plus noise in the form [Figure 3.9(b)]:
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Figure 3.10 The Rayleigh distribution.

s (t ) + n (t ) = A cos (2p f0t + u ) + nc(t ) cos 2p f0t + ns(t ) sin 2p f0t

= (nc(t ) + A cos u ) cos 2p f0t + (ns(t ) − A sin u ) sin 2p f0t
(3.49)

where u is the unknown signal phase. In this case (3.47) becomes

P (r , f )dr df = expF−
(x + A cos u )2

2s2 G expF−
( y − A sin u )2

2s2 G dx dy

2ps2

= expS−
r2 + A2

2s2 D expF−
Ar cos (f + u )

s2 G r dr df

2ps2 (3.50)

and, unlike the Rayleigh distribution, P (r , f ) cannot be factored into
P (r , f ) = P (r ) × P (f ) and r and f and are therefore not independent. In
order to determine P (r ) it is therefore necessary to use

P (r ) = E
2p

0

P (r , f )df = expS−
r2 + A2

2s2 D r

2ps2 E
2p

0

expS−Ar cos f

s2 Ddf

(3.51)
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where u vanishes with change of variables, and by making use of the identity

1
2p E

2p

0

expS−
Ar cos f

s2 Ddf = I0S Ar

s2D (3.52)

where I0(x ) is the zero-order modified Bessel function of the first kind, (3.51)
yields the Rice distribution

P (r ) =
r

s2 expS−
r2 + A2

2s2 D I0S rA

s2D (3.53)

which describes the statistics of the magnitude (or envelope) of the output of
a bandpass filter consisting of sinusoidal signal plus noise.

The Rice distribution has the appearance illustrated in Figure 3.11 and,
in fact, for large SNR A2/2s2, it approaches a Gaussian distribution with
mean A and variance s2. The Rayleigh and Rice distributions will be utilized
extensively in Chapter 6, which deals with coherent and noncoherent detection.

3.7 Noise Figure and Noise Temperature

Nyquist’s theorem shows that thermal noise depends on the system temperature,
and the effective noise temperature of a system is therefore a measure of

Figure 3.11 The Rice distribution.
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the thermal noise produced by the system. Consider Figure 3.12, in which,
conceptually, the noisy amplifier with gain G is replaced by a noiseless amplifier
and a noise source at temperature TA; the input impedance of the amplifier is
R . Then P0 = kTABG and the amplifier noise temperature TA is defined as

TA =
P0

kBG
(3.54)

The noise figure F of an amplifier is related to the noise temperature and
is defined as

F =
(S /N )in
(S /N )out

(3.55)

Noise figure is measured as shown in Figure 3.13. The input is a standard
noise source with power kT0B where B is the noise bandwidth of the amplifier
(3.27) and T0 = 290K. Note that F is independent of the load impedance.

Now since Sout = GS in we have from (3.55)

F =
S in
Sout

Nout
Nin

=
1
G

GNin + Namp

Nin
= 1 +

Namp

GkT0B
(3.56)

Figure 3.12 Model of a noisy amplifier.

Figure 3.13 Measurement of noise figure.
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where from (3.54) Namp = GkTAB . Hence

G (F − 1)kT0B = Namp = GkTA B (3.57)

and

F = 1 +
TA
T0

or (3.58)

TA = T0(F − 1)

Thus a noise figure of 1, or 0 dB, represents an ideal noiseless amplifier.
The situation of general interest is that shown in Figure 3.14, in which

the noise figure and noise temperature of a system consisting of a number of
amplifiers in series is to be determined. Setting B = 1 for convenience yields
N1 = G1kT0 + G1kT1 = G1kT0 + G1kT0(F1 − 1), N2 = G2N1 + G2kT0(F2
− 1), . . . , and it is easily shown using (3.56) that the composite noise figure
of the system is

F123 = F1 +
F2 − 1

G1
+

F3 − 1
G1G2

+ etc. (3.59)

or equivalently the total noise temperature T123 is

T123 = T1 +
T2
G1

+
T3

G1G2
+

T4
G1G2G3

+ etc. (3.60)

From (3.59) and (3.60) the first, front-end, stage of amplification determines
the noisiness of the system, assuming of course that G1 is large enough. Thus,
if the front-end amplifier is of high quality (low value of F ) the amplifiers in
succeeding stages can be of lower quality with negligible system noise degrada-
tion.

Figure 3.14 Noisy amplifiers in series.
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Equation (3.60) represents the noise generated in receiver system compo-
nents. The total system noise temperature is obtained by adding to this, when
applicable, the antenna temperature, which represents ambient background
noise measured at the antenna output terminals—before the front-end ampli-
fier—with a load impedance conjugate matched to the antenna impedance.

3.8 Noise Figure of an Attenuator

Lossy elements can be looked at as noisy amplifiers with gain less than unity.
As remarked above in Section 3.1 only lossy elements contribute noise to the
system.

Consider Figure 3.15 in which the attenuator is in thermal equilibrium
with a heat reservoir at arbitrary temperature TL. The net power incident on
the attenuator is kTL (letting B = 1) and the power in the cavity is kTL/L .
But in thermal equilibrium the power absorbed by the attenuator must be
equal to the power emitted by the attenuator kTA/L , where TA is the effective
noise temperature of the attenuator. Hence,

kTL −
kTL
L

= kTLSL − 1
L D =

kTA
L

(3.61)

or

Figure 3.15 Cavity in thermal equilibrium with heat reservoir at temperature TL .
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TA = TL(L − 1) (3.62)

and the noise temperature of a lossy element is its actual temperature multiplied
by L − 1, and is therefore zero if L = 1.

Now referring to (3.56)

F =
1
G

Nout
Nin

= L1kT0
L

+
kTA
L

kT0 2 = 1 +
TL
T0

(L − 1) (3.63)

where TL is the temperature of the lossy element. If TL = 290K, then F = L .
As an example consider the situation in Figure 3.16 in which the lossy

element is at room temperature, 290K. Referring to (3.59), with G2 = 1/L and
F2 = L ,

F123 = F1 +
(L − 1)

G1
+

L (F3 − 1)
G1

(3.64)

and the lossiness of the attenuator, which might represent the cable from a TV
antenna to the TV set, is effectively reduced by G1. It is for this reason that
TV booster amplifiers are located at the antenna, before the cable. That is,
there is no point in amplifying the noise generated in the transmission path
between the antenna and the set. By using the results of Sections 3.7 and 3.8,
the total noise figure of a receiver system consisting of noisy amplifiers connected
by lossy elements can be calculated.

3.9 Applications—Noise Power Measurements, SNR

The average power of a random process with realization x (t ) is

Pav = lim
T→ ∞

1
T E

T /2

−T /2

x2(t )dt (3.65)

Figure 3.16 Amplifiers connected by lossy transmission line.
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Since all measurements must be of finite duration, then any power measurement
is necessarily a random variable given by

P (T ) =
1
T E

T /2

−T /2

x2(t )dt (3.66)

where the random variable P (T ) is dependent on T. As T → ∞, P (T ) approaches
a constant value given by (3.65). If x (t ) is ergodic, then

E [P (T )] =
1
T E

T /2

−T /2

E [x2(t )]dt = E [x2(t )] (3.67)

= lim
T→ ∞

1
T E

T /2

−T /2

x2(t )dt = Pav

Suppose x (t ) is a realization of thermal noise measured at the output of
a lowpass filter of bandwidth B. The question arises concerning how long the
integration time T must be so that the standard deviation of the random variable
P (T ) is some fraction K of its mean value N0B where N0 is the one-sided
noise power spectral density [see (3.10) and (3.83)]. If K is not sufficiently
small, the measurement will be of little value since the fluctuations in the
random quantity P (T ) will be too large for it to be a good representation of
Pav . To determine this we write

Var [P (T )] =
1

T 2 E E
T /2

−T /2

E
T /2

−T /2

[x2(t1)x2(t2)]dt1dt2 − [E [x2(t )]]2

(3.68)

and using (3.14)

E [x2(t1)x2(t2)] = 2r2(t2 − t1) + [r2(0)]2

This yields

VarP (T ) =
2

T 2 E
T /2

−T /2

E
T /2

−T /2

r2(t2 − t1)dt1dt2 (3.69)
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since r (0) = E [x2(t )]. Now

r (t2 − t1) = E
∞

−∞

W ( f ) e i2p f (t 2 − t 1 ) =
N0
2 E

B

−B

e i2p f (t 2 − t 1 )df (3.70)

=
N0
2

sin 2pB (t2 − t1)
p (t2 − t1)

So

VarP (T ) =
N 2

0

2T 2 E
T /2

−T /2

E
T /2

−T /2

Fsin 2pB (t2 − t1)
p (t2 − t1) G2

dt1dt2 (3.71)

and if T >> 1/B, then to a good approximation (see Exercise 3.4)

Var [P (T )] =
N 2

0
2T E

T /2

−T /2

Ssin 2pBt
pt D2dt ∼

N 2
0 B
T

(3.72)

since

E
∞

−∞

Ssin 2pBt
pt D2dt = 2B

Hence

[VarP (T )]1/2 ≈ SN 2
0 B 2

BT D1/2

=
Pav

√BT
(3.73)

This result is a practical example of (2.37), which shows that the standard
deviation of the sum of n independent random variables goes as ∼1√n . In this
example, the noise, which is band-limited to the range | f | < B, if viewed on
an oscilloscope would exhibit a noise spike roughly every 1/B seconds, which
illustrates the fact that noise samples separated by 1/B seconds are independent.
This is dealt with in some detail in Chapter 5. Thus, in T seconds BT such
spikes would be observed or, equivalently, during the time T there is an average



63Review of Noise and Random Processes

over BT independent random events. Hence, the standard deviation of the
random quantity being averaged becomes reduced by the square root of this
number.

Noise power also can be estimated from spectral measurements. Consider

E
B

−B

|XT ( f ) |2df (3.74)

where

XT ( f ) = E
T /2

−T /2

x (t ) e −i2p ft dt (3.75)

Equation (3.74) can be written as

E
B

−B

E
T /2

−T /2

x (t1) e −i2p ft 1 dt1 E
T /2

−T /2

x (t2) e i2p ft 2 dt2 df

= E
T /2

−T /2

E
T /2

−T /2

x (t1)x (t2) E
B

−B

e −i2p f (t 1 − t 2 )df dt1 dt2 (3.76)

= E
T /2

−T /2

E
T /2

−T /2

x (t1)x (t2)
sin 2pB (t1 − t2)

p (t1 − t2)
dt1 dt2

If BT >> 1, then, since ∼90% of the area under (sin (2pBt )/p t is contained
within the range −1/B ≤ t ≤ 1/B, the area under [sin 2pB (t1 − t2)]/p (t1 − t2)
will be essentially contained within the range −T /2 ≤ (t1, t2) ≤ T /2 for all
values of t1 and t2 except for a narrow border4 of width √2/B. Therefore,
since

E
∞

−∞

sin 2pBt
p t

dt = 1 (3.77)

4. The ratio of excluded area to total integration area T 2 is ∼1/BT, which will be negligible
under these conditions.
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the function [sin 2pB (t1 − t2)]/p (t1 − t2) can under these conditions5 to a
good approximation be treated as the Dirac delta function d (t1 − t2) (see
Section 4.5), and (3.74) becomes

E
B

−B

|XT ( f ) |2df ≈ E
T /2

−T /2

E
T /2

−T /2

x (t1)x (t2)d (t1 − t2)dt1dt2 = E
T /2

−T /2

x2(t )dt

(3.78)

for large BT. Equation (3.78) is a practical extension of Parseval’s theorem to
finite ranges of time and frequency; Parseval’s theorem is

E
∞

−∞

|X ( f ) |2df = E
∞

−∞

|x (t ) |2dt (3.79)

(see Exercise 3.15). Therefore, using (3.66), the average power can be estimated
from

Pav =
1
T E

B

−B

|XT ( f ) |2df (3.80)

which is an approximation to (3.10) with W ( f ) replaced by |XT ( f ) |2/T.
There are a number of useful definitions of SNR, some of which will be

introduced in Chapters 5 and 6. One such definition, the integrated SNR,
(SNR)I, is as follows. Let the output of the lowpass filter discussed above in
connection with (3.68) and the following discussion also contain a signal s (t )
with bandwidth B ′ ≤ B. Then

(SNR)I =

E
B

−B

|S ( f ) |2df

E
B

−B

|X ( f ) |2df

(3.81)

5. Note that it is important that x (t ) be band-limited so that it does not vary appreciably over
time durations of the order of 1/B.
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where S ( f ) is the Fourier transform of s (t ). But by (3.79), (3.78), and (3.66),
this can be written as, assuming BT is sufficiently large,

(SNR)I =
E

TP (T )
(3.82)

where E = e
∞
−∞ s2(t )dt is the signal energy. This can be put into a more familiar

form as follows. For thermal noise, it is customary to denote the (one-sided)
power spectral density kT of (3.19) as

kT = N0 (3.83)

Therefore, if we assume (3.66) to be a sufficiently good approximation to Pav
which, referring to (3.10), is given by

Pav = r (0) = N0B (3.84)

Then (3.82) becomes

(SNR)1 =
E

TPav
=

E
BTN0

(3.85)

The ratio of signal energy to noise spectral density E /N0, which can also be
written as E /kT, is a very important quantity which will be seen to appear
repeatedly throughout the text. Equation (3.85) provides useful scaling between
(SNR)1 and E /N0. Also, if the noise in (SNR)1 is not white, (3.85) defines a
white-noise process equivalent to the noise in (3.81). Note that if |S ( f ) |2 and
|N ( f ) |2 are reasonably flat over the band of interest, then (SNR)1 is, approxi-
mately, just the ratio of the two spectral levels.

3.10 Connections with Statistical Physics

A molecule of a gas is said to possess three ‘‘degrees of freedom,’’ one for each
independent spatial coordinate, and a volume of a gas consisting of N molecules
possesses 3N degrees of freedom. For an ideal gas there are no intermolecular
forces, and therefore no potential energy, and all the energy in the system is
therefore contained in the form of kinetic energy. If the three components of
molecular velocity are vx , vy , and vz , a fundamental result of statistical mechan-
ics, the equipartition theorem, states that
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1
2

mv 2
x =

1
2

mv 2
y =

1
2

mv 2
z =

kT
2

(3.86)

where T is the temperature of the gas, assumed to be in thermal equilibrium,
and k is Boltzmann’s constant. Thus the energy of an ideal gas is stored in the
form of kinetic energy and the energy per degree of freedom is kT /2; the total
energy is of course 3NkT /2.

This result also applies to electric circuits driven by thermal noise, for
which the random motion of the electrons is exactly analogous to the random
motion of gas molecules. In this case, however, with the motion of the charged
particles there arise magnetic as well as electric fields, and consequently stored
electric and magnetic energy, whose equilibrium value is also prescribed by
the equipartition theorem. We shall now prove this, which demonstrates the
consistency of the foregoing results with physical laws.

As illustrated in Figure 3.17, let resistor R at temperature T be in series
with an inductor L . As is discussed in Section 3.2, the resistor can be viewed
as a thermal noise source in series with R , for which the two-sided voltage
spectral density is 2kTR [see (3.18)]. If the random voltage v (t ) produces a
random current i (t ), we can write

v (t ) = L
di (t )

dt
+ Ri (t ) (3.87)

The homogeneous solution is i (t ) = i0 e −Rt /L, where i(0) = i0. To determine
the complete solution let

i (t ) = C (t ) e −Rt /L (3.88)

Figure 3.17 Circuit diagram for addressing the equipartition theorem.
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By substituting (3.88) into (3.87),

C (t ) =
1
L E

t

0

v (t ) e Rt /Ldt + i0 (3.89)

and

i (t ) = i0e −Rt /L +
e −Rt /L

L E
t

0

v (t ) e Rt /Ldt (3.90)

Hence

E [i 2(t )] = i 2
0e −2Rt /L +

e −2Rt /L

L2 E
t

0

dt1 E
t

0

dt2 e (t 1 +t 2)R /LE [v (t1)v (t2)]

(3.91)

Since the voltage power-spectral density is 2kTR , then with the assumption of
white noise (see Exercise 3.16)

E [v (t1)v (t2)] = 2kTRd (t1 − t2)

and

E [i 2(t )] = i 2
0e −2Rt /L + e −2Rt /L 2kTR

L2 E
t

0

e 2Rt 1 /Ldt1 (3.92)

=
kT
L

+ Si 2
0 −

kT
L D e −2Rt /L

But the magnetic energy stored in L is 1
2Li 2 and therefore in equilibrium, as

t → ∞,

1
2

Li 2 =
kT
2

(3.93)

The identical result holds for the stored electrical energy in the circuit capacitance
(see Exercise 3.12).
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Exercises for Chapter 3

3.1

Show that the random process cos (2p ft + u ), with u uniformly distributed
over (0, 2p ) is stationary, but does not satisfy (3.4).

3.2

Show that the process of Exercise 3.1 is ergodic.

3.3

Consider the series d (t ) = S∞
n=−∞ d (t − nT ) where d (t ) is the Dirac delta

function, which has the properties

E
∞

∞

d (t )dt = 1

E
−∞

−∞

f (t − t )d (t )dt = f (t )

The series is a periodic function which therefore can be written as

d (t ) = ∑
n

d (t − nT ) = ∑
n

Cn expS−i2p
nt
T D

where

Cn =
1
T E

T /2

−T /2

d (t ) expSi2p
nt
T Ddt

Show that this leads to the important identity

∑
∞

n=−∞
expS−i2p

nt
T D = T ∑

∞

n=−∞
d (t − nT )
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3.4

Prove the Wiener-Khinchine theorem, (3.8), by using (3.7) and making an
appropriate change of variables in the integral which alters the region of integra-
tion, and letting T → ∞. This exercise also applies to (3.71) and (3.72).

3.5

Prove (3.11) and (3.12). Section 4.5 may be helpful.

3.6

White noise with power spectral density N0 /2 is input to filters with the
following characteristics. What is the output power in each case?



70 Signal Processing Fundamentals and Applications

3.7

Fill in all missing steps in the derivation of Nyquist’s theorem.

3.8

Using the representation on the left-hand side of (3.44), show that if r (t ) and
f (t ) are independent, it then follows that ns(t ) and nc(t ) are independent,
also that E [n2

s (t )] = E [n2
c (t )].

3.9

Verify the sketch of the Rayleigh distribution in Figure 3.8 and the values of
its moments.

3.10

By using the approximation I0(x ) ∼ e x/√2px for large x , show that the Rice
distribution approaches a Gaussian distribution for a large SNR. Show that
this approximation holds in the vicinity of the peak, but not necessarily in the
tails of the distribution.

3.11

Verify (3.59) and (3.60) for three stages.

3.12

A resistor R at temperature T can also be viewed as thermal a current source,
with current spectral density 2kT /R in parallel with a resistor R . Consider the
situation illustrated in the accompanying figure. The random current will give

rise to a mean square equilibrium voltage v2 across C (and R ), and the equilib-

rium value of electric energy stored in C will be 1
2Cv2. Establish the above
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result for the current power spectral density using Nyquist’s theorem and show

that 1
2Cv2 = 1

2kT.

3.13

Let x (t ) be a realization of a random process with derivative defined in the
usual way:

dx (t )
dt

= lim
Dt→0

x (t + Dt ) − x (t )
Dt

Find E [dx (t )/dt ]. Show that the cross-correlation between the function and
its derivative satisfies

EFx (t )
dx (t )

dt G =
dr (t )

dt |
t=0

EFx (t )
d

dt
x (t + t )G =

dr (t )
dt

where r (t ) = E [x (t )x (t + t )] and that the autocorrelation function of the
derivative is

EFdx (t )
dt

dx (t + t )
dt G = −

d 2r (t )

dt2

3.14

Determine which receiver is better, and calculate the output SNR. Assume the
input noise in both cases is 4.5 × 10−14 W. The input SNR is 16.5 dB and
the system bandwidth is 40 MHz (see figure on page 72).

3.15

Prove Parseval’s theorem by direct substitution. Use the representation of the
Dirac delta function of (3.22).

3.16

Show that the autocorrelation function of white noise with two-sided power
spectral density N0 /2 is N0d (t )/2.
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3.17

The cross-correlation function between realizations x (t ) and y (t ) of two different
stationary random processes is: r xy (t ) = E (x (t ) y (t + t )), and the cross spectral
density is

Wxy ( f ) = E
∞

−∞

r xy (t ) e −i2p ft dt

Show that r yx (t ) = r xy (−t ) and Wyx ( f ) = Wxy* ( f ).

3.18

The integrals involving the factor k in (3.23) vanish because for k ≠ 0 the
exponential terms have many cycles over the frequency range B because
Bt >> 1, and positive and negative areas therefore cancel one another in
the integration (stationary phase approximation). Show that this can also be
established in the time domain by expressing |H ( f ) |2 as a product of inverse
Fourier transforms and using (3.22) together with Bt >> 1.





4
Continuous and Discrete-Time Signals

4.1 The Sampling Theorem and Oversampling

Almost all communications, signaling, and sensing systems deal at some point in
the processing path with discrete-time signals obtained by sampling continuous-
time waveforms. For continuous-time signals occupying an effectively finite
bandwidth, the sampling theorem provides the discrete-time representation. As
illustrated in Figure 4.1, let x (t ) be a band-limited function, which might
represent a signal or noise, with Fourier transform

X ( f1) = E
∞

−∞

x (t ) e −i2p f 1 t dt (4.1)

Figure 4.1 Spectrum of a band-limited signal.

75
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which is zero for | f1 | > B. If x (t ) is sampled at a rate 1/Dt , a discrete-time
series of the form x (n Dt ), n = 0, 1, 2, . . . is produced, where x (n Dt ) is given
by

x (n Dt ) = E
∞

−∞

X ( f1) e i2p f 1 n Dt df1 (4.2)

The frequency-domain representation of the sampled discrete-time signal
x (n Dt ) is given by the Fourier transform XD( f ) of x (n Dt ), which is defined
as:

XD( f ) = ∑
∞

n=−∞
x (n Dt ) e −i2pnf Dt = E

∞

−∞

X ( f1) ∑
∞

n=−∞
e −i2pn ( f − f 1 )Dt df1

(4.3)

where we have used (4.2). And by making use of the identity (see Exercise 3.3)

∑
∞

n=−∞
e −i2pn ( f − f 1 )Dt =

1
Dt ∑

∞

n=−∞
dS f − f1 −

n
DtD (4.4)

and substituting (4.4) into (4.3) yields the relationship between the frequency-
domain representations of continuous and discrete-time signals:

XD( f ) =
1
Dt ∑

∞

n=−∞
XS f −

n
DtD (4.5)

where X ( f ) is as defined in (4.1).
As illustrated in Figure 4.2, if 1/Dt > 2B, there will be no overlap between

the repeated spectra; overlap, which occurs if 1/Dt < 2B, is referred to as
aliasing. Therefore, if 1/Dt ≥ 2B, it should be possible to recover x (t ) from
XD( f ) by band-limiting XD( f ) to | f | ≤ B. In mathematical terms,

x (t ) = DtE
B

−B

XD( f ) e i2p ft df (4.6)

And by substituting the first expression on the right-hand side of (4.3) into
(4.6), x (t ) can be represented exactly as
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Figure 4.2 Spectrum of a sampled band-limited signal.

x (t ) = Dt ∑
∞

n=−∞
x (n Dt )3E

B

−B

e +i2p f (t−n Dt )df 4 (4.7)

= Dt ∑
∞

n=−∞
x (n Dt )

sin 2pB (t − n Dt )
p (t − n Dt )

As mentioned above, the minimum sampling rate for (4.7) to hold is the
Nyquist rate 1/Dt = 2B, and with this substitution (4.7) takes a more familiar
form. However, there are advantages to sampling at rates higher than the
Nyquist rate, and also in using interpolation functions other than sin 2pBt /p t ,
both of which are sometimes mandatory.

Equation (4.7) demonstrates that a band-limited continuous-time function
contains considerable redundant information, since it can be completely charac-
terized by and reconstructed from the samples x (n Dt ). For a signal of finite
duration T, we say that the signal can be approximately represented by T /Dt
samples, which is equal to 2BT for sampling at the Nyquist rate. This, however,
is an approximation because strictly band-limited signals must be of infinite
duration, which is reflected in the infinite limits in the summation in (4.7).
More realistically, one can speak of a signal of finite duration T whose energy
is sensibly contained (say, ∼90%) within some frequency range B. For example,
the Fourier transform of a rectangular pulse extending over a duration −T /2
≤ t ≤ T /2 is sin p fT /p f , for which 90% of the signal energy is contained
within the frequency range | f | ≤ 1/T. However, the signal energy, however
small, remains finite over the entire range −∞ ≤ f ≤ ∞ and therefore some
degree of aliasing must occur. Hence there will always be some error in using
the representation of (4.7), and the question arises concerning the accuracy
with which (4.7) can be applied, and the necessary conditions under which
application of (4.7) will be satisfactory.
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As one of the conditions, it is generally necessary to sample at rates higher
than the Nyquist rate 2B.1 Clearly, as is illustrated in Figure 4.3, the amount
of unwanted signal energy in the tails of the neighboring repeated spectra which
falls into the band of interest becomes reduced as the frequency separation
between the repeated spectra increases, and, as seen in (4.5), this can be accom-
plished by increasing the sampling rate. In the limit as Dt → 0 the sampled
discrete-time signal approaches a continuous function and aliasing, of course,
disappears.

One sometimes also employs antialiasing filtering for this purpose. This
amounts to passing the signal through a lowpass filter in order to attenuate
the spectral tails before sampling. Clearly, if the magnitude of the spectral tails
is reduced, the distortion due to aliasing in the filtered signal will be less than
the distortion due to aliasing in the unfiltered signal. This is, of course, possible
only if the information in the spectral tails, which results in high-frequency
fluctuations in the signal time function, can be dispensed with. As noted,
antialiasing filtering must be applied before conversion of the continuous signal
to a discrete-time signal. After sampling, the unwanted spectral tails in the
band of interest cannot be reduced by filtering without also altering the spectrum
of the signal itself. This is also clearly illustrated in Figure 4.3.

In addition to oversampling, the error can also be reduced by selecting
an appropriate interpolation function. Equation (4.7) expresses the fact that
the value of the continuous-time function x (t ) at the interpolation point t is
equal to a two-sided weighted average of the samples x (nDt ) on either side of
t . As illustrated in Figure 4.4, the weights are equal to the values of the
interpolation function at the sampling points when the interpolation function
is positioned with its peak at t . For any finite sampling rate, however, if the
signal is of finite duration, there can be only a finite number of points in the
weighted average, which also contributes to the error. The interpolation func-
tion, however, always has the general form of sin pBt /p t ; that is, there will be a
main lobe with tails on either side which eventually become negligible. There-
fore, as illustrated in Figure 4.5, the representation of (4.7) will be more accurate
for values of t in the central portion of the signal, and will become less accurate
as t moves toward the edges—the points t = 0 and t = T for a signal of duration
T—because the weighted average becomes increasingly one-sided and the num-
ber of points reduced. This is to be expected, since it is at the edges that the
finite duration of the signal is most in evidence, whereas in the center the signal
appears to the interpolation function to be more nearly infinite.

From this discussion it is clear that one wants an interpolation function
whose area is concentrated as much as possible in the vicinity of its main lobe,

1. The Nyquist rate in this case is somewhat arbitrary, being dependent on the criterion used
for the definition of B. This is to be discussed in Section 4.3.
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Figure 4.3 Illustration of aliasing.
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Figure 4.4 The interpolation process.

and with tails that fall off as rapidly as possible, say, as 1/t b where b is as large
as possible. To see how this can be achieved, let us rewrite (4.7) as

x (t ) = ∑
n 2

n=n 1

x (n Dt )g (t − n Dt ) (4.8)

= ∑
n 2

n=n 1

x (n Dt )E
∞

−∞

G ( f ) e i2p f (t−n Dt )dt

where n2 − n1 + 1 = N is the number of points in the weighted average, being
determined by the length of the interpolation function, and

G ( f ) = E
∞

−∞

g (t ) e −i2p ft dt (4.9)

The desired characteristics of the interpolation function g (t ) can therefore
be obtained by specifying G ( f ), and we note in (4.8) that the interpolation
process is exactly analogous to a filtering operation (see Section 4.5). Therefore,
for this purpose, referring to Figure 4.6, we discuss some general considerations
that arise in the design of filters.
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Figure 4.5 Illustration of edge effects.
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Figure 4.6 Critical filter bands.

As shown, there are essentially three regions of interest in G ( f ): (1) the
passband W, (2) the transition band f c , and (3) the stop band. For interpolation,
G ( f ) should be flat and equal to unity2 over the passband W ≤ B, and the
magnitude of the stop band should be as small as possible to reject frequencies
outside the band of interest, which in this case includes the repeated spectra
in (4.5). Given any set of characteristics for the passband W and the stop band,
the nature of the transition band f c will determine the number of terms in
(4.8)—the value of N—that will be required to produce G ( f ) to a sufficiently
good approximation. Specifically, it can be shown that the longer and more
gradual the transition between the passband and the stop band can be made,
the smaller will be the required value of N for the specified filter characteristic
G ( f ) to be realized satisfactorily. In addition, discontinuities in G ( f ) should
be avoided in order to enable as large a rate of fall-off as possible. To show
this write g (t ) = e

∞
−∞ G ( f ) e i2p ft df = e

∞
−∞ udv with u = G ( f ), dv = e i2p ft df ,

and after integrating by parts

g (t ) = G ( f )
e i2p ft

i2p t G
∞

−∞
−

1
i2p tE

∞

−∞

G ′( f ) e i2p ft df

=
i

2p tE
∞

−∞

G ′( f ) e i2p ft df

2. Since the number of weights is finite, this may require renormalization so that their sum is
unity.
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because if g (t ) exists, then e
∞
−∞ |G ( f ) |2df < ∞, which requires that G ( f ) →

0 as f → ∞. Also

| g (t ) | =
1

|2p t | | E∞
−∞

G ′( f ) e i2p ft dt | ≤
1

|2p t | E
∞

−∞

|G ′( f ) |df

Now, although G ′( f ) does not exist at points of discontinuity, the
integral e

∞
−∞ G ′( f )df does exist and can be evaluated since G ′( f ) can be

represented at discontinuities by delta functions. Hence, if G ( f ) has discontinu-
ities, | g (t ) | falls off at least as fast as 1/ | t | . For example, for G ( f ) equal to
unity for | f | < B and zero otherwise, which has discontinuities at f = ±B,
g (t ) = sin pBt /p t . However, faster rates of fall-off are possible and, in general,
it can be shown (see Exercise 4.3) that if at least p derivatives of G ( f ) exist
for every point f (i.e., for some values of f the (p + 1)st derivative yields delta
functions), then g (t ) falls off at least as fast as 1/t p+1.

The possibility of selecting desirable characteristics for G ( f ), however,
also depends on the sampling rate, in a manner consistent with reducing effects
of aliasing. This is illustrated in Figure 4.7, where in Figure 4.7(a) the sampling
rate f s is equal to the Nyquist rate 2B, and in Figure 4.7(b) f s is greater than
2B. In Figure 4.7(a), G ( f ) is equal to unity for | f | ≤ B and is zero otherwise.
Therefore, in fact, the transition region occupies a zero range of frequencies;
there is no transition region. Also, dG /df yields delta functions so that g (t )
falls off as 1/t , which is the slowest possible rate. Thus, sampling at the Nyquist
rate yields the worst possible case in this sense. On the other hand, for
f s > 2B it is seen in Figure 4.7(b) that the transition region can be increased
correspondingly which reduces the required value of N, and the discontinuities
can also be avoided so that g (t ) will fall off faster than 1/t . For example, if
G ( f ) employs a cosine roll off (see Exercise 4.4), g (t ) goes as 1/t3. Given a
value of f s > 2B, one must make a choice between the values of the passband
W and transition range f c under the nominal constraint f c + W = f s. That is,
as W increases, the main lobe of the interpolation function becomes narrower,
but f c must decrease, and so on. Specific values of f c and W for any given
value of f s, and the resulting required value of N, will depend on the application,
and can probably most easily be determined for any particular situation by
experimenting at a computer terminal.

The interpolation errors at the edges of the signal can also be reduced
by antialiasing filtering. The magnitude of the spectrum of the aforementioned
rectangular pulse of duration T, | sin p fT /p f | , falls off as 1/f . On the other
hand, if the pulse amplitude is, say, (1 + cos p t /T ) for | t | ≤ T /2 and zero
otherwise, its spectral tails go as 1/f 3 (see Exercise 4.4). That is, as above, the
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Figure 4.7 Illustration of effects of oversampling: (a) sampling at the Nyquist rate and (b) sampling at higher than the Nyquist rate.
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smoother the variation in the pulse amplitude, the smaller will be its high
frequency content and therefore the smaller will be the spectral tails. Also, as
is illustrated in Figure 4.8, the error associated with edge effects which accompa-
nies the interpolation of signal values in the vicinity of a sharp abrupt signal
edge will clearly be greater than in interpolating points over a smooth signal
tail.

It is to be noted that in what follows we shall frequently assume sampling
at the Nyquist rate and use the representation of (4.7) under the assumption
of a band-limited signal. This is done for purposes of analysis and should not
be viewed as a contradiction of the need for oversampling.

4.1.1 Application of the Sampling Theorem to Delay of Discrete-Time
Signals

It is often necessary in the processing of data to implement delays in discrete-
time signals. This is of particular importance in digital beamforming of array
antennas, and also for sonar arrays. If the delays D are of the form D = I Dt ,
where I is an integer, this is of course very simple, since it involves only a
reshuffling of sample time slots. On the other hand, it most often happens
that D = (I + h )Dt , where 0 < h < 1, which presents a problem for a discrete-
time series. The sampling theorem, however, provides a simple means for dealing
with this.

Suppose, as illustrated in Figure 4.9(a), a signal is to be delayed by a
noninteger number of samples I + h ; in this example I = 4 and h = 1/3. As
shown, the destination after delay of each original signal sample is a location
in between sampling points, denoted by the 0s. But this is impossible since
samples can only be at sampling points. This, however, is equivalent to placing
at each sampling point the value the original signal had at the time (I + h )Dt
prior to the time corresponding to that sampling point, denoted by the open
boxes (h). Of course, there are no signal samples at these points, but assuming
1/Dt is large enough, the value the original continuous signal had at the points
h prior to sampling can be reconstructed by using (4.8). Thus, as illustrated
in Figure 4.9(b), the procedure is to interpolate the original signal values at
the h by a weighted average of the samples on either side, and place the
interpolated values in the appropriate delayed time slots. The value SD(k ) of
the delayed signal at any time k Dt is thus given by

SD(k ) = ∑
N −1

n=0
g h (n )SSk − I −

N
2

+ nD (4.10)

where S (k ) is the signal value, and the g h (n ) are the values of the interpolation
function at the sample points after its peak has been positioned at the point
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Figure 4.8 Amelioration of edge effects by antialiasing filter.
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Figure 4.9 Interpolation and delay: (a) original signal and delayed signal and (b) use of interpolation function.



88 Signal Processing Fundamentals and Applications

to be interpolated. As noted above, there will be errors in the delayed signal,
primarily at the edges, with the magnitudes of such errors depending on all
the factors that have been discussed.

4.2 The Sampling Theorem for Bandpass Carrier Signals

The foregoing results apply to video waveforms whose spectrum includes the
origin, f = 0. For bandpass waveforms a similar discussion and exactly the same
principles apply, and, as before, a signal of duration T and bandwidth B can
be approximately represented by a finite number of discrete samples if the
sampling rate is high enough, in this case 1/Dt ≥ B. To show this we recall
that a real bandpass signal x (t ) with carrier frequency f0 can be written as

x (t ) = Re[h (t ) e i2p f 0 t ] (4.11)

with

X ( f ) = E
∞

−∞

x (t ) e −i2p ft dt =
1
2

H ( f − f0) +
1
2

H *(−f − f0) (4.12)

and

H ( f ) = E
∞

−∞

h (t ) e −i2p ft dt

Since x (t ) is real, then X ( f ) = X *(−f ), but H ( f ) need not satisfy this
relationship since h (t ) need not be real and, in particular, |H ( f ) | need not
be symmetrical about f = 0. Since the bandpass signal x (t ) has bandwidth B,
then H ( f − f0) and H *(−f − f0) each vanish for −B /2 > f − f0 > B /2 and
−B /2 > f + f0 > B /2, respectively.

Equations (4.2) and (4.3) then become

x (n Dt ) = Re[h (n Dt ) e i2p f 0 n Dt ] (4.13)

and
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XD( f ) = ∑
∞

n=−∞
e −i2pn DtRe[h (n Dt ) e i2p f 0 n Dt ]

=
1
2 ∑

∞

n=−∞
h (n Dt ) e −i2p ( f − f 0 )n Dt (4.14)

+
1
2 ∑

∞

n=−∞
h *(n Dt ) e −i2p ( f + f 0 )n Dt = A ( f ) + B ( f )

where A ( f ) is the positive-frequency part of XD( f ) and B ( f ) is the negative-
frequency part. As discussed in connection with (4.5), for sampling at the
Nyquist rate, in this case 1/Dt = B, there will be no aliasing and, as before,
x (t ) can be recovered by band-limiting A ( f ) to f0 − B /2 ≤ f ≤ f0 + B /2 and
B ( f ) to −f0 − B /2 ≤ f ≤ −f0 + B /2, whence as in (4.7)

x (t ) =
Dt
2 ∑

∞

n=−∞
h (n Dt ) E

f 0 +B /2

f 0 −B /2

e −i2p ( f − f 0 )n Dt e i2p ft df

+
Dt
2 ∑

∞

n=−∞
h*(n Dt ) E

−f 0 +B /2

−f 0 −B /2

e −i2p ( f + f 0 )n Dt e i2p ft df

=
Dt
2 ∑

∞

n=−∞
h (nDt ) e i2p f 0 t sin pB (t − n Dt )

p (t − n Dt )
(4.15)

+
Dt
2 ∑

∞

n=−∞
h*(n Dt ) e −i2p f 0 t sin pB (t − n Dt )

p (t − n Dt )

= Dt ∑
∞

n=−∞
Re(h (n Dt ) e i2p f 0 t )

sin pB (t − n Dt )
p (t − n Dt )

This is of the same form as (4.7) but the samples h (n Dt ) are complex.
If we write h (t ) = a (t ) e if (t ), (4.15) becomes

x (t ) =
Dt
2 ∑

∞

n=−∞
a (n Dt ) cos f (n Dt )

sin pB (t − n Dt )
p (t − n Dt )

cos 2p f0 t (4.16)

−
Dt
2 ∑

∞

n=−∞
a (n Dt ) sin f (n Dt )

sin pB (t − n Dt )
p (t − n Dt )

sin 2p f0 t
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And, of course, samples of both the amplitude and the phase are required.
Therefore, for carrier signal of duration T, T /Dt complex samples, or 2T /Dt
real samples, are required to reconstruct the signal. Hence for sampling at the
Nyquist rate 2BT real samples are required for carrier as well as video waveforms,
although the Nyquist rate is different in the two cases for the same value of
B. The discussion concerning the desirability of oversampling in order to enable
more efficient and accurate interpolation holds equally in both cases.

4.3 Signal Duration and Bandwidth

Since strictly band-limited signals cannot exist, the bandwidth of a signal is
not a precisely defined, universally accepted, quantity. There are, however, a
number of useful definitions, some of which are widely accepted. As noted
above, we can speak of the frequency range within which most of the signal
energy is contained. Another useful definition is in terms of the half-power or
3-dB width of the positive-frequency part of the Fourier transform.

Consider a video pulse of duration T. The magnitude squared of its
Fourier transform is | (sin p fT )/p f |2, and its value at f = 0 is greater than its
value at f = 1/2T by a factor of (p /2)2 = 2.46. Although the value at f =1/2T
is therefore less than the value at the origin by 3.92 dB, one nevertheless speaks
of the frequency range 0 ≤ f ≤ 1/2T as the 3-dB bandwidth of the video pulse.
Thus, for a video signal of duration T we have the general rule of thumb that
the 3-dB bandwidth is given by

B =
1

2T
(4.17)

On the other hand, consider a sinusoid of frequency f0, amplitude modu-
lated by a rectangular pulse of duration T >> 1/f0. The magnitude-squared of the
positive frequency part3 of the signal spectrum is to a very good approximation
| sin pT ( f − f0)]/p ( f − f0) |2. Hence, by following the same line of argument
applied to video pulses, the 3-dB signal bandwidth in this case is

B =
1
T

(4.18)

Thus, excluding the large time-bandwidth signals discussed in Chapter 9, (4.17)
and (4.18) express generally accepted definitions for the bandwidth of video
and carrier pulses, for which BT is of order unity.

3. Ignoring the tails of the negative-frequency component [sin pT ( f + f 0)]/p ( f + f 0).
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In addition to the bandwidth, the duration of a signal can also be subject
to interpretation, since in practice, pulses are never strictly rectangular and can
in fact have tails of significant duration. Another useful set of definitions, for
the duration Dt and bandwidth D f of signal x (t ), are

D f =1
4p2E

∞

−∞

f 2 |X ( f ) |2df

E
∞

−∞

|X ( f ) |2df 2
1/2

(4.19)

Dt =1E
∞

−∞

t2 |x (t ) |2dt

E
∞

−∞

|x (t ) |2dt 2
1/2

where X ( f ) = e
∞
−∞ x (t ) e −i2p ft dt .

The relationship between D f and Dt is as follows. By the Schwarz
inequality

|E∞
−∞

tx (t )x ′(t )dt2 | ≤ E
∞

−∞

t2 |x (t ) |2dtE
∞

−∞

|x ′(t ) |2dt (4.20)

and

x ′(t ) = −i2pE
∞

−∞

f X ( f ) e −i2p ft df

Hence, by using (see Section 4.5)

E
∞

−∞

e i2p ft dt = d ( f )
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it follows by direct substitution that

E
∞

−∞

|x ′(t ) |2dt = 4p2E
∞

−∞

f 2 |X ( f ) |2df (4.21)

By integrating by parts

E
∞

−∞

tx (t )x ′(t )dt ) =
tx2(t )

2 G∞

−∞
−

1
2 E

∞

−∞

x2(t )dt

and

|E∞
−∞

tx (t )x ′(t )dt |2 =
1
4 1E

∞

−∞

x2(t )dt2
2

(4.22)

because x2(t ) goes to zero for large t faster than 1/t for the signals of interest
(see Section 4.1). Therefore, since by Parseval’s theorem (3.79):
e

∞
−∞ |x (t ) |2dt = e

∞
−∞ |X ( f ) |2df , we obtain, by combining (4.19), (4.20), (4.21),

and (4.22),

D f Dt ≥
1
2

(4.23)

with equality if tx (t ) ~ x ′(t ), in which case x (t ) ~ e −t 2/2, a Gaussian pulse.
Equation (4.23) is not inconsistent with BT ≈ 1, and states that although

this is a lower bound on the time-bandwidth product, there is no upper bound.
We explore the properties and possible advantages of large time-bandwidth
waveforms in Chapter 9.

4.4 The Analytic Signal

The analytic signal is a complex representation of a real waveform that can
facilitate certain types of computations that arise frequently in many branches
of applied mathematics. Consider a function f (t ) with Fourier transform F ( f ).
The analytic signal z (t ) corresponding to f (t ) can be defined in terms of its
Fourier transform Z ( f ) as



93Continuous and Discrete-Time Signals

Z ( f ) = 2F ( f )V ( f ) (4.24)

where V ( f ) is here the unit frequency step function.

V ( f ) = H1 f ≥ 0
0 otherwise

Thus Z ( f ) is equal to zero for f < 0. Also (see Section 4.5)

z (t ) = 2E
∞

−∞

f (t )v (t − t )dt

where the inverse Fourier transform v (t ) of V ( f ) is

v (t ) = E
∞

0

e i2p ft df (4.25)

It will now be shown that

v (t ) =
i

2p t
+

d (t )
2

(4.26)

In order to do this we make use of the Riemann-Lebesgue lemma (see Exercise
4.7) which states that if g (t ) is continuous and its first derivative exists over
an interval (a , b ), then

lim
f → ∞

E
b

a

g (t ) e −i2p ft dt → 0 (4.27)

Because of (4.27) the function lim f→ ∞ (± e ±i2p ft /i2p t ) is equivalent to
d (t )/2. To show this, note that if g (t ) is continuous and dg (t )/dt exists then,
by the Riemann-Lebesgue lemma, for any value of e
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E
∞

−∞

lim
f → ∞

g (t )
e i2p ft

i2p t
dt = lim

f → ∞
E
−e

−∞

g (t )
i2p t

e i2p ft dt + lim
f → ∞

E
∞

+e

g (t )
i2p t

e i2p ft dt

+ lim
f → ∞

E
e

−e

g (t )
e i2p ft

i2p t
dt (4.28)

= lim
f → ∞

E
e

−e

g (t )
e i2p ft

i2p t
dt

because the first two terms on the right-hand side of (4.28) vanish by (4.27)
since g (t )/t is continuous and has a first derivative everywhere except at t = 0.
Now let e become arbitrarily small, while remaining finite. Then

lim
f → ∞

E
e

−e

g (t )
e i2p ft

i2p t
dt → lim

f → ∞
g (0)E

e

−e

cos 2p ft
i2p t

dt (4.29)

+ lim
f → ∞

g (0)E
e

−e

sin 2p ft
2p t

dt

because, since g (t ) is continuous it can be made arbitrarily close to g (0) for e
sufficiently small.

The first term on the right-hand side of (4.29) vanishes since
cos 2p ft /2p t is an odd function, and by making the substitution x = 2p ft ,
the second term becomes

lim
f → ∞

g (0)E
e

−e

sin 2p ft
2p t

dt = g (0) lim
f → ∞

1
2p E

2pe f

−2pe f

sin x
x

dx (4.30)

=
g (0)
2p E

∞

−∞

sin x
x

dx =
g(0)

2

because e
∞
−∞ (sin x /x )dx = p .
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This is the desired result, because from (4.28), (4.29), and (4.30),

E
∞

−∞

g (t ) lim
f → ∞

e i2p ft

i2p t
dt =

g (0)
2

= E
∞

−∞

g (t )
d (t )

2
dt (4.31)

Now returning to (4.25)

v (t ) = E
∞

−∞

V ( f ) e i2p ft df = lim
f → ∞

E
f

0

e i2pxtdx = lim
f → ∞

e i2p ft − 1
i2p t

(4.32)

=
i

2p t
+

d (t )
2

and therefore

z(t ) = 2E
∞

−∞

f (t )v (t − t )dt = f (t ) +
i
p E

∞

−∞

f (t )
(t − t )

dt = f (t ) + if̂ (t )

(4.33)

where f̂ (t ) denotes the Hilbert transform of f (t ).

f̂ (t ) =
1
p E

∞

−∞

f (t )
t − t

dt (4.34)

Hence f (t ) is the real part of the analytic signal z (t ) and f̂ (t ) is the imaginary
part of z (t ).

In determining the Hilbert transform of a signal it is often easier to work
in the frequency domain. Equation (4.24) can be written as

Z ( f ) = F ( f ) + sgn( f )F ( f ) (4.35)

where

sgn( f ) = H+1 f ≥ 0
−1 f < 0
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So, for example, if f (t ) = cos 2p f0 t then the Fourier transform of f̂ (t ) is
(d ( f − f0) − d ( f + f0))/i2 and f̂ (t ) = sin 2p f0 t .

The analytic signal can facilitate calculations such as

f (t ) cos 2p f0 t * g (t ) sin 2p f0 t = E
∞

−∞

f (t ) g (t − t ) cos 2p f0t sin 2p f0 (t − t )dt

(4.36)

where * denotes convolution, which would otherwise be quite cumbersome.
To show this let c (t ) = a (t ) * b (t ) with

Zc ( f ) = 2C ( f )V ( f )

Za ( f ) = 2A ( f )V ( f )

Zb ( f ) = 2B ( f )V ( f )

and A ( f ), B ( f ), and C ( f ) are the Fourier transforms of a (t ), b (t ), and c (t )
which are real functions of time, and Za ( f ), Zb ( f ), and Zc ( f ) are the
Fourier transforms of za (t ), zb (t ), and z c (t ), which are the analytic signals
corresponding to a (t ), b (t ), and c (t ), respectively. Then since C ( f ) =
A ( f )B ( f ) [see (4.50)], Zc ( f ) is

Zc ( f ) = 2C ( f )V ( f ) = 2A ( f )B ( f )V ( f ) = A ( f )Zb ( f )

= B ( f )Za ( f ) =
1
2

Za ( f )Zb ( f )

because both Zb ( f ) and Za ( f ) vanish for f < 0. Then

z c (t ) = a (t ) * zb (t ) = b (t ) * za (t ) =
1
2

za (t ) * zb (t ) (4.37)

But from (4.33) c (t ) = Re[z c (t )], which leads to the very useful result

c (t ) = a (t ) * b (t ) = Re(z c (t )) = Re(a (t ) * zb (t )) (4.38)

= Re(b (t ) * za (t )) =
1
2

Re(za (t ) * zb (t ))

Using analytic signals, Parseval’s theorem is
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E
∞

−∞

a2(t )dt = E
∞

−∞

â2(t )dt = E =
1
2 E

∞

−∞

|za (t ) |2dt =
1
2 E

∞

−∞

|Za ( f ) |2df

(4.39)

where E is the signal energy.
Another very useful result (see Exercise 4.9) is that if a (t ) is band-limited

to | f | < B /2 with B < 2f0, then,

HTa (t ) cos 2p f0 = a (t )HT cos 2p f0 t = a (t ) sin 2p f0 t (4.40)

with of course the same result holding for a (t ) sin 2p f0 t ; here HT denotes the
Hilbert transform operation, (4.34). This relationship is used extensively in
Chapter 7.

4.5 Processing of Continuous and Discrete-Time Signals

A continuous-time, linear time-invariant system is described by an impulse
response h (t ), which is the output of the system when the input is an impulse
d (t ) applied at t = 0. The function d (t ) is the Dirac delta function which has
the properties

d (t ) = 0 for t ≠ 0

E
∞

−∞

d (t ) dt = 1 (4.41)

E
∞

−∞

f (t )d (t − a )dt = f (a )

At t = 0, d (t ) becomes infinite. The delta function can be represented as

d (t ) = E
∞

−∞

e i2p ft dt (4.42)

because if f (t ) and F ( f ) are Fourier-transform pairs, then
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f (t ) = E
∞

−∞

F ( f ) e i2p ft df = E
∞

−∞

f (t1)3E
∞

−∞

e −i2p f (t 1 − t )df4dt1

from which (4.42) follows by (4.41).
Because the system is time-invariant, the response to an impulse

d (t − t ) applied at t = t is h (t − t ), simply a time-delayed version of h (t ). If
the system response varied with time, which we do not deal with here, the
response would be written as h(t , t ).

Consider an input x (t ) consisting of a train of impulses of strength x (n Dt )

x (t ) = ∑
∞

n=−∞
x (n Dt )d (t − n Dt )Dt (4.43)

Since d (t ) has dimensions 1/t , the factor Dt makes (4.43) dimensionally correct
and also avoids infinities in x (t ) as Dt → 0. Now each d (t − n Dt ) when
applied to the system yields h (t − n Dt ) by definition of h (t ), hence

y (t ) = lim
Dt→0

∑
∞

n=−∞
x (n Dt )h (t − n Dt )Dt

= E
∞

−∞

x (t )h (t − t )dt = E
∞

−∞

x (t − t )h (t )dt (4.44)

= x (t ) * h (t )

which is the convolution of x (t ) with h (t ), generally denoted as *.
If the system is causal, there can be no output before the input arrives,

so that h (t ) = 0 for t < 0, or h (t − t ) = 0 for t < t , and (4.44) becomes

y (t ) = E
t

−∞

x (t )h (t − t )dt = E
∞

0

x (t − t )h (t )dt

If, in addition, x (t ) = 0 for t < 0, then

y (t ) = E
t

0

x (t )h (t − t )dt = E
t

0

x (t − t )h (t )dt (4.45)
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which of course can also be written as in (4.44) if these conditions on x (t )
and h (t ) are understood. These operations are illustrated in Figure 4.10.

The impulse response is equivalent to a Green’s function for linear differen-
tial operator, L ,4 which is an equivalent way to describe the system. If

L [ y (t )] = x (t ) (4.46)

with y (0) = y (1) = 0, then y (t ) is given by

y (t ) = E
1

0

G (t , t )x (t )dt (4.47)

where G (t , t ) is the solution of

L [G (t , t )] = d (t − t ) (4.48)

That is, applying L [ ] to (4.47) yields

L [ y (t )] = E
1

0

L [G (t , t )]x (t )dt = E
1

0

d (t − t )x (t )dt = x (t ) (4.49)

Equation (4.47) applies generally to differential operators L with fixed or time-
varying coefficients. However, if the coefficients are constant then G (t , t ) =
G (t − t ).

Filter characteristics are usually specified in terms of their transfer function
H ( f ), which is the Fourier transform of h (t ). Taking the Fourier transform
of (4.44) yields the convolution theorem

Figure 4.10 Continuous-time filtering (with * denoting convolution).

4. This is of the form L = a + b
d
dt

+ c
d 2

dt 2
+ . . . where a , b , and c , . . . are constants for

time-invariant systems.
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E
∞

−∞

h (t ) * x (t ) e −i2p ft dt = Y ( f ) = H ( f )X ( f ) (4.50)

where X ( f ) and Y ( f ) are the Fourier transforms of x (t ) and y (t ). Thus the
Fourier transform of the output is simply the Fourier transform of the input
multiplied by the transfer function.

In discrete-time systems we deal with sampled quantities x (n Dt ), y (n Dt ),
and h (n Dt ) where n is an integer. Dropping the Dt for convenience, the
equations corresponding to (4.44) and (4.45) for output y (n ) is

y (n ) = ∑
n

k=0
x (k )h (n − k ) = ∑

n

k=0
h (k )x (n − k ) = ∑

∞

k=−∞
h (k )x (n − k )

(4.51)

where h (n ) is the response of the system to a unit impulse

dn ,0 = H1, n = 0
0, n ≠ 0

If h (t ) and x (t ) in (4.45) are of duration T1 and T2, then y (t ) will be of
duration T1 + T2. Similarly, as is illustrated in Figure 4.11, if h (n ) and x (n )
are of duration M and N, respectively, the output y (n ) is of duration M + N
− 1. Equation (4.50) also holds for the Fourier transforms Y ( f ), H ( f ), and
X ( f ) of discrete-time signals y (n ), h (n ), and x (n ) defined in (4.3).

In sampled-data discrete-time systems the Fourier transforms are also
discretized and we write, referring to (4.3)

X (m D f ) = ∑
∞

n=0
x (n ) e −i2pn Dtm D f (4.52)

If x (t ) is of duration T = N Dt , the frequency resolution D f is 1/T (see Exercise
4.13), whence Dt D f = 1/N and (4.52) can be written as

X (m ) = ∑
N−1

n=0
x (n ) expS−i2p

nm
N D = X (m + N ) (4.53)

As before (4.5), the discretized Fourier transform, in which we drop the subscript
D , is periodic. The period in this case is N = T /Dt because, referring to (4.5),
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Figure 4.11 Discrete-time filtering.

XS f −
1
DtD → XSm D f −

1
DtD = XS1

T Sm −
T
DtDD → X (m − N )

Equation (4.53) defines the discrete Fourier transform (DFT) of x (n ). The
inverse DFT, (DFT)−1, is defined as

x̂ (n ) =
1
N ∑

N−1

m=0
X (m ) expSi2p

nm
N D (4.54)

and by substituting (4.53) into (4.54)
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x̂ (n ) =
1
N ∑

N−1

m=0
∑

N−1

k=0
x (k ) expS−i2p

km
N D expSi2p

nm
N D

=
1
N ∑

N−1

k=0
x (k ) ∑

N−1

m=0
expFi2p

m
N

(n − k )G
By using

∑
N−1

m=0
rm =

1 − rN

1 − r

we obtain

∑
N−1

m=0
expFi2p

m
N

(n − k )G = expFipSN − 1
N D (n − k )G sin p (n − k )

sin
p
N

(n − k )

(4.55)

which is equal to N if n − k = pN, p = . . . , −2, −1, 0, 1, 2, . . . , and is zero
otherwise. Hence

x̂ (n ) = ∑
∞

i=−∞
x (n − pN ) (4.56)

Thus, applying DFT and (DFT)−1 successively to x (n ) produces a periodic
version of the original waveform, with period N. Of course, x̂ (n ) = x (n ) for
n = 0, 1, 2, . . . , N − 1.

In continuous-time systems, (4.44) describes what is implemented in
practice. In discrete-time systems, the corresponding equation (4.51) is some-
times implemented in practice but often is not. In an alternative approach, the
speed of the fast Fourier transform (FFT) algorithm enables filtering operations
to be carried out much more rapidly than the time-domain operation of (4.51).
The procedure is illustrated in Figure 4.12. We note, however, referring to
(4.54) and (4.56), that

ŷ (n ) =
1
L ∑

L−1

m=0
X (m )H (m ) expSi2p

mn
L D =

1
L ∑

L−1

m=0
Y (m ) expSi2

pmn
L D

(4.57)



103Continuous and Discrete-Time Signals

Figure 4.12 FFT filtering.

is periodic, with period L , and since y (n ) is of duration M + N − 1, then
unless L ≥ M + N − 1 the resulting ŷ (n ) will be aliased in time, in exactly the
same way that XD( f ) in (4.5) will be aliased in frequency if 1/Dt is not large
enough. This requires that X (m ) and H (m ) be implemented as X ′(m ) and
H ′(m ), given by

X ′(m ) = ∑
L−1

n=0
x (n ) expS−i2p

nm
L D (4.58)

H ′(m ) = ∑
L−1

n=0
h (n ) expS−i2p

nm
L D

where L ≥ M + N − 1.
Of course, x (n ) and h (n ) are nonzero only over the ranges 0 ≤ n ≤ N

− 1 and 0 ≤ n ≤ M − 1, both of which are less than L . The effect of including
the additional zero points in the DFT is as follows. We can write

X ′(m ) = ∑
N−1

n=0
x (n ) expF−i2p

n
N Sm

N
L DG (4.59)

= ∑
N−1

n=0
x (n ) expS−i2p

n
N

m ′D = X (m ′ )

where m ′ = Nm /L . Thus, whereas X (m ) contains frequency information at
N integer values of m , the number of points in X ′(m ) is greater by a factor
of L /N. For example, if L = 2N then X ′(m ) = X (m /2) has an additional value
in between each of the original frequency points of X (m ). This, however, does
not represent any new information. That is, continuing with this example,
using (4.54) and (4.55), (4.59) can be written as
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X ′(m ) = ∑
N−1

n=0

1
N ∑

N−1

k=0
X (k ) expSi2p

kn
N D expS−i2p

nm
L D (4.60)

=
1
N ∑

N−1

k=0
X (k ) expFipSN − 1

N D (k − m /2)G sin p (k − m /2)

sin
p
N

(k − m /2)

and X ′(m ) is identical with X (k ) at the original points represented by m = 2k .
For example, if m = 4, then [sin p (k − 2)]/[sin (p /N )(k − 2)] is equal to zero
unless k = 2 and X ′(4) = X (2). The additional points in between, in this case
for m = 1, 3, 5, . . . , are interpolated values consisting of a weighted average
of values of X (k ). The weights are equal to the values of the interpolation
function

expFipSN − 1
N D (k − m /2)G sin p (k − m /2)

sin
p
N

(k − m /2)

at the original frequency points of X (k ) when the peak of the interpolation
function is positioned at m /2, which of course need not be an integer. The
value of X ′(m ) for even values of m can also be viewed as an interpolation,
with all weights equal to zero except that for which k = 2m . Thus, ŷ (n ) in
(4.57), with H (m ) and X (m ) implemented as in (4.58), is identical to y (n ) of
(4.51) for 0 ≤ n ≤ M + N − 1.

With FFT filtering of very long signals such as speech waveforms, another
problem arises that does not occur with convolutional time domain-filtering
(4.51). Obviously, FFTs cannot be of infinite duration and as shown in Figure
4.13 it is therefore necessary to break up the input into relatively short seg-
ments—say, of length N—which are processed individually. However, if the
three segments shown were dealt with as a single unit, in the process of
convolution, points in the vicinity of the leading edge of the middle segment
would contain contributions from points in the vicinity of the trailing edge of
the first segment. This, of course, cannot take place when the segments are
processed individually. However, as illustrated in Figure 4.13, it is possible to
achieve the desired effect by appropriately fitting together the individually
processed segments, such that the last M − 1 points of each processed segment
overlap the first M − 1 points of the following processed segment, and summing
the values of the overlapping points. In this way, the three segments each of
length M + N − 1 which are processed separately can be joined to produce a
single segment of length 3N + M − 1, which is identical to that which would
have been produced if a single segment of length 3N had been processed as a



105Continuous and Discrete-Time Signals

Figure 4.13 FFT filtering of long-duration signals.

single unit. In this manner sequences of effectively infinite duration can be
processed using FFTs. The foregoing procedure is known as the overlap add
method. An alternative approach known as overlap save, which we do not
discuss here, yields the same net result [17].
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Exercises for Chapter 4

4.1

Show that

x (n Dt ) = EXD( f ) e i2p fn Dt df

where XD( f ) is defined in (4.3).

4.2

A lowpass filter of bandwidth B has a frequency response rect ( f /2B ), where
rect ( f /2B ) = 1 for | f | < B and is zero otherwise. Show that (4.7) is the
response of a lowpass filter to an input Dt S∞

n=−∞ x (n Dt )d (t − n Dt ).

4.3

Show that if p derivatives of G ( f ) exist—that is, the (p + 1)st derivative yields
delta functions—then g (t ) ∼ K /t p+1 for large t . Do this by writing
g (t ) = eG ( f ) e i2p ft df and integrating by parts p + 1 times.

4.4

A convenient interpolation function employs a cosine roll-off, with frequency
characteristics

G ( f ) =5
1, | f | < W

1
2S1 + cos p

( f − W )
f c

D, W ≤ f ≤ f c + W

1
2S1 + cos p

( f + W )
f c

D, −W ≥ f ≥ − ( f c + W )

0, otherwise

Show that the corresponding g (t ) is

g (t ) = −
sin p t (2W + f c ) cos p f c t

p t (4f 2
c t2 − 1)
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4.5

Verify equations (4.11) and (4.12).

4.6

By using the same criterion used in connection with (4.17) and (4.18) show
that a video pulse of bandwidth B, having a rectangular spectrum, has a nominal
(i.e., ∼3 dB) time duration ∼1/2B, whereas a carrier pulse of bandwidth B with
a rectangular spectrum has a nominal duration 1/B.

4.7

Prove the Riemann-Lebesgue lemma by an integration by parts in (4.27).

4.8

Prove E
∞

−∞

sin x
x

dx = p .

4.9

Show that the Hilbert transform of sin 2p f0 t = −cos 2p f0 t . Also, if a (t ) is
band-limited to | f | < B /2 with B ≤ 2f0, then the Hilbert transform of
a (t ) cos 2p f0 t is a (t ) sin 2p f0 t that of a (t ) sin 2p f0 t is −a (t ) cos 2p f0 t .

4.10

By using (4.35), show that if f (t ) and g (t ) are band-limited to | f | < B /2,
with B ≤ 2f0 that (4.36) is equal to (sin 2p f0 t /2) f (t ) * g (t ).

4.11

If y (t ) is a realization of a stationary random process, band-limited to
| f | ≤ B, and correlation function r y (t ) = E ( y (t )y (t + t )), show that

r y (t ) = ∑
∞

n=−∞
r y (n /2B )

sin 2pB (t − n /2B )
p (t − n /2B )
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4.12

If f (t ) is band-limited to | f | ≤ B, show, using Hilbert transforms, that

E f (t )
sin 2p2B (t − t )

p (t − t )
dt = f (t )

4.13

Write the Fourier transform F ( f ) of f (t ) = PT (t ) sin 2p f1 t + PT (t ) sin 2p f2 t ,
where PT (t ) = 1 for 0 ≤ t ≤ T and is zero otherwise. Observe that the two
frequencies can be resolved—that is |F ( f ) | will exhibit two distinct peaks—
if f2 ≥ f1 + 1/T. Thus, the frequency resolution D f is 1/T.



5
Detection of Signals in Noise

In dealing with the problem of detecting signals in noise, no matter what the
application, one is concerned with making a decision, based on evidence pre-
sented by the observations, as to whether the particular object, feature, or signal
of interest is or is not present at a particular time. Hence, the concepts that
have been developed for dealing with the traditional radar target-detection
problem, the forerunner of the signal-pulse detection problem in digital commu-
nication systems, remains undiminished in operational importance. For conve-
nience therefore, and in keeping with original usage in the application of
statistical decision theory to this problem, the presentation of the following
material shall be within this context. The problem of estimation of values of
quantities of interest from information yielded by the detected signals is dealt
with in Chapter 7. It should be noted that other methods, not dealt with here,
for dealing with noise, termed active noise control, have been developed, in
which the interference is subtracted away from the observables by means of
adaptive filtering techniques. The interested reader is referred to [18–20].

5.1 Statistical Decision Theory—The Likelihood Ratio Test

As has been noted above, very early in the development of radar it was recognized
that the ultimate limitation on system performance resided in the presence of
the random processes affecting it. This holds true for all communications and
sensing systems since the observable is always a random variable, and the
detection problem is therefore fundamentally statistical. One must deal with
observables y (t ) of the form

109
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y (t ) = y [s (t ), n (t )] (5.1)

where s (t ) is a signal of interest and n (t ) is a realization of some random
process.

Statistical decision theory provides a framework within which the detection
problem can be formulated. We speak of two hypotheses: H1, that a target (or
signal pulse) is present, and H0, that a target is not present. H0 is referred to
as the null hypothesis, and H1 as the alternative. This formulation is equally
applicable to a binary digital communication system in which each transmitted
symbol is either a 1 or a 0, which corresponds to H1 and H0 respectively.

In general, the problem can be formulated in terms of a null hypothesis
and a compound alternative, which would apply for example to an M -ary
communication system. We do not deal with this here.

We wish to maximize the probability of a correct decision P [C ] that can
be expressed as

P [C ] = EP [C | y ]P ( y )dy (5.2)

where P [C | y ] is the conditional probability of a correct decision, given the par-
ticular observable y (t ) that is received. From (5.2) it is clear, since P ( y ) ≥ 0,
that, for any given received y (t ), P [C ] is maximized by making the decision
that maximizes P [C | y ]. Therefore, the ideal decision scheme is that a target
shall be declared present if and only if

P (H1 | y ) > P (H0 | y ) (5.3)

That is, the conditional probabilities P (H1 | y ) and P (H0 | y ) will vary depend-
ing on the value of the observable y (t ). If, say, H1 is chosen, then
P (C | y ) = P (H1 | y ). Hence for any given value of y (t ) the unconditional proba-
bility of correct decision P (C ) is maximized by choosing H1 or H0 depending
on whether P (H1 | y ) or P (H0 | y ) is larger. Putting it another way,
P (H1 | y ) > P (H0 | y ) would certainly not be a good reason for deciding that
a target is not present.

In order to evaluate (5.3), apply Bayes’ theorem, (2.20), and the rule
becomes, choose H1 if

P (H1)P ( y | H1)

P ( y )
>

P (H0)P ( y | H0)

P ( y )
(5.4)

or
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P ( y | H1)

P ( y | H0)
>

P (H0)
P (H1)

= T (5.5)

The functions P ( y | H1) and P ( y | H0) are the a priori conditional probabil-
ities for the events H0 and H1. In contrast with the a posteriori conditional
probabilities P (H0 | y ) and P (H1 | y ), they can be calculated from knowledge
of the noise statistics before any observations are made, which is the essential
feature that makes this approach useful for defining detection criteria. However,
the ideal Bayes decision scheme, which maximizes the probability of a correct
decision, requires knowledge not only of the noise statistics, but also of the a
priori probabilities of H0 and H1. Let us hold off discussion of this important
consideration for the moment.

P ( y | H0) and P ( y | H1) are also referred to as likelihood functions, the
function P ( y | H1)/P ( y | H0) is referred to as a likelihood ratio, and (5.5) is a
particular form of a general decision scheme known as a likelihood-ratio test
(LRT), in which the decision regarding the choice of H0 or H1 is made
dependent on whether the likelihood ratio is greater or less than a certain
predetermined threshold T. The prescription for an LRT is therefore as follows:

1. In a manner to be discussed shortly, calculate the threshold T.

2. From knowledge of the noise statistics calculate the likelihood func-
tions P ( y | H1) and P ( y | H0). Referring to Figure 5.1, it is seen that
these two steps define the decision regions R0 and R1 in which
P ( y | H1) is, respectively, less than and greater than TP ( y | H0).

3. Make an observation of y . If y falls in R0, decide on H0, and if y falls
in R1, decide on H1. Since in practice decisions are often based on
several observations, the case for y exactly on boundary need not
realistically be considered.

5.2 Decision Criteria—Bayes, Maximum Likelihood, and
Neyman-Pearson

The decision criterion determines the value of the threshold T as follows:

1. Bayes’ criterion. As noted, the optimum choice, from the point of view
of maximizing the probability of a correct decision, is to let T = P (H0)/
P (H1). But of course P (H0) and P (H1) will in general not be known
a priori which is an obvious problem for the Bayes scheme.
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Figure 5.1 Decision regions.

2. Maximum-likelihood criterion. This scheme considers simply which of
two likelihood functions P ( y | H0) and P ( y | H1) is larger. That is, the
threshold T is unity, and H1 is selected if P ( y | H1) is greater than
P ( y | H0), and vice versa. This is equivalent to the Bayes scheme for
P (H0) = P (H1) = 1

2 , and is applicable to a binary communication
system in which it can be assumed that any given symbol will equally
likely be a 1 or a 0.

3. Neyman-Pearson criterion. Both the Bayes and maximum likelihood
schemes suffer from the shortcoming that even with the introduction
of cost functions, which are not considered here, it is difficult to make
a quantitative evaluation of the effectiveness of the decision scheme
since the cost functions themselves are most often either unknown or
arbitrary. The Neyman-Pearson approach, on the other hand, yields
a decision scheme subject to a tangible quantitative evaluation.

Referring to Figure 5.1, for any choice of T, which determines the bound-
aries of the decision regions R0 and R1, there will always be a finite probability
that H0 will be true but y will fall into R1 or, conversely, H1 will be true and
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y will fall into H0. In either event the decision scheme will yield the incorrect
answer, and the associated errors are defined as:

• Type 1 error: The probability a that H1 is selected but H0 is true,
given by

a = E
R 1

P ( y | H0)dy (5.6)

• Type 2 error: The probability b that H0 is selected but H1 is true,
given by

b = E
R 0

P ( y | H1)dy (5.7)

In binary communication systems since it is equally likely that any given
symbol will be a 1 or a 0 (or +1 or −1) the bit error rate (BER) is

P (a 1 is sent)P (Error |1 is sent) + P (a 0 is sent)P (Error |0 is sent)

=
a + b

2

In sensing systems the Type 1 error is commonly referred to as the false alarm
probability, P fa, because it is the probability of declaring a target to be present
when in fact it is not. Rather than dealing directly with the Type 2 error
however, it is more customary to deal with the probability of correctly declaring
a target to be present—the detection probability, Pd—which is given by

Pd = E
R 1

P ( y | H1)dy = 1 − E
R 0

P ( y | H1)dy = 1 − b (5.8)

Equation (5.8) holds because in either case we must, of course, have

E
R 0

P ( y | H0)dy + E
R 1

P ( y | H0)dy = 1 (5.9)

E
R 0

P ( y | H1)dy + E
R 1

P ( y | H1)dy = 1
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In the Neyman-Pearson approach first a value of P fa is selected. How
this might be done is discussed in Chapter 11. Obviously it depends on what
action will be taken if a target is declared to be present and how often one can
afford to take this action needlessly. Given this value of P fa = a , the boundaries
of R0 and R1—or equivalently the threshold T—are selected in order to
maximize Pd. The problem therefore is that of maximizing Pd subject to the
constraint P fa = a , which can be formulated as maximizing the quantity $,
given by

$ = Pd + h (a − Pfa ) (5.10)

where h is a Lagrange multiplier. By definition, (5.10) is

$ = E
R 1

P ( y | H1)dy + h3a − E
R 1

P ( y | H0)dy4
= ha + E

R 1

[(P ( y | H1) − hP ( y | H0)dy ] (5.11)

and $ is maximized by choosing R1 such that the integrand in (5.11) is positive.
The decision rule is therefore choose H1 if

P ( y | H1)

P ( y | H0)
> h (5.12)

and consequently choose H0 if

P ( y | H1)

P ( y | H0)
< h (5.13)

Hence the Lagrange multiplier h turns out to be the decision threshold, which
now replaces T. To evaluate h let L( y ) = P ( y | H1)/P ( y | H0). Then h is
determined by the constraint a from

a = E
∞

h

P [L( y ) | H0]dy (5.14)

Equation (5.14) is the formal expression for h , which shall be elaborated on
shortly.
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It has therefore been proved that Pd is maximized, subject to the constraint
P fa = a , when the decision region, or equivalently the threshold h , is chosen
according to (5.14); this result is known as the Neyman-Pearson lemma. The
Neyman-Pearson criterion therefore has an advantage over the Bayes criterion
in that, although the latter yields the maximum probability of a correct decision,
there is no control over the false alarm probability, which may turn out to be
too large and therefore too high a price to pay for a maximum probability of
being correct.

In summary, regardless of the particular decision criterion, in order to
implement an LRT we:

1. Calculate L( y ) under H0 and H1 from knowledge of the noise statistics
and the form of the observable y (t ).

2. For some physical observation y0 evaluate L( y0).

3. Compare L( y0) with prescribed threshold h . It is only in the value
of h that the particular decision criterion manifests itself; the form of
the decision procedure remains the same in all cases. For the Bayes
rule, h = P (H0)/P (H1) and the LRT maximizes the probability of a
correct decision. For maximum likelihood h = 1, and the LRT yields
the maximum probability of a correct decision provided P (H0) =
P (H1) = 1

2 , which of course may or may not be true. For the Neyman-
Pearson approach h is chosen to correspond to the desired value of
P fa. In this case the LRT maximizes the probability of a correct decision
subject to this constraint on P fa.

5.3 Implementation of Decision Criteria

The foregoing results are completely general. The continuance of this develop-
ment shall be restricted to the two most important forms of statistical interfer-
ence, namely, additive, mean-zero white, Gaussian noise, and shot noise, which
has a Poisson distribution. As discussed in Chapter 1, we do not deal with
randomness in the observables contributed by clutter, reverberation, random
propagation phenomena, or fluctuations in target scattering characteristics.

The ideal Gaussian channel is of greatest relevance for radar, many types
of communications channels, and also sonar, in which the white-Gaussian
assumption for ambient ocean noise is also reasonable. Nonwhite or colored
noise is generally dealt with by employing prewhitening stages in the processing
path, and while this complicates the processing operations it does not alter the
fundamental approach. Optical systems, as discussed in Chapter 3, are subject
to both thermal and shot noise.
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5.3.1 Gaussian Noise

Since the observables are time functions, it is necessary to deal with random
processes and multiple observations. To begin with, however, let us consider
single observations of random variables. Let the observable y under the two
hypotheses be given by

under H0 y = n (5.15)

under H1 y = s + n

where s is a deterministic quantity and n is a mean-zero Gaussian random
variable with pdf.

Pn (x ) =
e −x 2 /2s 2

√2ps
(5.16)

The conditional pdfs for the random variables y and n are related by
P ( y | H0) = Pn ( y | H0), P ( y | H1) = Pn ( y − s | H1), and the likelihood ratio test
is therefore, select H1 if

P ( y | H1)

P ( y | H0)
=

Pn ( y − s | H1)

Pn ( y | H0)
=

e −( y− s )2 /2s 2

e −y 2 /2s 2 > h (5.17)

After taking the logarithm of both sides of (5.17), the criterion for selection
of H1 is

y >
s2

s
log h +

s
2

(5.18)

In (5.18) it is seen that the LRT, in which L( y ) of (5.12) is compared
with a threshold h , becomes transformed into a comparison of the observable
y with the threshold in (5.18), which is a function of h . As an example, suppose
P (H0) and P (H1) are known, with P (H0)/P (H1) = 2. Then the Bayes and
maximum-likelihood decision rules are: choose H1 if

Bayes

y >
s
2

+
s2 log 2

s
(5.19)
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maximum-likelihood (h = 1)

y >
s
2

Since the a priori probability of H0 is twice that of H1, then the Bayes rule
requires a larger value of y for selection of H0 than the maximum likelihood
rule, in which this information is not used. The Bayes scheme therefore, of
course, yields a better decision rule in this case.

For the Neyman-Pearson criterion, suppose a value of P fa = 0.01 can be
tolerated. The threshold is then that value of h for which

Pfa = 0.01 = E
∞

h

e −x 2 /2s 2 dx

√2ps
=

1
2

− E
h

0

e −x 2 /2s 2 dx

√2ps
(5.20)

=
1
2 F1 − erfS h

√2sDG
where the error function erf (x ) is

erf (x ) =
2

√p E
x

0

e −t 2
dt (5.21)

Thus, (5.14), which establishes the threshold condition on L( y ), becomes
transformed in terms of the observable y into

choose H1 if y > h (5.22)

From the table of erf (x ) in Appendix A for P fa = 0.01 it is required that
h /√2s = 1.646 or, referring to (5.18)

h = √2(1.65)s = 2.33s

A typical illustration of the thresholds for the three decision criteria for
this example is given in Figure 5.2.
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Figure 5.2 Decision thresholds.
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Returning to the Neyman-Pearson case, the detection probability is

Pd = E
∞

h

e −( y− s )2 /2s 2 dy

s√2p

=
1
2 F1 + erfSs − h

√2s DG (5.23)

=
1
2 F1 + erfS s

√2s
− 1.646DG

and Pd depends only on the SNR1 through s /s√2, and, of course, also on
the assigned value of P fa, which determines the numerical parameter—1.646
in this example. To summarize (see Exercise 5.1)

Bayes

Pfa =
1
2 F1 − erfS s

2s√2
−

s log h

s√2 DG
Pd =

1
2 F1 + erfS s

2s√2
−

s log h

s√2 DG
maximum-likelihood

Pfa = F1 − erfS s

2s√2DG
Pd = F1 + erfS s

2s√2DG
Neyman-Pearson

Pfa = E
∞

h

e −x 2 /2s 2 dx

√2ps
=

1
2

(1 − erf (g ))

where g = h /s√2 and

Pd =
1
2 F1 + erfS s

√2s
− gDG

1. SNR will be defined in Section 5.5.
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In all cases, since erf (x ) → 1
2 for large x , Pd can be made arbitrarily close

to unity for a large enough SNR, which is proportional to s2/s2, and which
arises because of the mathematical form of the Gaussian distribution. The
three criteria, however, embody certain fundamental differences. For maximum
likelihood the threshold is such that Pd = 1 − P fa, which does not hold in the
other two cases. For the Bayes criterion the parameter h = P ( y /H1)/P ( y /H0)
is such that the probability of a correct decision is maximized. But even if
P ( y /H1) and P ( y /H0) were known, this might not be the most desirable
choice, because it could result in an unacceptably large false-alarm probability,
over which the Bayes scheme has no control. On the other hand, with the
Neyman-Pearson approach P fa can be specified to any desired value, in which
case the maximum value of Pd is achieved subject to this constraint.

5.3.2 Shot Noise—Poisson Distribution

A very simplified diagram of an optical receiver is shown in Figure 5.3. Optical
receivers essentially count photons. The photoelectric current at the output of
the detector is proportional to the power in the incident light, the proportionality
constant being the optical efficiency of the detector. A band-limiting of the
inherent impulsive property of the individual photoelectrons is represented by
the baseband filter h (t ) in Figure 5.3. If there is no actual filter in the path,
then h (t ) represents the band-limiting imposed by the finite bandwidth of the
optical detector itself.

As is discussed in Section 4.3, the duration of each video current pulse
is nominally t = 1/2B, where B is the bandwidth of h (t ) (t as used here has
nothing to do with the arrival-time usage of t in Section 3.4). The output of
the filter is of the form of a convolution of h (t ) with the photoelectric current
i (t ), and at any time t therefore contains contributions from all the current
pulses that arrived during the interval t − t . The output is therefore a measure
of the number of pulses, and hence also the number of photons that arrived
during this interval. This observable is denoted as the count function k (t ) and

Figure 5.3 Typical optical receiver.
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is a random process in which, for all i and j , the random variables k(t i ) and
k (t j ) are independent for | t j − t i | ≥ t , which follows from the foregoing
discussion.

In an optical system, even if the lenses are capped there will generally
always be some form of optical radiation incident on the detector due to the
finite temperature of various system components such as baffles and the telescope
barrel. Also, when operating, there may be optical radiation present whose
strength will depend on the temperature of the background against which the
targets of interest are viewed. The current that is produced by all such ambient
radiation when no signal is present is called the dark current id. Hence, if i is
the photoelectron current, the average number of photoelectron pulses per
second under the two hypotheses will be

H0: i /q = id /q (5.24)

H1: i /q = (id + is )/q

where is is the current produced by the optical signal of interest and q is the
electronic charge.

Now, referring to (2.11), the probability of k events taking place in T
seconds is

P (k ) = e −lT (lT )k

k !
(5.25)

where l is the average number of events per second; as is discussed in Chapter
2, if lT is large enough, the distribution can be approximated by a Gaussian.
The events in this case are the occurrence of current pulses, for which the rates
of occurrence are id /q and (id + is)q . But, as noted above, each observation
k (t ) is a measure of the number of current pulses that occurred during the
previous t = 1/2B seconds, and the relevant quantity is therefore the number
of counts during this interval. Using (5.25) the LRT is therefore: Declare H1
if

P (k | H1)

P (k | H0)
=

[(id + is)(t /q )]k exp[− (id + is)(t /q )]

(idt /q )k exp(−idt /q )
(5.26)

= S1 +
is
id
Dk expS−ist

q D > h

and, equivalently, in terms of the random variable k , declare H1 if
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k >
log h

log [1 + (is /id)]
+

ist
q

(5.27)

With the parameter h equal to unity, the maximum-likelihood rule is to declare
H1 if k exceeds the expected average number of counts during the interval t
due to signal alone.

For the Neyman-Pearson criterion, use

P (k | H0) =
exp[−id (t /q )]

k ! Sid
t
q D

k

(5.28)

and for the specified value of P fa , determine that value k0 that satisfies

Pfa = ∑
∞

n=k 0

exp[−id (t /q )]
n ! Sidt

q Dn (5.29)

Determination of detection thresholds is somewhat more cumbersome
than for the Gaussian case. The basic approach, however, remains unchanged.
The rule is: Declare H1 if k > k0. The detection probability in this case is
therefore

Pd = ∑
∞

k=k 0

exp[− (is + id)t /q ]
k ! F(is + id)

t
q D

k

(5.30)

Let k s, kd, and r denote the number of counts during the interval t due
to signal, dark current, and signal plus dark current, respectively. These are
given by

k s =
is

2qB
kd =

id
2qB

(5.31)

r = k s + kd =
id + is
2qB

And the foregoing results can be summarized as: Declare H1 if the observed
count satisfies:

Bayes

k >
log (P (H0)/P (H1))

log (1 + k s /kd)
+ k s (5.32)
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maximum-likelihood
k > k s (5.33)

Neyman-Pearson

Specify P fa and determine the threshold k0 for which

Pfa = ∑
∞

n=k 0

e −kd kn
d

n !
= 1 − ∑

k 0 −1

n=0

e −kd k n
d

n !
(5.34)

In which case the detection probability is

Pd = 1 − ∑
k 0 −1

n=0

e −r rn

n !
(5.35)

and, of course, declare H0 if k < k0 and H1 if k > k0.
In the foregoing results the dark current id plays the role that s2 plays

in the Gaussian case in Section 5.3.1. That is, signal detection contends with
the fluctuations produced by the random arrival times of the photons which
produce id as well as those in the signal. Hence, as for s2 in the Gaussian
case, here id must be known in order to specify such parameters as thresholds;
also, if id = 0, then detection of a single photon would denote the presence of
the signal of interest and, with the Neyman-Pearson criterion, P fa = 0,
Pd = 1. In the Gaussian case this would correspond to s2 = 0.

5.4 Correlation Detection: The Matched Filter—I

The previous examples dealt with single observations of a random variable. In
practice, however, random processes must be considered, because the observables
are generally time functions and one must therefore deal with multiple observa-
tions taking place over an interval equal to the signal duration. The foregoing
analysis shall now be extended to this situation.

5.4.1 The Gaussian Channel

Let the signal of interest s (t ) be of duration T, and let the interference consist
of mean-zero white Gaussian noise n (t ) with two-sided power spectral density
N0 /2. It is to be emphasized that s (t ) is perfectly general and the following
results therefore apply to all cases of interest, including in particular, carrier as
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well as video waveforms. Let the observation take place at the output of a
hypothetical ideal lowpass filter of bandwidth B (Figure 5.4), which is suffic-
iently wide to pass all of the signal energy; subsequently, B shall be allowed to
become infinite. Then the noise becomes limited in frequency to the range
−B ≤ f ≤ B, and by the Wiener-Khinchine theorem, the correlation function
r(t ) of n (t ) is

r (t ) =
N0
2 E

B

−B

e i2p ft df =
N0B

2
sin 2pBt

pBt
(5.36)

Since r (t ) = 0 for t = n /2B, n = 0, 1, 2, 3, . . . , samples of n (t ) separated in
time by 1/2B seconds will be independent. Therefore, if an observation takes
place over T seconds, with sampling at the foregoing rate, if the signal s (t ) is
present, there will be 2BT independent random variables y (t i ) = s (t i ) + n (t i ),
i = 1, 2, . . . , 2BT. Therefore, since the joint density function of N independent
random variables is the product of the N density functions (2.18), the joint
probability density of the observation in terms of the random variables n (t i )
is

P (n (t1), n (t2), . . . ) = P2BT

i=1

exp [−( y (t i ) − s (t i ))2/2s2]

(2p )BTs2BT (5.37)

=

exp3−
1

2s2 ∑
2BT

i=1
( y (t i ) − s (t i ))24

(2p )BTs2BT

where s2 = N0B is the noise power. If the signal is not present, the observation
will, of course, consist of noise alone and the LRT in this case—the generalization
of (5.17)—becomes: Choose H1 if

Figure 5.4 Observations at output of lowpass filter.
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exp3−
1

2s2 ∑
2BT

i=1
( y (t i ) − s (t i ))24

exp3−
1

2s2 ∑
2BT

i=1
y2(t i )4

= exp5 1

2s2 ∑
2BT

i=1
[2y (t i ) s (t i ) − s2(t i )]6 > h (5.38)

or equivalently if

1

s2 ∑
2BT

i=1
y (t i ) s (t i ) > log h +

1

2s2 ∑
2BT

i=1
s2(t i ) (5.39)

The decision rule can be expressed in terms of continuous functions by
making use of (4.7), that an arbitrary function u (t ) whose energy is contained
within a frequency range B—that is, a function band-limited to a range B—
can be written as

u (t ) = ∑
∞

u=−∞
uS n

2B D sin 2pB (t − n /2B )
2pB (t − n /2B )

where in this case it is assumed that sampling takes place at the Nyquist rate
1/Dt = 2B. It then follows that for any two band-limited functions u (t ) and
v (t ) we can write

E
∞

−∞

u (t )v (t )dt = ∑
n

∑
m

uS n
2B DvS m

2B D E
∞

−∞

sin 2pB (t − n /2B )
2pB (t − n /2B )

sin 2pB (t − m /2B )
2pB (t − m /2B )

dt (5.40)

=
1

2B ∑
∞

n=−∞
uS n

2B DvS m
2B D

because the set of functions sin p (x − n )/p (x − n ) are orthonormal on the
index n over the interval −∞ ≤ x ≤ ∞ (see Exercise 5.3). As an auxiliary result,
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E
∞

−∞

u2(t )dt = E =
1

2B ∑
∞

n=−∞
u2S n

2B D (5.41)

where E is the signal energy.
As is discussed in Chapter 4 in connection with (4.7), the foregoing

results, which are exact for band-limited functions, are only approximate for
functions of finite duration. For any value of T, however, the approximation
improves as the number of terms in the summation T /Dt = 2BT increases.
Therefore, let B become arbitrarily large so that Dt → 0, which amounts to
continuous sampling, and to an arbitrarily good approximation the criterion
for choice of H1, (5.38), is, by (5.40),

exp3 1
N0

E
T

0

(2y (t ) s (t ) − s2(t )dt4 > h

and (5.39) becomes

2
N0

E
T

0

y (t ) s (t )dt > log h +
E

N0
(5.42)

where s2 = N0B. Stated another way, a time function of finite duration has
infinite bandwidth, and since B → ∞ the solution becomes exact in the limit.
The left-hand side becomes under the two hypotheses

H0:
2

N0
E
T

0

y (t ) s (t )dt =
2

N0
E
T

0

n (t ) s (t )dt (5.43)

H1:
2

N0
E
T

0

y (t ) s (t )dt =
2E
N0

+
2

N0
E
T

0

n (t ) s (t )dt

which shall be used shortly. The discussion in Section 5.3.1 concerning the
choice of the threshold and the various decision criteria holds here as well. The
observable, however, is a weighted integral of the received quantity rather than
the received quantity itself.
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This decision rule can be implemented in a receiver such as is illustrated
in Figure 5.5. It is assumed that an exact replica of the received signal is available
which is correlated with the observable y (t ). In this case it would either be
necessary to know exactly when y (t ) arrives, which of course is not known a
priori, or it would be necessary to continually repeat the process of multiplication
and integration ad infinitum. In fact, in discrete-time systems, where computers
are available for signal processing, correlation detection is often implemented
in just this way, with successive trials being separated by a sampling interval;
in this case the sampling rate must be significantly greater than the Nyquist
rate. An alternative approach, however, in continuous time, is as follows. Recall
(see Section 4.5) that for a filter, or any linear system with physically realizable
(causal) impulse response h (t ), the output x (t ) for an input y (t ) is

x (t ) = E
t

0

h (t ) y (t − t )dt (5.44)

Therefore let the filter have impulse response

h (t ) = s (T − t ) (5.45)

Then for an input y (t ) the output x (t ) under the two hypotheses is

H0: x (t ) = E
t

0

s (T − t ) y (t − t )dt = E
t

0

s (T − t )n (t − t )dt

H1: x (t ) = E
t

0

s (T − t ) y (t − t )dt = E
t

0

s (T − t ) s (t − t )dt (5.46)

+ E
t

0

s (T − t )n (t − t )dt

Figure 5.5 Correlation receiver.
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which, at the time of maximum response, t = T, is identical to the output of
the correlation detector equation (5.43)

H0: x (T ) = E
T

0

s (T − t )n (T − t )dt = E
T

0

s (t )n (t )dt = xn (T )

H1: x (T ) = E
T

0

s (T − t ) s (T − t )dt + E
T

0

s (T − t )n (T − t )dt (5.47)

= E
T

0

s2(t )dt + E
T

0

s (t )n (t )dt

= x s (T ) + xn (T )

Thus the repetitive active operation illustrated in Figure 5.5 is replaced
by the continuous passive operation represented by (5.44), since the filter h (t )
is always ready to receive a signal. No a priori information is required. If the
threshold is exceeded it is assumed that correlation has occurred, at time
t = T in (5.46) and (5.47), and H1 is declared. Of course, there will be times
when the threshold is exceeded and, in fact, no signal is present, but this is
accounted for in the setting of the threshold in accordance with the specified
false alarm and detection probabilities.

Equation (5.45) defines the impulse response of the celebrated matched
filter [21], which is the time-reversed and suitably time-shifted replica of the
signal of interest, the time shift being required for filter causality. An example
of a signal and the corresponding matched-filter impulse response is illustrated
in Figure 5.6. The output of a matched filter is in units of energy.

To calculate false alarm and detection probabilities, referring to (5.42)
and (5.43), it will be convenient in what follows to write the output of the
matched filter under the two hypotheses as a dimensionless quantity, normalized
with respect to the noise power spectral density, as:

under H1: x =
2

N0
E
T

0

y (t ) s (t )dt =
2E
N0

+
2

N0
E
T

0

n (t ) s (t )dt (5.48)

under H0: x =
2

N0
E
T

0

y (t ) s (t )dt =
2

N0
E
T

0

n (t ) s (t )dt
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Figure 5.6 Signal and corresponding causal matched-filter impulse response.

Now (2/N0)e
T
0 n (t ) s (t )dt is a mean-zero Gaussian random variable with vari-

ance equal to

E3 4

N 2
0
E
T

0

n (x ) s (x )dx E
T

0

n ( y ) s ( y )dy4 (5.49)

=
4

N 2
0
E
T

0

E
T

0

E [n (x )n ( y )] s (x ) s ( y )dxdy =
2E
N0

since for white noise the correlation function is (see Exercise 3.16)

E [n (x )n ( y )] =
N0
2

d (x − y ) (5.50)
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The false alarm probability is therefore

Pfa = E
∞

h

e −x 2 /2(2E /N 0 ) dx

(2p (2E /N0))1/2 =
1
2

(1 − erf (g )) (5.51)

which assigns a value to the parameter g = h /(2√E /N0 ); erf is the error
function defined in (5.21).

The detection probability is therefore

Pd = E
∞

h

expF−
(x − 2E /N0)2

2(2E /N0) G dx

(2p (2E /N0))1/2 (5.52)

≈
1
2 F1 + erfS√ E

N0
− gDG

which, as noted previously, depends only on SNR E /N0, and, of course, P fa
through the parameter g . However, for any finite value of g , Pd can be made
arbitrarily close to unity by making E /N0 arbitrarily large. The prescription is
therefore:

1. Determine the numerical parameter g from the desired false alarm
probability using (5.51).

2. Determine the detection threshold from h = 2g √E /N0.

3. For this detection threshold the detection probability will be given by
(5.52). Numerical examples will be presented in Chapter 6, where
coherent and noncoherent detection are evaluated and compared. Note
that in (5.52) the dimensionless variance is equal to the mean and we
have a one-parameter distribution, to which the discussion of Section
2.2 applies. Dependence of Pd on √E /N0 may be understood as
follows. The operating characteristics of the receiver improve as the
overlap between the distributions P ( y |H0) and P ( y |H1) becomes
smaller. Since the separation between the distributions is 2E /N0 and
their standard deviation is √2E /N0, the overlap becomes smaller as
the ratio of these quantities, or equivalently √E /N0, increases.

The properties of the matched filter shall be discussed in some detail
shortly, after dealing with shot noise. Before preceding with this, however, it
is worth noting an important consideration. In obtaining (5.42) it is tacitly
assumed that although the sampling interval Dt becomes vanishingly small,
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successive noise samples separated by Dt seconds remain independent because
B is arbitrarily large. Thus (5.42) is valid only if all preceding stages in the
processing path are comparatively wideband in comparison with the filter
bandwidth ∼1/T. If this is not the case, then (5.42) does not follow from (5.39)
because successive noise samples will not be independent; similar considerations
arise in the analysis of phase-locked loops. This issue will arise again in Chapter
7. It is also important to keep in mind that the use of correlation detection,
and therefore matched filtering, to implement the likelihood ratio test arises
as a result of the quadratic exponent in (5.37), which, of course, is characteristic
of the Gaussian distribution. It will be seen for the case of shot noise that
implementation of the LRT does not involve correlation of the observable with
a stored replica of the signal.

5.4.2 The Shot Noise Channel

Referring to Section 5.3.2, the photoelectric current that is observed at any
given instant consists of a superposition of the responses to all the elementary
current impulses produced by photon arrivals during the previous t = 1/2B
seconds. Also, successive observations at t i and t j are independent if
(t i − t j ) > t . Therefore, if the signal current is of duration T, then there are
T /t = 2BT independent observations of the random process k (t ) and the
LRT—the extension of (5.26) to this case—is

P2BT

j=1

P (k (t j ) |H1)

P (k (t j ) |H0)
= P2BT

j=1
S1 +

is (t j )
id (t j )D

k (t j )

e −is (t j )t /q > h (5.53)

or equivalently

∑
2BT

j=1
k (t j ) logS1 +

k s(t j )
kd(t j )D > log h + ∑

2BT

j=1
k s(t j ) = log h + K s (5.54)

where k s and kd are the counts in an interval t due to signal and dark current
alone, respectively.

To obtain continuous-time representation, we write

∑
2BT

j=1
k (t j ) logF1 +

k s(t j )
kd(t j )G = ∑

2BT

j=1
k (t j ) logF1 +

k s(t j )
kd(t j )G Dt

Dt

≈ 2BE
T

0

k (t ) logF1 +
k s(t )
kd(t )Gdt
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and (5.49) becomes

2BE
T

0

k (t ) logF1 +
k s(t )
kd(t )Gdt > log h + K s (5.55)

where k (t ) is the observed photoelectron count and K s is the integrated total
photoelectron count due to signal alone over the duration T, which is assumed
known as is the received signal energy in (5.41). As before, the maximum-
likelihood solution is obtained from the Bayes solution, (5.55) by setting
h = 1.

For the Neyman-Pearson criterion it is necessary to deal with the integrated
dark-current count Kd, also assumed known

Kd = ∑
2BT

j=1

id (t j )t

q
= ∑

2BT

j=1
kd(t j ) (5.56)

and the integrated signal-plus-dark-current count

∑
2BT

i=1

is (t j ) + id (t j )
2Bq

= Kd + K s = rT (5.57)

The threshold K0 is determined from

Pfa = 1 − ∑
K 0 −1

n=0

e −K d K n
d

n !
(5.58)

yielding a detection probability

Pd = 1 − ∑
K 0 −1

n=0

e −(r T ) (rT )n

n !
(5.59)

And of course it is the integrated count K
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K = E
T

0

k (t )dt (5.60)

a random variable that is compared with K0.
In implementing (5.55) there is an exact parallel to (5.42), with

log {1 + [is(t )/id(t )]} substituted for s (t ) in Figure 5.5 and k (t ) replacing y (t ).
Clearly, however, defining an impulse response to perform this operation would
not yield a matched filter, as it does for Gaussian noise. We now consider some
properties of the matched filter.

5.5 The Matched Filter—II

It has been shown in Section 5.4 that for Gaussian noise the matched filter
provides the optimum operation on the observable, from the point of view of
maximizing the probability of a correct decision regarding whether H0 or H1
is true or maximizing Pd for a given value of P fa. In this, at no time did
the question of maximizing the SNR arise. SNR, however, is an important
consideration that shall now be considered in connection with the operation
of the matched filter. SNR can be defined in many ways. For purposes of
simply detecting whether or not the signal is present imagine the appearance
of the oscilloscope trace of the output of a filter whose input is noise of arbitrary
statistics, having zero mean. The average level of the trace will also be zero,
but the trace will fluctuate, with mean-square fluctuations equal to the variance
of the noise, in this case the average noise power. If a signal is now introduced
at the input, the average level of the trace will deflect accordingly, the random
fluctuations remaining the same. Clearly, it is the fluctuations due to noise
which interfere with detecting the presence of the signal, as indicated by this
deflection. If SNR is to be a measure of our ability to detect the signal, it
therefore seems reasonable to define it as

SNR =
|x s(T ) |2

Average Noise Power
(5.61)

where x s(T ) is the peak response due to signal only in (5.47). It is worthwhile
to note that this is just the square of the reciprocal of the ratio of the standard
deviation to the mean discussed at the end of Section 2.1.
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Now by Parseval’s theorem (3.79)

E
T

0

s2(t )dt = E
∞

−∞

|S ( f ) |2df = E (5.62)

and we can therefore write

|x s(T ) |2 = |ET
0

s2(t )dt |2 = E E
∞

−∞

|S ( f ) |2df (5.63)

where E is the signal energy. For the noise, with two-sided power spectral
density N0/2, the output power spectral density is |S ( f ) |2N0/2 and therefore

SNR =

E E
∞

−∞

|S ( f ) |2df

N0
2 E

∞

−∞

|S ( f ) |2df

=
2E
N0

(5.64)

where in the denominator of (5.64), (3.12) has been used.
Equation (5.64) expresses the important result that SNR as defined in

(5.61) at the output of a matched filter is the ratio of two fundamental parame-
ters, E and N0 /2, and is independent of the particular shape of the signal
waveform or any other signal parameter, including its bandwidth. This, of
course, arises from the fact that the matched filtering operation performs the
correlation of the signal with itself.

Now consider the optimum operation on the observable from the point
of view of maximizing SNR for a signal in additive noise. We wish to find
that h (t ), which maximizes

SNR =

| E∞
−∞

h (t ) s (T − t )dt |2
E
∞

−∞

|H ( f ) |2WN ( f )df

=

| E∞
−∞

H ( f )S ( f ) e i2p fTdf |2
E
∞

−∞

|H ( f ) |2WN ( f )df

(5.65)
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where H ( f ) and S ( f ) are the Fourier transforms of h (t ) and s (t ), and WN ( f )
is the power spectral density of the input noise. Recall the Schwarz inequality

|E f (t ) g (t )dt |2 ≤ E | f (t ) |2dt E | g (t ) |2dt (5.66)

with equality if and only if f (t ) = kg *(t ) where k is constant. Therefore, by
multiplying and dividing the integrand of the numerator of (5.65) by

√WN ( f ) and using (5.66)

SNR =

| E∞
−∞

H ( f )√WN ( f )
S ( f )

√WN ( f )
e i2p fTdf |2

E
∞

−∞

|H ( f ) |2WN ( f )df

≤

E
∞

−∞

|H ( f ) |2WN ( f )df E
∞

−∞

|S ( f ) |2 /WN ( f )df

E
∞

−∞

|H ( f ) |2WN ( f )df

(5.67)

= E
∞

−∞

( |S ( f ) |2 /WN ( f ))df

and the maximum is achieved if and only if

H ( f ) = k
S *( f ) e −i2p fT

WN ( f )
(5.68)

where * is not needed in the denominator because WN ( f ) is always real (and
non-negative). Therefore, if the noise is white, that is, if WN ( f ) is a constant
k over the band of H ( f ), then

h (t ) = s (T − t ) (5.69)
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which is the impulse response of a filter matched to s (t ) as derived previously.
Note that it is not necessary that the noise be Gaussian for (5.64) and (5.69)
to hold, but only that its spectrum be flat over the frequency band of interest.
Thus, to summarize, the matched filter maximizes SNR over all probability
densities, provided the power spectral density is a constant. In the event that
the noise power spectral density is not flat (colored noise), the matched impulse
response corresponds to the modified signal spectrum S *( f ) e −i2p fT /WN ( f )
rather than simply S *( f ) e −i2p fT. In this way operations equivalent to matched
filtering, for colored noise, can be derived [22], which, however, shall not be
considered further here.

Exercises for Chapter 5

5.1

For the Bayes and maximum-likelihood criteria, h determines P fa and Pd.
Show for these two cases that these quantities are, respectively, for Gaussian
noise as discussed in Section 5.4.1.

Bayes

P fa =
1
2 S1 − erfSs log h

s√2
+

s

2s√2DD
Pd =

1
2 S1 + erfS s

2s√2
−

s log h

2√2 DD
maximum-likelihood

P fa =
1
2 S1 − erfS s

2s√2DD
Pd =

1
2 S1 + erfS s

2s√2DD
Show that for maximum likelihood

Pd = 1 − P fa
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5.2

Plot (5.25) for lT = 0, 0.01, 0.1, 1, 2, 5, 10, 100,000. For kd = 1 and
r = 10, find Pd for P fa = 0.01 [see (5.34) and (5.35)].

5.3

Prove that the functions sin p (x − n )/p (x − n ) are orthonormal on n over the
interval −∞ ≤ x ≤ ∞. That is,

E
∞

−∞

sin p (x − n )
p (x − n )

sin p (x − m )
p (x − m )

dx = dn ,m

where dn ,m is the Kronicker delta:

dn ,m = H1 n = m
0 n ≠ m

5.4

Let h (t ) = t [u (t ) − u (t − T )] and y (t ) = u (t ) e −l t, where u (t ) is the unit step
function

u (t ) = H1, t ≥ 0
0, otherwise

Show that x (t ) in (4.44) is equal to

1
a St −

1
a D +

e −a t

a2

for 0 ≤ t ≤ T and is equal to

e −a (t−T )

a ST −
1
a D +

e −a t

a2

for t > T.
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5.5

For y (t ) and h (t ) both equal to zero for t < 0, show that the two following
forms of x (t ),

x (t ) = E
t

0

h (t ) y (t − t )dt

and

x (t ) = E
∞

−∞

h (t ) y (t − t )dt

are identical. We can also write

x (t ) = E
t

0

y (t )h (t − t )dt

What determines the limits 0 and t in this case?

5.6

For certain random variable x there are two hypotheses: H0, that x is normal
(m0, s ), and H1, that x is normal (m1, s ). Write down the LRT for choosing
between H0 and H1 using the Bayes criterion, and the necessary condition on
the observable x for selection of H1. What is the condition for the maximum-
likelihood criterion?

5.7

Apply the Neyman-Pearson criterion to Exercise 5.6. Let the false alarm proba-
bility be a . Write down an expression for the detection probability in terms
of m0 and m1, identifying all parameters and showing how they would be
evaluated.

5.8

Suppose the filter characteristics of Figure 5.4 were as shown. How does this
change things in Section (5.4.1)? Explain.
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5.9
For a signal s (t ) as shown, sketch a causal matched-filter impulse response
and write down an expression for maximum output in terms of the signal
energy E .

5.10
The Rayleigh and Rice distributions were introduced in Chapter 2. If observa-
tions are made at the output of an envelope detector, write down the LRT for
a Bayes decision scheme to choose between the hypotheses: H0, that no signal
is present and noise power = s2; and H1, that the signal of the form A cos 2p f0 t
is present. What should the detection threshold be if P fa ≠ 0.001? Write an
expression for Pd in this case.
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5.11

A coin is to be tested to see if it is fair or not. The two hypotheses are H0:
P (head) = P (tail) = 1

2 ; and H1: P (head) = 0.75, P (tail) = 0.25. The decision
is to be based on five tosses. Write down the decision rule based on the
maximum-likelihood criterion and determine the decision threshold.

If the coin is to be chosen from a barrel containing 100 coins, 80 of
which are biased and 20 of which are not, write down the LRT that maximizes
the probability of a correct decision and determine the decision threshold.

5.12

a. Suppose a signal of interest is as shown. Let the noise be mean-zero,
white Gaussian with variance s2, and assume that noise observations
separated in time by 1/2B seconds are independent. For an observation
over a time T, write the LRT for deciding between the hypotheses
H1 that the signal is present and H0 that it is not. Use the Bayes
criterion.

b. Repeat for the following signal.
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5.13

Consider the signal shown. Of the following impulse responses, which are
causal, and which are matched to s (t )? Repeat for the following cases and sketch
the responses x (t ) = s (t ) * h (t ).
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5.14

A target has an a priori probability of 3/4 of being present—that is, P (H0) =
0.25, P (H1) = 0.75. The observation is to be made at the output of a matched
filter, with E /N0 = 20. For a required value of P fa = 0.00001, find the threshold
and Pd under the Neyman-Pearson criterion. Then, using the threshold given
by (5.42), find P fa and Pd under the Bayes and maximum-likelihood criteria.
Compare with the Neyman-Pearson results and comment on the differences
in terms of the somewhat larger values of Pd at the expense of orders of
magnitude larger values of P fa.





6
Coherent and Noncoherent Detection
and Processing

The question concerning the relative advantages of coherent and noncoherent
detection and processing arises in all sensing systems, and also in communication
systems, and is concerned with evaluating the benefits associated with preserving
phase information in the signal in the processing. In Chapter 5 it was shown
that matched filtering involves a correlation of the received signal with an exact
replica of itself, which therefore includes its phase. Hence, matched filtering
is synonymous with coherent detection, in the sense that the phase of the signal
is assumed to be known exactly. There is, however, another form of coherent
detection and processing in which the transmitted waveform consists of a train
of pulses whose responses are summed, or ‘‘integrated’’ in a manner such that
the phase relationship between successive pulses is maintained, but the absolute
value of the phase may or may not be known exactly. This is referred to as
coherent integration. If, on the other hand, the summation is performed without
regard to the phase relationship between pulses, the process is called noncoherent
integration.

In this chapter, we first consider noncoherent detection of a single pulse
and compare the results with coherent detection for which, as noted, the results
have already been obtained in Chapter 5. Then the improvement in SNR
yielded by coherent and noncoherent integration of a train of pulses shall be
calculated and compared. Finally the performance of coherent and noncoherent
integration in terms of detection and false-alarm probabilities shall be analyzed
and compared. A summary of the results of this chapter is presented in Section
6.5.
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As is discussed in Chapter 1, the reception process may include translation
of the carrier frequency down to a more manageable intermediate frequency.
This step, however, is irrelevant to the results which follow, and, to simplify
the presentation, is therefore omitted.

6.1 Ideal Noncoherent Detection of a Single Pulse

Consider a situation in which the signal of interest is a rectangular carrier pulse
of duration T 1 of the form APT (t ) cos (2p f0 t + u ) where

PT (t ) = H1, 0 ≤ t ≤ T
0, otherwise

The two hypotheses are

H1: y (t ) = s (t ) + n (t ) = APT (t ) cos (2p f0 t + u ) + n (t )

H0: y (t ) = n (t ) (6.1)

where n (t ) is a realization of mean-zero, white Gaussian noise with two-sided
spectral density N0 /2. In this case, in parallel with the discussion in Section
5.4.1, it is assumed that observations of y (t ) are made at the output of a
hypothetical rectangular bandpass filter of bandwidth B centered at the carrier
frequency f0, as illustrated in Figure 6.1.

Figure 6.1 Rectangular bandpass filter.

1. Results are independent of this choice, made for convenience. Identical results are obtained
in Chapter 10 in a generalized treatment of this subject using arbitrary complex signals.
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The bandwidth must be sufficiently large to pass essentially all the signal
energy, which will be the case if B ≥ 1/T. In this case, by the carrier-sampling
theorem, with sampling at the Nyquist rate there are BT complex samples in
a time T and, in a manner essentially identical to that used to obtain (5.42)
from (5.39) (see also Exercise 6.1), the likelihood ratio in this case is

exp3−(1/2s2) ∑
BT

i=1
( y (t i ) − s (t i ))24

exp3−(1/2s2) ∑
BT

i=1
y2(t i )4

(6.2)

=

exp3−(2B /2s2)E
T

0

( y (t ) − A cos (2p f0 t + u ))2dt4
exp3−(2B /2s2)E

T

0

y2(t )dt4
As before, because the signal is of finite duration, the approximation in passing
from the discrete to the continuous representation improves in the limit as B
is allowed to become very large.

In the noncoherent case u in (6.2) is unknown, and the likelihood ratio
will therefore be of the form P ( y |H1, u )/P ( y |H0), which will have a different
unknown value for each value of the parameter u. Therefore, since no auxiliary
information about u is available, it is reasonable to assume u to be uniformly
distributed over (0, 2p ) and we deal with an averaged likelihood ratio of the
form

E
2p

0

P ( y | H1, u )P (u )

P ( y | H0)
du

=
1

2p E
2p

0
5exp32B

s2 E
T

0

y (t )A cos (2p f0 t + u )dt (6.3)

−
2B

2s2 E
T

0

A2 cos2 (2p f0 t + u )dt46du
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The integral in the exponent involving cos2 (2p f0 t + u ) is

E
T

0

cos2 (2p f0 t + u )dt =
T
2 31 +

1
T E

T

0

cos (4p f0 t + 2u )dt4 (6.4)

=
T
2 F1 +

1
2p f0T

sin 2p f0T cos (2p f0T + u )G ≈
T
2

where the approximation is very good for f0T, the number of cycles per pulse,
greater than about 3 or 4, which will be assumed to be the case. Therefore,
since s2 = (N0 /2)(B + B ) = N0B the likelihood ratio is

exp(−A2T /2N0)
2p E

2p

0
5exp3−

2A
N0

E
T

0

y (t ) cos (2p f0 t + u )dt46du (6.5)

The exponent in the integrand can be written as

−
2A
N0

E
T

0

y (t ) cos (2p f0 t + u )dt

= −
2A
N0

I cos u +
2A
N0

Q sin u (6.6)

I = E
T

0

y (t ) cos 2p f0 tdt , Q = E
T

0

y (t ) sin 2p f0 tdt

and (6.5) becomes, using (3.52)

expS−
A2T
2N0

D E
2p

0

expF−
2A
N0

(I cos u − Q sin u )G du
2p

(6.7)

= expS−
A2T
2N0

D I0S2Az
N0

D
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where z = √I 2 + Q2 and I0 is the modified Bessel function of order zero.2

The LRT is therefore: Choose H1 if

I0S2Az
N0

D ≥ e E /N0 h (6.8)

and choose the null hypothesis H0 otherwise; in (6.8) the exponent has been
written in terms of the signal energy E = A2T /2. Thus, the modified Bessel
function I0 is the optimum noncoherent detection characteristic.

In what follows only the Neyman-Pearson criterion shall be applied. Since
I0(x ) is a monotonically increasing function of x , the LRT (6.8) can be expressed
in an equivalent form as: Choose the alternative H1 if either

z = √I 2 + Q2 ≥ h or z2 = I 2 + Q2 ≥ h2 (6.9)

where the threshold h [not necessarily the same as that in (6.8)] is determined
by the specified false-alarm probability. In what follows we choose the former
case and deal here with z and h . In Chapter 10, which deals with this subject
using generalized complex signals, identical results are obtained using square-
law detection, which demonstrates the exact equivalence of envelope and square-
law detection in this case.

Before dealing with the determination of h for the noncoherent case, let
us consider the generation of the statistic z . This can be accomplished by the
system illustrated in Figure 6.2 which is customarily referred to as a quadrature

Figure 6.2 Quadrature receiver with envelope detection.

2. There should be no confusion between the notation I0, the zero-order modified Bessel
function, and I or Ii , which denotes the in-phase channel term.
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receiver, in which the paths employing multiplication by cos 2p f0 t and
sin 2p f0 t are the in-phase and quadrature channels, yielding I and Q , respec-
tively.

Figure 6.2 is reminiscent of the correlation detector of Figure 5.5. That
is, as discussed in connection with that figure, the multiplication-and-integration
processes in the in-phase and quadrature channels in Figure 6.2 are equivalent
to filters h (t ) matched to PT (t ) cos 2p f0 t and PT (t ) sin 2p f0 t , respectively.
Furthermore, the squaring adding and square-root operations that follow
amount to envelope detection. The statistic z can therefore be generated by
the system illustrated in Figure 6.3. To show this, note that for input y (t ) the
output at any arbitrary time t is

E
t

0

y (t )h (t − t )dt = E
t

0

y (t ) cos 2p f0(T − t + t ) dt

= cos 2p f0(T − t ) E
t

0

y (t ) cos 2p f0t dt

− sin 2p f0(T − t ) E
t

0

y (t ) sin 2p f0t dt

The envelope is

31E
t

0

y (t ) cos 2p f0t dt2
2

+ 1E
t

0

y (t ) sin 2p f0t dt2
2

4
1/2

and the output at the time of correlation, t = T, is equal to

Figure 6.3 Equivalent of quadrature-receiver.
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31E
T

0

y (t ) cos 2p f0t dt2
2

+ 1E
T

0

y (t ) sin 2p f0t dt2
2

4
1/2

= √I 2 + Q2 = z

(6.10)

As is discussed in Chapter 1, the envelope detector is also referred to as
a linear detector, which, as illustrated in Figure 6.4, refers to that property of
the detector whereby the output is proportional to the input when the input
is positive. The operation of the detector, however, is of course highly nonlinear,
as a result of which the output consists of a dc term equal to the envelope

√I 2 + Q2, the carrier term, plus an infinite number of harmonics of the input
at 2f0, 3f0, and so forth. It is for this reason that, as discussed in Chapter 1,
the output of the envelope detector must be passed through a lowpass filter or
a video amplifier, which will eliminate the carrier term and the unwanted
harmonics. Similar comments apply to square-law detectors which generate z2,
whose characteristics are shown in Figures 6.4(b) and 6.4(c).

Now the transfer function of the filter in Figure 6.3 is

H ( f ) = E
T

0

cos 2p f0(T − t ) e −i2p ft dt (6.11)

=
e −ip ( f − f 0 )T

2
sin p ( f − f0)T

p ( f − f0)
+

e −ip ( f + f 0 )T

2
sin p ( f + f0)T

p ( f + f0)

which is essentially that of a bandpass filter of bandwidth ∼1/T with the
indicated phase characteristic, which, of course, is irrelevant here since the
filtering is followed by envelope detection. Hence, for noncoherent detection
the filtering operation is in practice implemented by a bandpass filter, with
essentially arbitrary phase characteristics, whose bandwidth is nominally equal
to that of the signal. As is discussed in [23], the purpose of bandwidth matching
is to maximize SNR. Suppose the bandwidth is very narrow. If it is gradually
widened, both the signal and the noise energy at the output will increase, but
the signal energy will increase faster because it builds up coherently over its
duration whereas the noise contributions at successive time instants are indepen-
dent. Thus, SNR increases. When the bandwidth is nominally equal to that
of the signal, however, further widening leaves the signal energy at the output
unchanged and serves only to increase the noise, and SNR decreases. Hence
the optimum is achieved when the filter bandwidth equals the signal bandwidth.
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Figure 6.4 Various detector characteristics: (a) linear (envelope) detector, (b) square-law
detector, and (c) square-law detector.

The filter bandwidth in this case is therefore matched to the signal band-
width. If one wishes to be more careful, the actual spectral shape of the filter
can be matched to that of the signal. However, the matching is in amplitude
only, and we do not actually have a matched filter since, as is discussed in
connection with Figure 5.5, true matched filtering is equivalent to having
available an exact replica of the signal, which includes the phase. By the same
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token, therefore, matched filtering is exactly equivalent to coherent detection
and as noted, the results of Chapter 5 apply; one might denote the operation
in this section as noncoherent matched filtering [24]. To illustrate the difference
between the two cases, consider the outputs of: (a) a filter matched to a signal
PT (t )A cos (2p f0 t + u ) and (b) that of a filter whose impulse response is
PT (t )A sin 2p f0(T − t ), which are shown in Figure 6.5 (see Exercise 6.3). For
the matched filter the instant of correlation (i.e., t = T ) occurs simultaneously
with a crest of the carrier yielding the maximum peak response. In the noncoher-
ent case this will generally not be the case and the peak response may be smaller.

6.2 Comparison of Coherent and Noncoherent Detection of
a Single Pulse

We are now in a position to compare quantitatively the effectiveness of coherent
and noncoherent detection of a single pulse. Referring to (6.6), the in-phase

Figure 6.5 Outputs of (a) matched and (b) unmatched filters.



154 Signal Processing Fundamentals and Applications

and quadrature components of the output of the bandpass filter in Figure 6.3
at t = T are

I = E
T

0

y (t ) cos 2p f0 t dt = E
T

0

A cos (2p f0 t + u ) cos 2p f0 t dt

+ E
T

0

n (t ) cos 2p f0 t dt =
AT
2

cos u + E
T

0

n (t ) cos 2p f0 t dt (6.12)

Q =
AT sin u

2
+ E

T

0

n (t ) sin 2p f0 t dt

where the approximation of (6.4) has been used. The quantities

X = E
T

0

n (t ) cos 2p f0 t dt = I −
AT cos u

2
(6.13)

Y = E
T

0

n (t ) sin 2p f0 t dt = Q −
AT sin u

2

are each mean-zero Gaussian random variables with variances

E (X 2) = EE
T

0

E
T

0

n (s )n (t ) cos 2p f0 t cos 2p f0 s dt ds

E (Y 2) = EE
T

0

E
T

0

n (s )n (t ) sin 2p f0 t cos 2p f0 s dt ds

and since for white noise

E (n (s )n (t )) =
N0
2

d (s − t )

then to very good approximation, again using (6.4),
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E (X 2) =
N0
2 E

T

0

cos2 2p f0 t dt =
N0T

4
+

N0
2 E

T

0

cos 4p f0 t dt (6.14)

≈
N0T

4
= s2

z

with the same result for E (Y 2). Therefore, since X and Y are independent
Gaussian random variables, their joint density is

P (X , Y )dX dY = expF−
(X 2 + Y 2)

2s2
z

G dX dY

2ps2
z

(6.15)

= expF−
I 2 + Q2 + (AT /2)2 − AT (I cos u + Q sin u )

2s2
z

G dX dY

2ps2
z

Now let I = z cos f , Q = z sin f , with dX dY = dI dQ = z dz df . The exponent
in (6.15) is then

−
z2 + (AT /2)2 − zAT cos (u − f )

2s2
z

(6.16)

and since P (X , Y ) dX dY = P (z , f ) dz df , the probability density of the
envelope z under H1 is

P (z ) = E
2p

0

P (z , f )df = z
exp{−[z2 + (AT /2)2]/2s2

z }

s2
z

×
1

2p E
2p

0

expF−
zAT

2s2
z

cos (u − f )Gdf (6.17)

= z
exp{−[z2 + (AT /2)2]/2s2

z }

s2
z

I0SzAT

2s2
z
D

which is the Rice distribution that was introduced in Section 3.6, with a minor
change in the argument (see Exercise 6.5).

Now under H0, A = 0, and since I0(0) = 1, (6.17) becomes under the
null hypothesis the probability density for the envelope of noise alone, the
Rayleigh distribution
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P (z ) =
z

s2
z

expS−
z2

2s2
a
D (6.18)

The threshold h in (6.8) is therefore determined from the false-alarm probability
P fa using

Pfa = E
∞

h

z
exp (−z2/2s2

z )

s2
z

dz = e −h 2 /2s 2
z (6.19)

whence, using (6.14)

h = (−2s2
z log Pfa)

1/2 = S−
N0T

2
ln PfaD1/2

(6.20)

and the detection probability Pd is

Pd = E
∞

h

z
exp[−(z2 + (AT /2)2)/2s2

z ]

s2
z

I0SzAT

2s2
z
Ddz

This can be put into a more convenient dimensionless form with the change
of variables x = z /sz from which

Pd = E
∞

(−2 ln Pfa )1/2

x expF−
(x2 + a2)

2 G I0 (xa )dx (6.21)

where a2 = 2E /N0.
The expression in (6.21) is known as Marcum’s Q function [25], and

shows explicitly that detection probability depends only on P fa and on the
SNR E /N0. For coherent detection the results for the matched filter—(5.52)
and the following discussion—are

Pd =
1
2 F1 + erfS√ E

N0
− gDG (6.22)

where the numerical parameter g is determined from P fa through the relation-
ship
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Pfa =
1
2

[1 − erf (g )] (6.23)

and the detection threshold h is

h = 2g√ E
N0

(6.24)

Note that, in addition to P fa, the detection threshold depends on the received
signal energy in the coherent case (6.23), but only on the noise and the
integration time in the noncoherent case (6.20), which is somewhat more
convenient.

A comparison of coherent and noncoherent detection using (6.21), (6.22),
and (6.23) is presented in Figure 6.6 in terms of the value of Pd that can be
achieved for a given value of P fa as a function of SNR E /N0. It is seen that:
(1) for small values of E /N0—say, E0 < 3 dB—for any given value of P fa,
noncoherent detection requires from 2 to 3 dB more SNR than that required
by coherent detection in order to achieve the same value of Pd; (2) for large
values of E /N0—say, > 10 dB—the difference in SNR required by the two
schemes is less than ∼1 dB, and it is clear that with further increase in E /N0
the difference eventually becomes negligible.

These results may be understood as follows. With a coherent matched
filter the instantaneous sinusoidal amplitude of the filter output at some time
t is

3At
2

+ E
t

0

n (t ) cos 2p f0t dt4 cos 2p f0 (T − t ) (6.25)

− 3E
t

0

n (t ) sin 2p f0t dt4 sin 2p f0 (T − t )

where, again, (6.4) has been used and u has been set equal to zero for conve-
nience. In contrast with the noncoherent case [e.g., (6.12)], the signal compo-
nent is contained entirely within the in-phase channel and, referring to (3.45),
therefore contends with only the in-phase noise component; the quadrature
channel need not come into play. Now the signal component at the matched
filter output at the instant of correlation is AT /2 and from (6.14), E (X 2) =
E (Y 2) = N0T /4. Hence, SNR for a matched filter is A2T 2/N0T = A2T /N0 =
2E /N0.
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Figure 6.6 Detection probability for coherent and noncoherent detection of a single pulse (adapted from [24]).
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On the other hand, in the noncoherent case both the in-phase and
quadrature noise components come into play, and in a similar calculation the
noise term would be N0T /2. This is clear from the Rayleigh distribution for
the envelope of noise alone, for which E (r2) = 2s2. Hence, if the signal
amplitude A is not very large relative to s , both noise components affect the
random fluctuations in the envelope equally, and SNR is just E /N0. However,
if A is relatively large, the fluctuations in the envelope of signal plus noise will
be caused for the most part only by those noise components in phase with the
signal and the SNR is therefore effectively increased by 3 dB. To show this,3

write the envelope of (6.24) as:

[(A + n c)
2 + n2

s ]1/2 = AS1 +
2n c
A

+
n2

c + n2
s

A2 D1/2

(6.26)

≈ A + n c +
n2

c + n2
s

2A
≈ A + n c

if A is large. Hence the fluctuations in the observable are carried primarily by
n c, and since E (n c

2) = s2 = N0B = N0 /T, then:

A2

s2 =
A2T
N0

=
2E
N0

(6.27)

From still another point of view, let us also recall (see Exercise 3.10) that
if E /N0 is large the Rice distribution can be approximated as a Gaussian, with
exponent (r − A )2/2s2 and A2/s2 = 2E /N0. So to summarize, with a coherently
matched filter, for which the input signal phase must be known exactly, an
advantage over noncoherent detection is achieved when E /N0 is small, which
is equivalent to an improvement in E /N0 by about a factor of two, which is
seen in Figure 6.6. On the other hand, if E /N0 is large—say, > 10 dB—there
is little difference between coherent and noncoherent matched filtering for a
single pulse.

6.3 Improvement in SNR by Coherent and Noncoherent
Integration

In Section 6.2 coherent and noncoherent detection are compared when the
signal consists of a single pulse. In such cases the sensitivity of the receiver—

3. This can also be illustrated by a simple sketch based on Figure 3.9(b).
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that is, the minimum SNR at which a signal pulse can be reliably detected—
is limited by the maximum available energy per pulse. The sensitivity can be
significantly increased, however, with no increase in peak power, by transmitting
waveforms consisting of a large number of pulses and adding up their cumulative
effect. In this case the average power PT T /Tp, where Tp is the interpulse
spacing, and PT is the transmitted signal power per pulse, must be kept within
the capability of the transmitter—the quantity T /Tp is known as the duty
factor. As has been noted, there are two approaches to this type of signal
processing, known as noncoherent integration and coherent integration; these
approaches will now be evaluated and compared in terms of the improvement
in SNR that is achieved in the two cases.

6.3.1 Noncoherent Integration

The noncoherent case shall be considered first. Equation (6.7) gives the likeli-
hood ratio for a single observation. It then follows at once that for M independent
observations the likelihood ratio is

e −MA 2T /2N0PM
i=1

I0S2Az i
N0

D (6.28)

where z i = √I 2
i + Q2

i is the i th output of the detector in Figure 6.3 and

I 2
i = 1E

T

0

y i (t ) cos 2p f0t dt2
2

(6.29)

Q2
i = 1E

T

0

y i (t ) sin 2p f0t dt2
2

where y i (t ) is the i th observation, i = 1, 2, . . . , M . The extension of the
single-pulse LRT of (6.8) to a pulse-train waveform therefore becomes, after
taking logarithms, declare H1 if

∑
M

i=1
ln I0S2Az i

N0
D ≥

MA2T
2N0

+ ln h (6.30)
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Now since the statistic consists of a sum of terms instead of a single term
as in (6.8), the monoticity argument that was used there can no longer be
applied and implementation of the I0 characteristic, which as noted above is
optimum for noncoherent detection, must be considered. It has been shown
in Section 6.2 that the difference between coherent and noncoherent detection
of a single pulse becomes negligible when SNR is large. In the interest of this
comparison, therefore, let us consider the case when 2Az i /N0 is small, and
then make use of the approximation for small x

I0 (x ) ≈ 1 + x2

Thus

ln I0S2Az i
N0

D ≈ lnF1 + S2Az i
N0

D2G ≈ S2Az i
N0

D2

and the I0 characteristic is implemented by a square-law detector. Equation
(6.30) therefore becomes

∑
M

i=1
z2

i ≥
MTN0

8
+

N 2
0

4A2 ln h (6.31)

The process of summing successive outputs after detection is illustrated
in Figure 6.7. The integration is noncoherent because the phase information
that contains the phase relationship between successive pulses is destroyed in
the detection process.

For completeness, for large values of 2Az i /N0, I0(2Az i /N0) is approxi-
mated by

I0S2Az i
N0

D ≈
exp(2Az i /N0)

(4pAz i /N0)1/2

Figure 6.7 System for post-detection integration.
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so that

ln I0S2Az i
N0

D ≈
2Az i
N0

−
1
2

lnS4pAz i
N0

D ≈
2Az i
N0

and (6.31) becomes: Choose H1 if

∑
M

i=1
z i ≥

MAT
4

+
N0
2A

ln h (6.32)

In this case the square-law detector in Figure 6.7 would be replaced by a linear,
or envelope, detector. Thus, the rule for optimal implementation of the ideal
Bessel function characteristic is to use linear detection for large SNR and square-
law detection for small SNR. However there is little difference in performance
for most cases of interest [24].

Continuing with square-law detection, we now introduce the deflection
SNR. If one were observing the output of a nonlinear detector on an oscilloscope,
the appearance of the trace with the arrival of a signal at time t0 would typically
be as illustrated in Figure 6.8. Although, prior to t0 the detector input consists

Figure 6.8 Output of nonlinear detector.
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of mean-zero Gaussian noise, because of the nonlinear operation the mean
value at the output is no longer zero, which has been shown. Thus, prior to
the time t0, the trace an for noise only has some nonzero average value an,
and rms fluctuation

s a = (a2
n − a 2

n)1/2 (6.33)

and with the arrival of the signal the trace would be deflected to a value as+n.
For an observer who is looking for the deflection of the trace as an indication
of the presence of a target (or a digital signal pulse) the quantity

as+n − an
s a

is a reasonable measure of the extent to which the target’s presence would be
detected. For example, a value of 10 would mean that the average deflection
from an due to the presence of a target is 10 times the rms fluctuations of the
trace due to noise.

In the case of interest here the observed quantity is the result of integration
of M successive outputs of the square-law detector, given by Z = SM

i=1z2(i )
and the deflection SNR DSNR [5] is defined here as

DSNR =
Z s+n − Zn

sZ
(6.34)

where sZ = (Z2
n − Z2

n)1/2. The quantity Z s+n involves summation of square-
law-detector outputs z2

s+n(i ) when signal and noise are present, and Zn
denotes noise only. We now calculate DSNR. The i th observation y i (t ) is

y i (t ) = APT (t ) cos (2p f0 t + ui ) + n i (t )

with the usual assumptions for n (t ), and using (6.10)

z2
s+n(i ) = 3E

T

0

[A cos (2p f0t + ui ) + n i (t )] cos 2p f0t dt4
2

+ 3E
T

0

[A cos (2p f0t + ui ) + n i (t )] sin 2p f0t dt4
2

(6.35)

= I 2
i + Q2

i
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where in the interest of maximum generality the unknown signal phase ui is
allowed to vary randomly and independently over (0, 2p ) between successive
observations. The terms Ii and Qi are explicitly

Ii = A cos uiE
T

0

cos 2p2f0t dt − A sin uiE
T

0

sin 2p f0t cos 2p f0t dt

+ E
T

0

n i (t ) cos 2p f0t dt (6.36)

Qi = A cos uiE
T

0

cos 2p f0t sin 2p f0t dt − A sin uiE
T

0

sin 2p f 2f0t dt

+ E
T

0

n i (t ) sin 2p f0t dt

For the same reasons discussed in connection with (6.4) the integrals with
integrands sin 2p f0t cos 2p f0t are negligible, and

E
T

0

sin2 2p f0t dt = E
T

0

cos2 2p f0t dt ≈
T
2

Hence, as before, using the notation

Xi = E
T

0

n i (t ) cos 2p f0t dt (6.37)

Yi = E
T

0

n i (t ) sin 2p f0t dt
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the i th output of the square-law detector when the signal is present is

z2
s+n(i ) = SAT

2
cos ui + XiD2 + SAT

2
sin ui + YiD2 (6.38)

=
A2T 2

4
+ AT (Xi sin ui + Yi cos ui ) + X 2

i + Y 2
i

X i and Yi have the following properties. Referring to (6.14) and the following
discussion,

E (X 2
i ) = E (Y 2

i ) =
N0T

4
(6.39)

Also by using the identity for Gaussian random variables j i

E (j1j2j3j4) = E (j1j2)E (j3j4) + E (j1j3)E (j2j4) (6.40)

+ E (j1j4)E (j2j3)

it is easily shown that (see Exercise 6.6).

E (X 4
i ) = E (Y 4

i ) = 3
N 2

0T 2

16
(6.41)

and

E (X 2
i Y 2

i ) = E (X 2
i )E (Y 2

i ) =
N 2

0T 2

16
(6.42)

That is, X 2
i and Y 2

i are uncorrelated. And by setting A = 0 in (6.38)

E [z2
n (i )] = E (X 2

i + Y 2
i ) =

N0T
2

(6.43)
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With the use of these results, the numerator of (6.34) is

Z s+n − Zn = E3∑
M

i=1
z2

s+n(i ) − ∑
M

i=1
z2

n(i )4 =
MA2T 2

4
(6.44)

The square of the denominator s2
Z is

s2
Z = E (Z2

n ) − [E (Zn )]2

= E31∑
M

i=1
X 2

i + Y 2
i 2

2

4 − 3E ∑
M

i=1
(X 2

i + Y 2
i )4

2

(6.45)

= E ∑
i

(X 2
i + Y 2

i ) ∑
j

(X 2
j + Y 2

j ) − M 2SN0T
2 D2 (6.46)

where (6.39) has been used, and the summation terms reduce to

∑
i

(X 2
i + Y 2

i ) ∑
j

(X 2
j + Y 2

j )

= ∑
i

X 4
i + ∑

i
∑

j
X 2

i X 2
j + ∑

i
Y 4

i (i ≠ j ) (6.47)

+ ∑
i

∑
j

Y 2
i Y 2

i + 2 ∑
i

X 2
i ∑

j
Y 2

i (i ≠ j )

In the double-summations in which i ≠ j , there are M (M − 1) terms, in which
X 2

i and X 2
j are independent, as are Y 2

i and Y 2
j . Also by (6.42) X 2

i and Y 2
i are

independent for all i. Equation (6.47) then becomes, using (6.39)–(6.44):

E ∑
i

(X 2
i + Y 2

i ) ∑
j

(X 2
i + Y 2

i ) =
MN 2

0 T 2

4
+

M 2N 2
0 T 2

4
(6.48)

and using (6.46)
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s2
Z =

MN 2
0 T 2

4
(6.49)

from which, using (6.44), (6.34) is

DSNR =
MA2T 2 /4

(MN 2
0 T 2 /4)1/2 = √M

A2T
2N0

= √M
E

N0
(6.50)

where E = A2T /2 in the signal energy. Since in this scheme the integration
takes place at the output of the detector, noncoherent integration is also referred
to as post-detection integration, which yields an improvement in DSNR by a
factor equal to the square root of the number of summations. For a linear
detector it can be shown that the improvement also goes as √M . This case,
however, is more cumbersome and is not worked out here.

6.3.2 Coherent Integration

According to [5], the first published report proposing the use of coherent
integration was by Emslie [26]. In essence, the processor maintains the phase
relationship between the received pulses so that the signal amplitude adds
coherently. Since the noise is independent from pulse to pulse, an improvement
in effective SNR over noncoherent integration can be achieved. The outputs
of the integrator are usually input to, say, a square-law detector, and coherent
integration is therefore also referred to as predetection integration. As has been
noted, it is not necessary for the exact value of the signal phase to be known
for this purpose. If this value is known, some additional benefit can be obtained,
exactly analogous to that obtained by coherent over noncoherent detection of
a single pulse discussed in Section 6.2. In fact, it will be shown that this
alternative is equivalent to implementing a filter that is matched to the entire
pulse train, and in what follows we make the distinction between predetection
integration, or coherent integration, and what might be termed generalized
matched filtering. It will also be shown, however, that, practically speaking,
there would be no significant advantage in doing this if an increase in receiver
sensitivity were the only purpose.

A receiver for implementing coherent integration is illustrated in Figure
6.9. The input is a train of M pulses, each one of the form PT (t ) cos (2p f0 t
+ u ), where u is assumed to be unknown. This might represent backscatter
from a target or a repeated ‘‘1’’ in a binary communication channel. The
oscillator used in generating the transmitted signal as well as the local oscillators
in the receiver I and Q channels would ordinarily be derived from the same
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Figure 6.9 Receiver for coherent integration.
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clock. Coherent operation requires that the clock maintain phase stability over
time periods of the order of the duration of the M -pulse waveform or the
round-trip travel time up to and back from the target, whichever is shorter.4

Noise is not shown in Figure 6.9, nor are the sum-frequency terms at
the outputs of the multipliers, which would be eliminated by the intermediate
frequency stage. Also, in a radar or wireless application the signal would in
general have undergone a Doppler shift due to target or vehicle motion that
would have to be accommodated. This could be accomplished by employing
a bank of such receivers, in which contiguous local oscillators would be offset
in frequency by an amount equal to the width of a Doppler-resolution cell. In
this way the entire range of possible Doppler shifts could be covered, and the
range rate of the target determined by noting which of the receivers produces
the maximum output. Alternatively, Doppler shifts could be accommodated
by employing large-BT Doppler-invariant waveform such as is described in
Chapters 8 and 9. For purposes of simplicity in this presentation, however,
target or vehicle motion is not considered here.

The outputs of the multipliers are passed through baseband filters matched
to the video pulse shape, and the peak outputs of the filters in the in-phase
and quadrature channels are AT cos u /2 and AT sin u /2, respectively. The inte-
gration which follows, by which SNR improvement is achieved, is accomplished
by periodically overlapping and adding successive filter responses, the period
being equal to the time separation between successive pulse transmissions. At
this point the phase can be determined, if so desired, by dividing the quadrature
term by the in-phase term and applying the arc-tangent operation. However,
it is only necessary to add the outputs of the square-law detectors to acquire
the coherently summed signal amplitude; measurement of u is not necessary
for this purpose. This is possible because sin2 u + cos2 u = 1 and a quadrature
receiver must therefore be used. Eliminating the integrator in Figure 6.9—or
equivalently setting M = 1—yields a receiver for measuring the phase of a single
pulse, on the basis of which a coherent matched filter such as is discussed in
Section 6.2 could be implemented.

In Figure 6.9 it has been tacitly assumed that the unknown phase u
remains constant over the duration of the M -pulse waveform, which (aside
from deterministic variation due to target motion which we do not consider
here) is generally assumed to be the case when coherent integration is employed.
This assumption was not necessary in Section 6.2 for noncoherent integration.
Here, however, it is clear that if this is not the case the signal will not add
coherently from pulse to pulse and the process will not yield the desired SNR
improvement.

4. Practically speaking, it is actually only necessary that the two local oscillator signals remain
othogonal over this time period.
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Now, referring to Figure 6.9 and (6.13), at the instant of correlation for
the i th signal pulse the outputs Ii and Qi of the filters in the in-phase and
quadrature channels are

Ii =
AT cos u

2
+ E

T

0

n i (t ) cos 2p f0t dt

=
AT cos u

2
+ Xi (6.51)

Qi =
AT sin u

2
+ E

T

0

n i (t ) sin 2p f0t dt

=
AT sin u

2
+ Yi

which becomes, after integration

∑
M

i=1
Ii =

MAT cos u
2

+ ∑
M

i=1
Xi (6.52)

∑
M

i=1
Qi =

MAT sin u
2

+ ∑
M

i=1
Yi

And, after adding the outputs of the square-law detectors for the in-phase and
quadrature channels,

Z s+n = 1MAT cos u
2

+ ∑
M

i=1
Xi2

2

+ 1MAT sin u
2

+ ∑
M

i=1
Yi2

2

(6.53)

In order to calculate DSNR, it is necessary to evaluate E (Z2
s+n), which

is equal to

E (Z2
s+n) =

M 2A2T 2

4
+ E31∑

i
X i2

2

+ 1∑
i

Yi2
2

4
because Ii and Qi have zero mean, and
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Z2
s+n − Z2

n =
M 2A2T 2

4
(6.54)

For the denominator of (6.34) we must calculate the square root of the
quantity

E31∑
i

X i2
2

+ 1∑
i

Yi2
2

4
2

− 3E1∑
i

X i2
2

+ 1∑
i

Yi2
2

4
2

(6.55)

The first term is

E31∑
i

X i2
4

+ 1∑
i

Yi2
4

+ 21∑
i

X i2
2

1∑
i

Yi2
2

4 (6.56)

By writing

1∑
i

X i2
4

= ∑
i

X i ∑
j

X j ∑
k

Xk ∑
l

X1 (6.57)

and using (6.40) it is easily shown that

1∑
M

i=1
Xi2

4

+ 1∑
M

i=1
Yi2

4

=
6M 2N 2

0 T 2

16
(6.58)

The cross term in (6.56) is, using (6.42),

2E1∑
i

X i2
2

1∑
i

Yi2
2

= 2E1∑
i

X 2
i ∑

i
Y 2

i 2 =
2M 2N 2

0 T 2

16
(6.59)

so that (6.56) is equal to M 2N 2
0 T 2/2. Hence (6.55) is

M 2N 2
0 T 2

2
−

M 2N 2
0 T 2

4
=

M 2N 2
0 T 2

4
(6.60)
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and finally, from (6.34)

DSNR =
M 2A2T /4

(M 2N 2
0 T 2 /4)1/2 =

MA2T
2N0

= M
E

N0
(6.61)

Thus we have the important result that the improvement in SNR yielded
by coherent integration is equal to the number of coherent additions M , whereas
as seen in (6.50) for noncoherent or postdetection integration the improvement
goes as √M , the square-root of the number of terms in the integration. But
M is also the increase over a single pulse of the received signal energy. Thus
the essential feature of coherent processing is exhibited; namely, that all the
energy in the received signal is effectively recovered.

To achieve this it was only necessary to be differentially coherent from
pulse to pulse. Now suppose u were known, and consider a filter matched to
each pulse, with impulse response: h (t ) = PT (T − t ) cos (2p f0 (T − t ) + u ).
It is not difficult (see Exercise 6.7) to show that in this case, in comparison
with (6.51), the i th output of the in-phase channel at t = T is 1

2 AT + Xi .
Thus the signal is confined entirely within the in-phase channel, the quadrature
channel need not be considered, and the integrated output is

MAT
2

+ ∑
M

i=1
Xi (6.62)

and using the definition of SNR of (5.61)

SNR =
M 2A2T 2/4

E3∑
M

i=1
Xi4

2 =
M 2A2T 2

MN0T
=

MA2T
N0

=
M2E
N0

(6.63)

In fact, we have effectively implemented a generalized coherent matched
filter to a waveform consisting of M repeated pulses, as evidenced by the factor
of 2. The reason the integrated SNR in this case is twice that yielded by the
quadrature detector, (6.61), is because the noise in the quadrature channel as
well as the in-phase channel comes into play there. The situation is therefore
an exact parallel to that discussed in Section 6.2, and it will be seen that the
comparison in performance of coherent integration and generalized matched
filtering also exactly parallels coherent and noncoherent detection of a single
pulse.
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6.4 Performance of Coherent and Noncoherent Integration

Let us now compare the performance of the integration schemes that have been
considered, in terms of false-alarm and detection probabilities.

6.4.1 Noncoherent Integration

Referring to (6.38), the output of the integrator can be written as

SM = ∑
M

i=1
SAT

2
cos ui + XiD2 + SAT

2
sin ui + YiD2 (6.64)

where Xi and Yi are mean-zero Gaussian random variables with variance N0T /4.
The random variable SM has a noncentral chi-square distribution with 2M
degrees of freedom. For an exact solution the reader is referred to [24] which
presents a concise and thorough discussion of chi-square together with exact
performance calculations giving Pd versus P f as a function of E /N0 and M
based on expansion of integrals of the chi-square distribution in a Gram-
Charlier series. Here, a simplified approximate solution shall be presented that
approaches the exact solution as M becomes large and in fact is accurate to 1
dB for M ≥ 4 for typical situations of interest.

Equation (6.64) can be written as

SM = ∑
M

i=1
Ri (6.65)

with

Ri = SAT
2

cos ui + XiD2 + SAT
2

sin ui + YiD2

where the Ri are independent, identically distributed random variables. By the
central-limit theorem, therefore (Section 2.9), the probability density function
of SM approaches a Gaussian in the limit as M → ∞ with mean mM and
variance s2

M given by

mM = ME (Ri ) =
MA2T 2

4
+

MN0T
2

=
MN0T

2 S1 +
E

N0
D (6.66)

s2
M = M [E (R 2

i ) − (E (Ri ))2]
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where the value of mM follows directly from (6.38). Calculation of s2
M requires

evaluating

E (R 2
i ) = ESA2T 2

4
+ ATXi cos ui + ATYi sin ui + X 2

i + Y 2
i D2

= E (a + b + c + d + e )2 (6.67)

= E (a2 + b2 + c2 + d 2 + e2 + 2ab + 2ac + 2ad + 2ae

+ 2bc + 2bd + 2be + 2cd + 2ce + 2de )

Equation (6.67) is simple to evaluate because the expected value of all cross
terms involving odd powers of either Xi or Yi vanish, and by using (6.39) and
(6.41) (see Exercise 6.8),

s2
M =

MN 2
0 T 2

4 S1 + 2
E

N0
D (6.68)

Now for the false-alarm probability set E equal to zero in (6.66) and
(6.68), let m = MN0T /2 and s2 = MN 2

0 T 2/4, and the threshold h is deter-
mined from

Pfa = E
∞

h

e −(x− m )2 /2s 2 dx

(2ps2)1/2
1
2

(1 − erf (g )) (6.69)

where

g = Sm − h

√2s D
and

h =
M
2

N0TS1 + g √ 2
M D (6.70)

The detection probability is
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Pd = E
∞

h

e
−(x−m M )2 /2s 2

M dx

√2psM
(6.71)

=
1
251 + erf3S√

M
2

E
N0

− gD
S1 +

2E
N0
D1/2 64

which shows more directly the benefit in the improvement of SNR, and that
Pd can be made arbitrarily close to unity, for any g , if M can be made large
enough.

A physical picture of the effect of M can be gained by noting that the
separation of the peaks of the Gaussian distributions under H0 and under H1,
is, from (6.66), equal to ETM /2. Also, the standard deviation under H0 is

√MN0T /2. In order to achieve low value of P fa and a sufficiently large Pd,
it is necessary that the probability distributions under H0 and H1 be distinctly
separated with as little overlap as possible. To achieve this it is necessary that
(ETM /2)√MN0T /2 = √ME /N0 be large.

In order to determine the range of M for which (6.71) is a useful approxi-
mation, plots of Pd versus E /N0 are presented in Figure 6.10 for different
values of M ≥ 4 using (6.71) along with more exact results from [24] which
are based on the 2M -degree-of-freedom noncentral chi-square distribution. The
comparison in Figure 6.10 is for P fa = 10−2. In all cases the value of E /N0
required to obtain a given value of Pd as determined using (6.71) is within
1 dB of the value obtained using the more exact solution.

6.4.2 Coherent Integration

In this case an exact solution is obtained. For predetection integration the
output of the square-law detector is (6.53).

SMAT
2

cos u + ∑ XiD2 + SMAT sin u
2

+ ∑
M

i=1
YiD2 (6.72)

which has a noncentral chi-square distribution with two degrees of freedom.
Now in general, a noncentral chi-square random variable z with N degrees of
freedom is of the form
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Figure 6.10 Comparison of SNR requirements with noncoherent integration (P fa = 10−2).

z = ∑
N

i=1
(Bi + x i )2 (6.73)

where the Bi are constants, the x i are independent, mean-zero Gaussian, with
Var (x i ) = s2, and z has a probability density [24]

P (z ) =
1

2s2 S z
b D

(N−2)/4

expF−
(z + b )

2s2 G IN /2−1F(zb )1/2

s2 G (6.74)
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where b = SN
i=1B 2

i , and IN /2−1 is the modified Bessel function of order N /2
− 1. In the case of interest here this takes a very simple form because N = 2.
Thus, B1 = 1

2MAT cos u, B2 = 1
2MAT sin u, x1 = SM

i=1Xi , x2 = SM
i=1Yi , and

x1 and x2 are each independent, mean-zero Gaussian with variance s2 =
MN0T /4. It can be shown using I0(0) = 1 (see Exercise 6.9) that

Pfa = E
∞

h
2

expS−
z

2s2D dz

2s2 = expS−
h2

2s2D (6.75)

where for the square-law detector the threshold has been defined as h2, and

Pd = E
∞

h
2

expS−
z + b

2s2 D I0F(zb )1/2

s2 G dz

2s2 (6.76)

= E
∞

(−2 ln Pfa )1/2

x expS−
x2 + a2

2 D I0(xa )dx

where a2 = 2ME /N0. Equations (6.75) and (6.76), in which no approximations
have been made, are seen to be identical with (6.19) and (6.21) with 2E /N0
in the latter case being replaced by 2ME /N0. Thus there is an effective improve-
ment in SNR by a factor of M , which goes over directly into the calculation
of Pd, and the curves of Figure 6.6 apply exactly with ME /N0 substituted for
E /N0 on the vertical axis. This is the expected result. Coherent predetection
integration increases SNR by a factor of M and, aside from this change, the
subsequent nonlinear operation reproduces exactly the results of Section 6.2.

For generalized matched filtering, by (6.22), (6.23), (6.63), and (5.52),

Pd =
1
2 F1 + erfS√2ME

N0
− gDG (6.77)

where, as before, g is determined from P fa using

Pd =
1
2

[1 − erf(g )], h = 2g √ME
N0

(6.78)

The latter two results, (6.75) and (6.76) and (6.77) and (6.78) illustrate that
the difference between coherent-integration employing square-law detection
and generalized matched filtering is identical to that between coherent and
noncoherent detection of a single pulse as discussed in Section 6.2.
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6.5 Summary of Coherent and Noncoherent Detection and
Processing

Coherent detection of a single pulse requires employment of a coherent matched
filter, for which the exact value of the phase of the input signal must be known.
For noncoherent detection of a single pulse the filter bandwidth is matched to
that of the signal but the phase is unknown. The difference in the two cases
in terms of the transmitted pulse energy required to achieve given value of Pd
for a specified value of P fa becomes significant (a ∼ 3 dB advantage in the
coherent case) only for small values of E /N0—say, in the vicinity of 3 dB or
less. This occurs because in the coherent case the quadrature noise term is
eliminated, whereas for noncoherent detection both the in-phase and quadrature
noise terms come into play. However, for large E /N0—say, E /N0 > 10 dB—
this becomes less important because the quadrature-channel noise under this
condition has very little effect on the fluctuations of the output signal-plus-
noise envelope (or envelope squared), and is therefore effectively eliminated.
For such values of E /N0 the difference in SNR required to achieve a given
value of Pd for fixed P fa between coherent and noncoherent detection is about
1 dB, and eventually becomes negligible as E /N0 increases further.

For a fixed value of single-pulse energy E the detection capability of a
system can be increased by employing a waveform consisting of a train of M
pulses and adding, or integrating, their cumulative responses. If integration is
done after detection—postdetection or noncoherent integration—which
destroys the phase relationship between successive pulses, the signal pulses add
incoherently and the integrated SNR is increased by a factor of √M . However,
if the phase relationship between pulses is maintained by employing stable local
oscillators, and the integration is implemented prior to detection, the SNR is
improved by a factor of M , which of course can amount to a very large difference
(see Exercises 6.14–6.16). In this it is not necessary that the absolute value of
the signal phase be known. The phase, however, could be measured and, ideally,
with the use of this information a filter matched to the entire M -pulse waveform
could be implemented. The relative advantage thereby obtained, however, is
identical to that between coherent and noncoherent detection of a single pulse,
of the order of 3 dB in transmitted signal energy for ME /N0 ≤ 2, and essentially
negligible for ME /N0 > 10. As a result, exact phase knowledge is not important
in coherent integration, because integration is generally employed expressly for
the purpose of achieving large values of ME /N0. It should be noted, however,
that there might be reasons other than signal detection for which knowledge
of the signal phase might be of interest. This is discussed in Chapter 7.

A summary of the quantitative performance results of this chapter are
presented in Table 6.1. Although a specific form of the signal was used, the
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Table 6.1
Coherent and Noncoherent Processing: Summary of Results

Single Pulse

Coherent detection

Pfa =
1
2 [1 − erf (g )]

Pd =
1
2 F1 + erfS√ E

N0
− gDG

Noncoherent detection

Pd = E
∞

(−2 ln P fa )
1/2

expS−
x 2 + a 2

2 D I0 (xa ) dx

= Q (a , −2 ln Pfa )

where a = 2E /N0 and Q (a , b ) is Marcum’s Q function

M-Pulse Waveform

Noncoherent integration: approximate solution for M ≥ 4

Pfa =
1
2 [1 − erf (g )]

Pd =
1
251 + erf3√M

2
E

N0
− g

S1 +
2E
N0D

1/2 46
Coherent integration

Pd = E
∞

(−2 ln P fa )
1/2

expS−
x 2 + a 2

2 D I0 (a , x ) dx

= Q (a M , −2 ln Pfa )

where a M = ME /N0

Generalized Matched Filtering for M Pulses

Pfa =
1
2 [1 − erf (g )]

Pd =
1
2 F1 + erfS√ME

N0
− gDG
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results are perfectly general. This is demonstrated in Chapter 10, where the
same results are obtained using generalized complex signals. We note that
calculations of Pd and P fa versus E /N0 and M can in all cases be carried out
by using Figure 6.6 and the table of values of the error function in Appendix
A. For predetection integration, the vertical axis of Figure 6.6 should be
interpreted as ME /N0 rather than E /N0.

Exercises for Chapter 6

6.1

A real bandpass function x (t ) can be written as R [h (t ) e i2p f 0 t ] where h (t ) can
be complex. If y (t ) = Re[g (t ) e i2p f 0 t ], show that

E
∞

−∞

x (t ) y (t )dt =
1

2B ∑
∞

n=−∞
FhRSn

B D gR Sn
B D + hISn

B D gI Sn
B DG

by making use of the carrier sampling theorem (4.15). It is assumed that x (t )
and y (t ) are observed at the output of a bandpass filter such as shown in Figure
6.1. Recall that the Nyquist rate here is Dt = 1/B.

6.2

For input A sin 2p f0 t + B cos 2p f0 t , determine the outputs of detectors in
Figure 6.4. Show how lowpass filtering or video amplification produces the
desired results. Show that b produces a single harmonic at 2f0, whereas the
others produce an infinite number of harmonics.

6.3

For s (t ) = PT (t ) cos (2p f0 t + u ), show that the response of a matched filter
appears as in Figure 6.5(a), whereas for a filter matched in amplitude only the
output appears as in Figure 6.5(b) (assume u ≠ 0).

6.4

For input AP (t ) cos (2p f0 t + u ), calculate the SNR as defined in (5.61) at
the output of

a. a filter h (t ) = PT (t ) cos [2p f0 (T − t ) + u ]
b. a filter h (t ) = PT (t ) cos 2p f0 (T − t )

Assume noise to be white, Gaussian with power spectral density N0 /2.
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6.5

The Rice distribution in (6.17) differs from that in (3.53) in that in (3.53)
the variable r has the dimensions of volts, whereas in (6.17) the dimension of
z are volts × T /2 which is the effect of the filter. Find the appropriate transforma-
tion of the variable r so that (3.53) reduces to (6.17) and demonstrate this.

6.6

Show that E (X 4
i ) = E (Y 4

i ) = 3N 2
0 T 2/16 where Xi and Yi are given by (6.37).

Using (6.40), the result of (6.4), and E [n (t1)n (t2)] = 1
2N0d (t2 − t1), also

show that X 2
i and Y 2

i are uncorrelated; that is, E (X 2
i Y 2

i ) = E (X 2
i )E (Y 2

i ).

6.7

Verify that the i th output of generalized matched filter is 1
2AT + Xi ; that is,

the quadrature noise term vanishes.

6.8

Evaluate (6.67) and show that (6.66) reduces to (6.68).

6.9

Show that chi-square with two degrees of freedom reduces to the Rice distribu-
tion.

6.10

An observation takes place over 10 seconds. For P fa = 10−6 and bandwidth of
150 Hz, write down an expression for the probability of k false alarms during
this interval. What would be the expected value of k , and the mean time
between false alarms. Repeat for P fa = 10−4 (see Section 11.4).

6.11

The dimensions of the threshold h for a matched filter and for ideal noncoherent
detection are different. For 1

2N0 = 10−6 W/Hz find the value of E for a coherent
matched filter such that P fa = 10−4 can be obtained with a threshold of
h = 22. What would be the resulting value of Pd ?

For the same value of Pd and P fa find the required value of E /N0 for an
envelope detector. Assume the noise is limited in bandwidth to the signal
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bandwidth. Find the required value of received signal power for a threshold of
h = 22. Discuss the difference in units.

6.12

A target is to be observed for 10 seconds with a sensor operating with a
bandwidth of 100 Hz. It is desired that the probability of more than one false
alarm during this interval be ≤ 10−4. The detection probability is to be 0.998.
Define the necessary system parameters (i.e., SNR and threshold) to achieve
this for a coherent system (see Section 11.4).

6.13

For E /N0 = 20 find Pd for P fa = 10−4 and 10−6 for single-pulse coherent and
noncoherent detection. Repeat for E /N0 = 30. You will need tables of the Q
function for this.

6.14

A system employs postdetection integration. What values of M are required to
achieve a detection probability of Pd = 0.99 for P fa = 10−3 for values of E /N0
of 0.25, 0.5, 1, and 2?

6.15

Repeat Exercise 6.13 assuming predetection integration and compare results.

6.16

Repeat Exercise 6.14 for generalized matched filtering and compare results.



7
Parameter Estimation and Applications

In dealing with the general topic of estimation of a parameter on the basis of
information derived from a received signal in the presence of noise, we consider
the classic problem of estimating range to a target in a radar application. This
discussion is facilitated with the use of the analytic signal formulation. For this
purpose we recall that generation of the detection statistic

E
T

0

y (t ) s (t )dt

for a signal in Gaussian noise in (5.42), arises from the quadratic exponent in the
numerator of (5.38) which, in the continuous-time representation, is, ignoring
multiplicative constants,

E
T

0

[ y (t ) − s (t )]2dt

Now, using (4.39),

E
T

0

( y (t ) − s (t ))2dt =
1
2 E

T

0

|z y (t ) − z s (t ) |2dt (7.1)

183



184 Signal Processing Fundamentals and Applications

where z y (t ) and z s (t ) are the analytic signals of y (t ) and s (t ). It therefore
follows that

E
T

0

y (t ) s (t )dt =
1
2

ReE
T

0

z y (t )z s*(t )dt (7.2)

Recall that (7.2) can be generated by operating on the input with a
matched filter with impulse response h (t ) = s (T − t ), for which the output at
time t for an input y (t ) commencing at t = 0 is

E
t

0

y (t )h (t − t )dt = E
t

0

y (t ) s (T − t − t )dt (7.3)

which is equal to (7.2) at t = T. Thus, the impulse response of a matched filter
in the analytic signal formulation is z s*(T − t ), and the complex output at time
t for input y (t ) is1

1
2

z y (t )*zh (t ) =
1
2 E

t

0

z y (t )z s*(T − t + t )dt (7.4)

7.1 Estimation of Range to a Target

The range to a target is to be measured using a transmitted signal

s (t ) = Re[c (t ) e i2p f 0 t ] = cR (t ) cos 2p f0 t − c I (t ) sin 2p f0 (t ) (7.5)

with

C( f ) = E
∞

−∞

c (t ) e −i2p ft dt (7.6)

The signal s (t ) is a generalized carrier pulse of duration T [Figure 7.1(a)],
and c (t ) is a slowly varying complex signal. Although s (t ) and therefore c (t )

1. The asterisks in (7.4) denote convolution (left) and complex conjugate (right).
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Figure 7.1 Generalized signal pulse: (a) transmitted signal and (b) received signal.

are time-limited, the assumption is again made that all the signal energy outside
some range | f | > B /2 is negligible, that is, C( f ) = 0 for | f | > B /2; since we
are interested in carrier signals with bandwidth B, their lowpass envelopes
extend over −B /2 ≤ f ≤ B /2. Under this condition, for f0 > B /2 the analytic
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signal z s (t ) of s (t ), which is defined as z s (t ) = s (t ) + iŝ (t ), is under these
circumstances also given by

z s (t ) = c (t ) e i2p f 0 t (7.7)

That is, as is discussed in Section 4.4 (see Exercise 7.1), if c (t ) is band-
limited as defined above, then the Hilbert transform (HT) of c (t ) cos 2p f0 t
is: HT(c (t ) cos 2p f0 t ) = c (t ) HT(cos 2p f0 t ) = c (t ) sin 2p f0 t , and, of course,
the same relationship holds for c (t ) sin 2p f0 t , from which (7.7) follows.

The carrier frequency f0 will be defined more explicitly below. The require-
ment f0 > B /2 will be satisfied in all cases of practical interest since, as discussed
in Chapter 3, unless this condition holds there will be an insufficient number
of cycles within the pulse duration for us to speak of an amplitude-modulated
carrier at all.

Now referring to (7.4), the analytic signal of the impulse response h (t )
of the filter matched to s (t ) is

zh (t ) = z s*(T − t ) = c *(T − t ) e −i2p f 0 (T− t ) (7.8)

with

h (t ) = Re[c *(T − t ) e −i2p f 0 (T− t ) ] (7.9)

Also, the bandpass representation of Gaussian noise can be written as

n (t ) = Re[n (t ) e i2p f 0 t ] = n c(t ) cos 2p f0 t + n s(t ) sin 2p f0 t (7.10)

where

n (t ) = n c(t ) − in s(t ) (7.11)

zn(t ) = n (t ) e i2p f 0 t

where zn(t ) is the analytic signal of the noise, which is also band-limited.
The signal s (t ) is scattered by the target and the echo arrives back at the

sensor at some time t0 after transmission, as illustrated in Figure 7.1(b). We
wish to detect the presence of the echo and measure, or more correctly estimate,
the target’s range r = ct0 /2 where c is the speed of signal propagation. The
time t0 is determined by noting the time that s (t ) is transmitted—which in
what follows shall for convenience be defined as t = 0—and the time that the
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peak output of the receiver is observed and making an appropriate subtraction.
The received echo will of course have been attenuated in propagation. This,
however, can be ignored in what follows if the signal (7.6) is redefined explicitly
such that

E
∞

−∞

|c (t ) |2dt = E
∞

−∞

|C( f ) |2df = 2E (7.12)

where E is the received rather than the transmitted signal energy. Any amplitude
or phase distortion in the signal due to such factors as target motion,2 dispersion,
or multipath is also ignored. For the noise, if the signal bandwidth is B, it will
be assumed that the in-band noise power accompanying the signal is N0B
where N0 = kT (3.83).

Chapter 6, which deals with coherent and noncoherent operations, dis-
cusses various receiver configurations. Specifically, Section 6.3.2 discusses how
phase information in a signal can be preserved, which is of interest for Section
7.3, which shows how phase information can be used in the measurement of
range. It is, however, more customary in practice to estimate range from observa-
tion of the peak response of a square-law or envelope detector in a receiver
such as that diagrammed in Figure 6.3, which employs a noncoherent matched
filter. In what follows both coherent and noncoherent matched filtering shall
be considered, with square-law detection in the latter case, which greatly simpli-
fies the analysis and is negligibly different from envelope detection for these
purposes.

These alternatives are represented symbolically in Figure 7.2 by the obser-
vation points A and B. Observations at A represent coherent operation, and
observation at B represents noncoherent operation. Either case admits the
possibility of pre- or postdetection integration to improve SNR. Referring to
(7.4), (7.7), and (7.8) the complex output at point A if the filter were coherently
matched to the signal is

1
2 E

∞

−∞

z s (t )zh (t − t )dt =
1
2 E

∞

−∞

c (t − t0) e i2p f 0 (t − t 0)c *(T − t + t )

× e −i2p f 0 (T− t+ t )dt (7.13)

=
1
2

e i2p f 0 (t −T− t 0) E
∞

−∞

c (t − t0)c*(T − t + t )dt

2. To be discussed in Chapter 8. These effects are ignored here.
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Figure 7.2 Typical receiver.

and the output of the square-law detector at point B is

f (t ) =
1
4 | E∞

−∞

c (t − t0)c *(T − t + t )dt |2 (7.14)

where infinite limits can be used since the definition of c (t ) includes its finite
duration T. In (7.13) and in what follows, for simplicity of notation we continue
to use f0 to denote the signal carrier frequency, and omit making the distinction
between the transmitted carrier frequency and the intermediate frequency (IF),
which would be different from f0 in a heterodyne receiver.

Notice in (7.13) and (7.14) that the additional terms that normally arise
in the real-signal formulation, which we generally ignore by making use of the
approximation of (6.4), do not arise here. This follows from the foregoing band-
limited assumption; the approximation of (6.4) is equivalent to assuming the signal
to be band-limited as discussed above (see Exercise 7.4).

In (7.13), if the filter were matched in amplitude, only the phase in
the exponential multiplying the integral in (7.13) would contain an arbitrary
unknown phase u. But this, of course, makes no difference in the detector
outputs at point B and (7.14) gives the output of the square-law detector for
either case. Also, the detector output will be zero until t ≥ t0, at which time
f (t ) begins to increase, and the maximum is reached at tM = t0 + T, which
is easily proved by applying the Schwarz inequality (5.66). Again, this is a
result of the band-limited approximation, since the additional terms that are
encountered with real signals, however small—and which are eliminated by
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the approximation of (6.4)—would result in the detector output not being
necessarily maximum at t = t0 + T if the filter were not coherently matched
(see Exercise 7.5).

In any case, the observable of interest is the time at which the maximum
detector output occurs, from which, under the band-limited approximation,
and, for simplicity ignoring delays in such variables as waveguides and cables,
t0 is determined from

t0 = tM − T (7.15)

In practice the approximation t0 ≈ tM is often made. However, if very accurate
measurements are required the delay T imposed by the filter should be included,
as well as all other delays in the processing path. At t = tM , (7.14) is

f (tM ) =
1
4 | E∞

−∞

|c (t ) |2dt |2 =
1
4 | E∞

−∞

|C( f ) |2df |2 = E 2 (7.16)

where E is the energy in the received signal and, for simplicity, the multiplicative
effects of such factors as amplifier gain and losses in waveguides and cables
have been ignored. Since these shall also be ignored for the noise, which is
affected by them equally, the ratio E /N0 will remain unchanged.

Now let us consider the effect of noise on the measurement. As will be
seen shortly, if target range is to be measured to satisfactory accuracy a reasonably
large SNR is required. In this case, although detection of the echo will not be
difficult, some perturbation of the pulse shape by the noise can be expected,
with the result that the location of the peak of the detector output may be
displaced from its position in the noise-free case; also, since the filter bandwidth
is matched to the signal bandwidth, the noise at the filter output cannot fluctuate
more rapidly than the signal. To a first approximation, therefore, as is illustrated
in Figure 7.3, let us assume that the output of the square-law detector in the
noise-free case f (t ), becomes transformed in the presence of noise to f (t − e ),
in which case se = (e2)1/2 is a measure of the accuracy with which the range
r to the target can be measured.

In calculating se it is convenient to use the following explicit definition
of carrier frequency f0 [27], in terms of the spectrum Z s( f ) of the analytic
signal z s(t )

Z s( f ) = E
∞

−∞

z s(t ) e −i2p ft dt (7.17)
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Figure 7.3 Effect of noise on range measurement.

which has only positive frequencies. The carrier frequency is defined as the
distance of Z s( f ) from the origin, in terms of the centroid of |Z s( f ) |2, as

f0 =

E
∞

−∞

f |Z s( f ) |2df

E
∞

−∞

|Z s( f ) |2df

=

E
∞

−∞

f |Z s( f ) |2df

2E
(7.18)

But from (7.7)

Z s( f ) = C( f − f0) (7.19)

where C( f ) is given by (7.6). Hence, by substituting (7.19) and (7.16) into
(7.18),

E
∞

−∞

f |C( f ) |2df = 0 (7.20)
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Thus, this definition of f0 defines the lowpass envelope functions of s (t ), cR (t )
and c I (t ), such that the centroids of their spectra around f = 0 vanish. If, as
is often the case, | s (t ) | is symmetrical about its midpoint, this means that
|C( f ) | = |C(− f ) |, and |Z s( f ) | will therefore also be symmetrical around
f = f0.

We also introduce the quantity b [27] defined by

b2 =

E
∞

−∞

[2p ( f − f0)]2 |Z s( f ) |2df

2E
(7.21)

=

E
∞

−∞

(2p f )2 |C( f ) |2df

2E

which is essentially the center of gravity of |Z s( f ) |2 about the carrier frequency
f0, or equivalently, of the lowpass function |C( f ) |2 about f = 0. As such, b
is obviously related to the bandwidth of s (t ), but the specific percentage of the
total signal energy in |C( f ) |2 contained within the range −b /2 ≤ f ≤ b /2
will depend on the particular pulse shape s (t ). For a signal with a rectangular
spectrum B it is found (see Exercise 7.6) that b = pB /√3 ≈ 1.8B.

From these definitions of f0 and b the following relationships are easily
shown to hold (see Exercise 7.7).

E
∞

−∞

c *(t )
dc (t )

dt
dt = E

∞

−∞

c *(t )c ′ (t )dt = 0 (7.22)

−b2 =

E
∞

−∞

c *(t )c ″ (t )dt

E
∞

−∞

|c (t ) |2dt

(7.23)

where prime denotes derivatives with respect to the variable of integration, t .
Now denote
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z (t ) = E
∞

−∞

c (t − t0)c *(T − t + t )dt (7.24)

and in the noise-free case the output of the square-law detector f (t ) is
1
4 |z (t ) |2, and at t = tM

f (tM ) =
1
4

|z (tM ) |2 =
1
4 |Ec (t )c *(t )dt |2 = E 2 (7.25)

Referring to (7.10) the input to the filter when noise is present is z y (t ) =
z s(t − t0) + zn(t ), which can also be written as z s(t − t0) + zn(t − t0), which
simplifies the calculation and sacrifices no generality because zn(t ) is stationary
and we shall ultimately be taking expected values. Thus, in the presence of
noise, the output of the filter is

1
2

e i2p f 0 (t −T− t 0)3z (t ) + E
∞

−∞

n (t − t0)c *(T − t − t )dt4 (7.26)

The output of the square-law detector is therefore

f (t ) =
1
4

|z (t ) |2 +
1
2

Rez *(t ) E
∞

−∞

n (t − t0)c *(T − t + t )dt (7.27)

+
1
4 | E∞

−∞

n (t − t0)c *(T − t + t )dt |2
Hence by the foregoing discussion concerning the effect of noise on f (t ) the
output of the square-law detector of time t = tM can be written as

f (tM − e ) = f (tM ) − e f ′(tM ) +
1
2

e2f ″(tM ) + . . . (7.28)

Since f (tM ) is the peak of the noiseless detector response, f ′(tM ) = 0, and
also f ″(tM ) < 0. In fact we have (see Exercise 7.8)
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f ″(tM ) =
1
4

d 2 |z (t ) |2

dt2 = −2b2E 2

and by using (7.25) and applying the expectation operator to (7.28) and ignoring
terms higher than 0(e2)

E [ f (tM − e )] = E 2 − b2E 2s2
e (7.29)

where s2
e = E [e2]. The physical interpretation is that noise causes the peak

response of the square-law detector to be reduced by an amount b2E 2s2
e . We

can evaluate s2
e by applying the expectation operator to (7.27), the output of

the square-law detector with noise present, which at t = tM is:

E 2 +
1
4 E

∞

−∞

E
∞

−∞

E [n (t1)n *(t2)]c (t1)c *(t2)dt1 dt2

and by using (7.29) and applying the foregoing physical interpretation:

s2
e =

E
∞

−∞

E
∞

−∞

E [n (t1)n *(t2)]c (t1)c *(t2)dt1dt2

4b2E 2 (7.30)

For the numerator of (7.30), by (7.10) and (7.11), we have

E [n (t1)n *(t2)] = E [n c(t1)n c(t2) + n s(t1)n s(t2)]

+ iE [n c(t1)n s(t2) − n s(t1)n c(t2)] (7.31)

= 2R (t1 − t2)

where R (t1 − t2) = E [n c(t2)n c(t1)] = E [n s(t2)n s(t1)].
Now the signal contends with the noise waveform (7.10) whose power

spectral density is equal to N0 /2 over two bands of width, say, BN centered
at ± f0. The correlation function of n (t ) is therefore

N0
2 E

−f 0 +BN /2

−f 0 −BN /2

e i2p ft df +
N0
2 E

f 0 +BN /2

f 0 −BN /2

e i2p ft df = N0
sin pBN t

pt
cos 2p f0t

(7.32)
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But from (7.10) the correlation function of n (t ) is R (t ) cos 2p f0t . The correla-
tion function of the slowly varying functions n c(t ) and n s(t ) is therefore
N0(sin pBN t /pt ) which yields R (0) = E (n2(t )) = E (n2

c(t )) = E (n2
s(t )) =

N0BN as expected. The bandpass noise waveform (7.10) therefore has energy
spread over two bands | f ± f0 | ≤ BN /2 with power spectral density N0 /2, and
the lowpass functions nc (t ) and n s (t ) have power spectral density N0 over
| f | ≤ ±BN /2. The numerator of (7.30) is therefore, if BN ≥ B,

2N0 E
BN /2

−BN /2

| E∞
−∞

c (t ) e −i2p ft dt |2df = 2N0 E
B /2

−B /2

|C( f ) |2df = 4N0E

(7.33)

Thus, for (7.33) to hold the bandwidth of the noise, incident at the filter
must at least equal the bandwidth of the filter. In physical terms, the foregoing
result requires that successive noise samples separated in time by 1/B be uncorre-
lated, which will not be the case if BN < B. Assuming this, substitution of
(7.33) into (7.30) yields the result

se ≈
1

b (E /N0)1/2 (7.34)

Note that, as is discussed at the end of Section 6.2, if the filter were
matched in phase as well as amplitude, the signal would contend with only
the in-phase noise component. Hence, from (7.31), R (t ) rather than 2R (t )
would be used in (7.33) and 2E /N0 would replace E /N0 in (7.34).

The relationship between measurement accuracy, SNR and resolution
capability was first obtained in this form by Woodward [28]. Since b = 1.8B
for a rectangular bandwidth B, range-measurement accuracy increases with
signal bandwidth and SNR. Bandwidth is, of course, related to range-resolution
capability. It is easily shown that two point scatterers separated in range by a
distance Dr + d will produce two distinct echoes, just time-resolved, if illumi-
nated by a rectangular pulse of duration T = 2Dr /c ; the separation between
the echoes will be 2d /c . The resolution capability of a rectangular pulse of
duration T is therefore Dr = cT /2 or 1/B ∼ T = 2Dr /c . Using (7.34), the
standard deviation of the range-measurement error sr = cse /2 can be expressed
in terms of the range-resolution width Dr as

sr =
c /2

1.8B√E /N0
=

cT /2

1.8√E /N0
=

Dr

1.8√E /N0
(7.35)
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Equation (7.35) emphasizes the difference between the capability for
distinguishing the presence of two separate closely spaced objects, and measuring
the position of a single object when only one is present. This distinction
has been confused by many, including, evidently, Lord Rayleigh [29]. While
measurement accuracy sr is proportional to resolution capability Dr , it can in
fact be thousands or even millions of times greater (better), depending on the
value of E /N0.

As is discussed above, this analysis applies to observations at the output
of a square-law or envelope detector whether the filter prior to the detector is
matched in phase and amplitude, or amplitude only. It also applies to outputs
of a receiver employing predetection or postdetection integration. In this case
however, as is discussed in Chapter 6, for predetection integration the factor
E /N0 in (7.34) or (7.35) would be replaced by ME /N0, where M is the number
of pulses integrated, and for postdetection integration E /N0 would be replaced
by √ME /N0.

7.2 Generalized Parameter Estimation

In Section 7.1, based on physical considerations, an expression has been derived
that gives the accuracy with which target range can be measured and identifies
the system parameters on which the accuracy depends. It is of interest to ask
whether this result represents a limit or whether one could possibly do better.
In what follows the question of parameter estimation is addressed more generally,
in terms of statistical estimation theory, in which it will be shown that (7.34)
in fact essentially represents a bound on the accuracy that can be achieved,
which follows from a general result with a wide range of applicability.

We first review briefly some elements of statistical estimation theory. The
joint probability density function of N independent observations of a Gaussian
random variable y (t i ) = n (t i ) + s (t i − t0) with mean value s (t i − t0), which
represents the echo of a target at range r = ct0 /2 is

PN
i=1

exp[−( y (t i ) − s (t i − t0))2/2s2]

(2p )N /2sN

In general, the joint, a priori conditional density function of N observations
y1, y2, . . . , yN , from which an unknown parameter u 3 is to be estimated,

3. There should be no confusion between this standard usage of u as an unknown parameter
in estimation theory and previous usage in which u represents phase of a sinusoid.
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which in the above example would be t0, is referred to as the likelihood function
L ( y1, y2, . . . , yN ; u ). For N independent observations this takes the form

L ( y1, y2, . . . , yN ; u ) = f ( y i , u ) f ( y2; u ) . . . f ( yN ; u ) (7.36)

In order to estimate u, an estimator û ( y1, y2, . . . , yN ) is constructed,
which is a function of the N observations y (t1), y (t2), . . . , y(tN ), whose value
after the observation is taken to be the estimate of the unknown parameter u.
Since the y i s are random variables the estimator is also a random variable. Thus
any estimate of u is a random quantity, and the mean and variance of û are a
measure of how good an estimate of u the estimator û actually is.

As an example, suppose the y i , i = 1, 2, . . . , N, are independent observa-
tions of a random variable whose unknown mean m is to be estimated. A
possible estimator of u = m is

û ( y1, y2, . . . , yN ) =
1
N ∑

N

i=1
y i (7.37)

whose expected value is

E [û ] =
1
N ∑

N

i=1
E [ y i ] = m (7.38)

in which case the estimator is said to be unbiased, since its expected value is
equal to the true value.

7.2.1 The Cramer-Rao Lower Bound on the Variance of an Estimator

It is clearly desirable for an estimator to be unbiased. For an unbiased estimator
it is also desirable for the variance of the estimator E (û − u )2 to be as small
as possible, since the fluctuations of any particular realization û ( y1, y2, . . . ,
yN ) about the true value E (û ) can then be expected to be correspondingly
small. It is left as an exercise (Exercise 7.9) to show that if û is not unbiased,
then E (û − u )2 is not the variance of the estimator û. An important result
will now be proved which establishes a lower bound on the variance of any
estimator, thereby setting a limit on the accuracy that can be achieved.

Since L ( y1, y2, . . . , yN ; u ) is the joint density of y1, y2, . . . , yN , then
from the foregoing discussion
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E [û ( y1, y2, . . . , yN )]

= E û ( y1, y2, . . . , yN )L ( y1, y2, . . . , yN ; u )dy1dy2 . . . dyN (7.39)

= E û (y)L (y; u )dy = u + b (u )

where the bias b (u ) can in the most general case be a function of the unknown
parameter u, and for convenience we write the N-tuple ( y1, y2, . . . , yN ) as
a vector y.

It then follows that

∂E [û (y)]
∂u

= E û (y)
∂L (y; u )

∂u
dy = 1 +

∂b (u )
∂u

(7.40)

and also

EL (y; u )dy = 1

E ∂L (y; u )
∂u

dy = 0 (7.41)

Eu
∂L (y; u )

∂u
dy = 0

Therefore, since
∂L (y; u )

∂u
= L (y; u )[∂ log L (y; u )/∂u ], it follows that

E [û (y) − u ]L (y, u )
∂ log L (y; u )

∂u
dy = 1 +

∂b (u )
∂u

(7.42)

but by the Schwarz inequality (5.66), since L (y; u ) = (L (y; u ))1/2 (L (y; u ))1/2,

FE [û (y) − u ]L (y; u )
∂ log L (y; u )

∂u
dyG2

= F1 +
∂b (u )

∂u G2

≤ E [û (y) − u ]2L (y; u )dy

× EL (y; u )F∂ log L (y; u )
∂u G2

dy
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Hence,

D2(u ) ≥
F1 +

∂b (u )
∂u G2

EL (y; u )F∂ log L (y; u )
∂u G2

dy

(7.43)

which is the Cramer-Rao [30] lower bound on the quantity
D2(u ) = E (û − u )2 = e (û (y) − u )2L (y; u )dy which is not the variance of
the estimator û unless b = 0. If, however, b = 0, (7.43) yields the lower bound
on the variance u 2

û of an unbiased estimator û

s 2
u ≥

1

EL (y; u )F∂ log L (y; u )
∂u G2

dy

=
1

EFS∂ log L (y; u )
∂u D2G

(7.44)

Nowhere in this derivation has (7.36) been used, and (7.44) is therefore
a general result in terms of the joint density function L (y; u ) of the y1, y2,
. . . , yN which need not be independent. If the y ’s are independent, however,
(7.36) holds and the Cramer-Rao lower bound then becomes

s
2
û ≥

1

NEFS∂ log f (y; u )
∂u D2G

Equations (7.43) and (7.44) represent the limit on the performance of
any estimator. An estimate that meets the Cramer-Rao lower bound is said to
be efficient. If the variance of the (unbiased) estimator meets this lower bound
as N → ∞ the estimator is said to be asymptotically efficient. A third important
property is sufficiency, which we do not deal with in any detail in what follows
but discuss briefly here for completeness. An estimator is said to be sufficient
if it makes use of all the information in the observations ( y1, y2, . . . , yn )
concerning the value of the unknown parameter u. A test for sufficiency is that
the likelihood function can be written in the form

L ( y1, y2, . . . , yn ; u ) = g ( y1, y2, . . . , yn )h (û, u ) (7.45)

To see why û is a sufficient statistic if (7.45) holds, note that in general
L(y; u ) can be written using Bayes’ rule in terms of the conditional density
of y given the random variable û as
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L (y; u ) = Pu (y |u )Pu (u )

Now if the functional form of û is such that (7.45) holds, then by (2.17)

Pu (y | û ) =
L (y; u )
Pu (u )

=
g (y)h (u, û )

Eg (y)h (u, û )dy
=

g (y)h (u, û )

h (u, û )
= g (y)

Hence, if (7.45) holds, the conditional density of y given the values of û and
u is g (y), which is independent of û and u. Thus all the information concerning
u is contained in the function h (û, u ) and no other estimator can yield any
more information concerning u ; hence û is sufficient.

7.2.2 Maximum-Likelihood Estimation

Having briefly summarized the properties of estimators, we now deal with the
question of how the estimator is to be constructed. The notion of maximum
likelihood has already been encountered in Chapter 5. There it is used as
criterion for choosing between the two hypotheses H0 and H1. Here it is
used for purposes of estimation. In this case the estimate û of u is that value
which maximizes the likelihood function L (y; u ). That is, û satisfies

∂L (y, u )
∂u |

u = û
= 0 (7.46)

Since the likelihood function L (y, u ) is in fact also the conditional density of
y given u, the maximum-likelihood estimate (MLE) assigns to the unknown
parameter u that value û (y), which guarantees that this conditional density
function will be maximized for any set of observations y. This rationale for
choosing an estimator is similar to that used for maximizing the probability of
correct decision, as discussed in connection with (5.3).

As examples, consider a set of independent observations y i , i = 1, . . . ,
N where y is Gaussian with known variance s2 and unknown mean m which
is the parameter to be estimated. The likelihood function is then

L (y, m ) =

exp3− ∑
N

i=1

( y i − m )2

2s2 4
(2p )N /2sN

and (7.46) becomes
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−L (y, m )
∂

∂m ∑
N

i=1

( y i − m )2

2s2 = L (y, m ) ∑
N

i=1

( y i − m )

s2 = 0

which is satisfied for that value of the estimator m̂ given by

m̂ (y) =
1
N ∑

N

i=1
y i (7.47)

It can also be shown (see Exercise 7.10) that if m is known, the MLE
ŝ2 of s2 is

ŝ2 =
1
N ∑

N

i=1
( y i − m )2 (7.48)

and if both m and s are unknown the unbiased MLE of s2 is

ŝ2 =
1

N − 1 ∑
N

i=1
( y i − m̂ )2 (7.49)

where m̂ is given by (7.47). Also, both (7.47) and (7.49) are unbiased. Both
(7.47) and (7.49) are arithmetic averages. The reason for the factor 1/N − 1
in (7.49) is that for any set of observations y the estimate m̂ is a constraint on
the estimate of s2 for which there are therefore only N − 1 independent
quantities remaining. Therefore if the normalization is 1/N, the estimate will
be biased.

For purposes of estimation the method of maximum likelihood is very
useful. In many cases the MLE satisfies the Cramer-Rao lower bound. Further-
more, it can be shown that the MLE will be an efficient and/or a sufficient
estimate of an unknown parameter if in fact an efficient and/or a sufficient
estimate for that parameter exists.

7.3 Applications of Maximum-Likelihood Estimation to
Sensor Measurements

Referring to Section 5.1, the likelihood function in continuous-time representa-
tion for an observation of bandpass signals y (t ) = n (t ) + s (t ), with the usual
assumptions for n (t ), is
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exp3−
1

N0
E
∞

−∞

[ y (t ) − s (t )]2dt4
(2p )N /2sN =

exp3−
1

2N0
E
∞

−∞

|z y (t ) − z s (t ) |2dt4
(2p )N /2sN

(7.50)

where z y (t ) and z s (t ) are the corresponding analytic signals. In the case of
interest the transmitted signal is a pulsed carrier waveform such as (7.5), the
received signal is s (t − t0), and t0 is the unknown parameter representing target
range, which is to be estimated. Then the likelihood function L ( y (t ), t0) is

L ( y (t ), t0) =
1

2pN /2sN 5exp1−
1

2N0
E
∞

−∞

|z y (t ) |2dt2 expS−
E

N0
D (7.51)

exp3 1
N0

Re E
∞

−∞

z y (t )z s*(t − t0)dt46
where E is signal energy, and the MLE t̂0 of the unknown parameter t0 is that
value of t0 which maximizes

Re
N0

E
∞

−∞

z y (t )z s*(t − t0)dt (7.52)

But, referring to (7.4) this is equivalent to processing z y (t ) with a matched
filter with complex impulse response zh (t ) = z s*(T − t ) for which the output
at time t is

E
∞

−∞

z y (t )z s*(T − t + t )dt (7.53)

which yields (7.52) for t = t0 + T. The value of t that maximizes (7.53) is
therefore equivalent to the value of t0 that maximizes (7.52). The estimate t̂0
which maximizes (7.52) is that value

t̂0 = tM − T (7.54)
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which is obtained at the instant that the matched filter output is maximum at
t = tM . Thus, the matched filter yields the MLE of range.4

Moreover, the estimate is unbiased because (7.53) is

E
∞

−∞

zn (t )z s*(T − t + t )dt + E
∞

−∞

z s (t − t0)z s*(T − t + t ) (7.55)

which for zn (t ) = 0 is maximum for t = t0 + T. When noise is present, (7.54)
becomes

t̂0 = tM − T + e (7.56)

where e is a random perturbation. However, on average the perturbation will
clearly be symmetrical about the true value; hence, E (e ) = 0 and (7.44) applies.

7.3.1 Calculation of the Cramer-Rao Bound for Coherent and
Noncoherent Observations

In calculating the Cramer-Rao lower bound, there are two possibilities that
will be considered. The range estimate can be based on coherent observations
at the output of a matched filter, in which the phase information in the
signal is utilized. Second, after matched filtering, the estimate can be based on
observations at the output of a square-law detector—or an envelope detector—
the case discussed in Section 7.1, which shall be considered first.

Here the phase information is destroyed and all the available information
resides in the position of the signal envelope, or envelope squared. In this case
however, because of the nonlinear operation, the likelihood function would
have to be formulated in terms of the chi-square or the Rice distribution and
the calculation would be quite tedious. Let us avoid this by dealing with a
hypothetical situation in which the transmitted signal is a video pulse of band-
width B. This will yield essentially the same result, since the estimate uses no
phase information, being based on information concerning the position of the
envelope only, and permits a much simpler calculation because Gaussian statis-
tics apply. Therefore assume the received signal to be a real, band-limited video
pulse v (t − t0) with

4. This holds for the noncoherent as well as the coherent case—see (7.15).
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v (t ) = E
B

−B

V ( f ) e i2p ft df

E = E
∞

−∞

v2(t )dt = E
B

−B

|V ( f ) |2df (7.57)

b2 =

4p2E
B

−B

f 2 |V ( f ) |2df

E

where, again, B is sufficiently large to include essentially all the signal energy
and,

E
∞

−∞

v (t )v ′(t )dt = 0 (7.58)

for which symmetry of v (t ) about its midpoint is sufficient condition. The
likelihood function (7.50) is thus

L (y, t0) =

exp3−
1

N0
E
∞

−∞

[ y (t ) − v (t − t0)]2dt4
(2p )N /2sN (7.59)

from which, using (7.58)

∂ log L (y, t0)
∂t0

=
2

N0
E
∞

−∞

y (t )
dv (t − t0)

dt0
dt

= −
2

N0
E
∞

−∞

y (t )
d
dt

v (t − t0)dt (7.60)

= −
2

N0
E
∞

−∞

y (t )v ′(t − t0)dt
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and

EF∂ log L (y, t0)
∂t0

G2

=
4

N 2
0
E
∞

−∞

E
∞

−∞

E [ y (t1) y (t2)]v ′(t1 − t0)v ′(t2 − t0)dt1 dt2

(7.61)

Now

E [ y (t1) y (t2)] = E [(n (t1) + v (t1 − t0)) (n (t2) + v (t2 − t0)] (7.62)

= E [n (t1)n (t2)] + v (t1 − t0)v (t2 − t0)

since E [n (t1)] = E [n (t2)] = 0, and when (7.62) is substituted into (7.61), the
contribution from v (t1 − t0)v (t2 − t0) vanishes by (7.58). Therefore using
(7.31), (7.32),5 and (7.57), (7.61) becomes

2
N0

E
∞

−∞

E
∞

−∞

sin 2pBN (t1 − t2)
p (t1 − t2)

v ′(t1 − t0)v ′(t2 − t0)dt1 dt2

=
2

N0
E
BN

−BN

|Ev ′(t − t0) e 2p ft dt |2df (7.63)

=
2

N0
E
B

B

4p2f 2 |V ( f ) |2df =
2b2E

N0

if, as in (7.33), BN > B, and therefore from (7.44)

s t̂0
≥

1

b (2E /N0)1/2 (7.64)

Comparison of (7.64) with (7.34) shows that the Cramer-Rao bound is
achieved with a matched filter. Equation (7.64) has a wide range of applicability
for estimation in the presence of Gaussian noise and applies to any measurement
system in which the desired information resides in the location of the peak of

5. The integration in this case, however, extends from −BN to BN.
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some response. For example, range rate can be determined from Doppler shift,
which can be estimated from the displacement from the transmitted carrier
frequency of the peak of the Fourier transform of the received echo; this is
discussed in Chapter 8; or the angular location of a target can be estimated by
noting the azimuthal direction of a scanning search-radar antenna at which the
peak response of a target occurs. In the former case, for a rectangular pulse of
duration T, b = 1.8T. In the second case, for linear radiator (e.g., antenna) of
length L with a uniform excitation (e.g., current distribution; see Chapter 11)
over L , b = 1.8L /l where l is the wavelength of the transmitted signal. These
values of b are calculated using (7.57) with the proper interpretation of V ( f )
(see Exercise 7.11). In each of these examples 1/b is proportional to what
might be termed the measurement-resolution width of the system. For Doppler
measurements the frequency-resolution width is ∼1/T and for an antenna, as
is shown in Chapter 11, the angle-measurement resolution is l /L . Hence,
denoting D as the measurement-resolution width of any system, which is a
measure of the capability of the system for resolving two closely spaced responses,
the lower bound on the standard deviation s û of an unbiased estimator can
be written as

s û ≥
kD

(2E /N0)1/2 (7.65)

where k is a constant of order unity and kD can be calculated using (7.57)
appropriately.

We turn now to the question of the bound on the variance of the estimator
when phase information is utilized. From (7.50)–(7.52) and (7.60), returning
to the use of analytic signals and, referring to the paragraph preceding (7.26),
writing for convenience zn(t ) = zn(t − t0),

−
∂ log L ( y (t ), t0)

∂t0
=

Re
N0

E
∞

−∞

z y (t ) z s′(t − t0)dt

=
Re
N0

E
∞

−∞

n (t − t0) e i2p f 0 (t − t 0) d
dt

c *(t − t0) e −i2p f 0 (t − t 0) dt

+
Re
N0

E
∞

−∞

z s(t − t0) z s′*(t − t0)dt (7.66)
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The integrand of the last term on the right-hand side of (7.66) can be written
as

1
2

d
dt

|z s(t − t0) |2 =
1
2

d
dt

|c (t − t0) |2 (7.67)

=
1
2

c *(t − t0) c ′(t − t0) +
1
2

c (t − t0) c ′*(t − t0)

Hence the last term on the right-hand side of (7.66) vanishes by (7.22). The
first term is6

Re
N0

E
∞

−∞

n (t − t0)c ′*(t − t0) − i2p f0c *(t − t0)]dt =
Re
N0

[A + B ] (7.68)

=
1

2N0
[A + B + A* + B*]

We must calculate

1

4N 2
0

E [A + B + A* + B*]2 =
E

4N 2
0

[A2 + B2 + A*2 + B*2 + 2AB

+ 2A*B* + 2 |A |2 + 2 |B |2 (7.69)

+ 2AB* + 2BA*]

But

E (A 2) = E (B2) = E (A*2) = E (B*2) = 2E (AB ) = 2E (A*B*) = 0

because E (n (t1)n (t2)) = E (n *(t1)n *(t2)) = 0, which is easily seen using (7.10)
and (7.11). It is also easily shown that AB* = −BA*. The only nonvanishing terms
are 2 |A |2 and 2 |B |2 and therefore

6. A = e
∞

−∞ n (t − t 0)c ′*(t − t 0)dt .
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EF∂ log L ( y (t ), t0)
∂t0

G2

=
1

2N 2
0
E
∞

−∞

E
∞

−∞

E [n (t1 − t0)n*(t2 − t0)]c ′*(t1 − t0)c ′(t2 − t0)dt1 dt2

+
1

2N 2
0

4p2f 2
0 E

∞

−∞

E
∞

−∞

E [n (t1 − t0)n*(t2 − t0)]c *(t1 − t0)

× c (t2 − t0)dt1dt2 (7.70)

Hence by using

c ′(t − t0) = i2p E
∞

−∞

f C( f ) e i2p f (t − t 0)df (7.71)

and following exactly the same steps used in calculating the numerator of (7.29)

EF∂ log L ( y (t ), t0)
∂t0

G2

=
1

N0
E

BN /2

−BN /2

(4p2f 2 + 4p2f 2
0 ) |C( f ) |2df (7.72)

=
2E
N0

(b2 + 4p2f 2
0 )

if, as before, BN ≥ B. Therefore,

s i 0
≥

1

(b2 + 4p2f 2
0 )1/2 (2E /N0)1/2 (7.73)

Referring to the discussion leading to (7.65) it is seen that the effective
resolution of the system has increased from ∼1/b to ∼1/(b2 + 4p2f0

2)1/2,
which can be a very large difference depending on the relative values of f0 and
b . It is easy to see physically why this should be the case. In a fully coherent
system, comparison of the phases of the transmitted and received signals can
ideally resolve the distance to the target to a fraction of a wavelength. As a
practical matter, since the target will be many wavelengths distant, there is, of



208 Signal Processing Fundamentals and Applications

course, an ambiguity problem in identifying which particular wavelength is
being subdivided. If, however, one wishes to measure only relative changes in
position from pulse to pulse rather than the absolute value, the ambiguity
problem can be avoided.

Increase in system resolution with the use of phase information is illustrated
in Figure 7.4, which shows the magnitude of a typical carrier pulse, including
the carrier. If the phase information is used, the system resolution is determined
by the width of each carrier cycle, ∼1/f0, rather than by the width of the
envelope 1/b . For a rectangular bandwidth B, (7.73) can be rewritten as

s i 0
≥

1

1.8B (1 + p2f 2
0 /B 2)1/2 (2E /N0)1/2 =

1

1.8B (1 + p2N 2)1/2 (2E /N0)1/2

(7.74)

where (B /f0) is the fractional bandwidth of the system which is nominally
equal to the reciprocal of the number of carrier cycles per pulse, N. This shows
that the possible advantages that could be gained in this way are potentially
much greater for radar and laser radar than for sonar. In the former case, say,

Figure 7.4 Magnitude of carrier pulse.
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for radar, typical parameters might be f0 = 1.5 × 109 Hz, B = 108 Hz, for
which the fractional bandwidth is 0.06 or equivalently ∼15 cycles per pulse;
for laser radar N could be much larger. For sonar, however, the fractional
bandwidths are inherently larger because of the lower signal frequencies and
there is less advantage to be gained; the same, of course, can hold true for
modern radars if large fractional bandwidths are employed.

7.4 Application of Parameter Estimation to Tracking and
Prediction

Let us now apply the foregoing results to the tracking problem, which is of
considerable practical importance in many applications of active sensing systems.
Let the position of a target as a function of time be given by

z (t ) = s + vt +
1
2

at2 (7.75)

where in general s , v, and a are unknown. A sensor observes the target for a
time duration ∼(M − 1)Tp during which M pulses are transmitted, which yield
M independent observations of the target positions equally spaced by the pulse-
separation time Tp.

On the basis of these measurements we want estimates of s , v, and a, an
estimate of the target position at the end of the tracking time, and we want
to be able to predict the position of the target at some time into the future
after the track has ended. If there were no noise, ideally only three observations
would be necessary to determine s , v, and a and the position of the target
would be known subsequently for all time. Because of noise, however, the
estimates of s , v, and a will be random variables. Hence, surrounding the
estimated target position at the end of the track, as well as the predicted position
at some time in the future, there will be an error volume whose size represents
the uncertainty in the estimated and predicted position due to noise. The
question is then, how does the accuracy of the estimates of s , v, and a, target
position, and predicted target position depend on the relevant system parameters.
These parameters are the duration of the tracking time, or equivalently, the
number of pulses (observations) transmitted during the tracking interval and
the interpulse spacing, and E /N0.

In typical tracking systems the problem of estimation of these quantities
is usually dealt with by means of tracking algorithms employing Kalman filters
or some variation thereof, which operate in real time on the measured data.
In the development of such algorithms for a particular application, however,
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it is essential to have some a priori understanding of the problem in terms of
the required track duration and the number of pulses that will be required,
which is gained by calculations of this kind.

The tracking scenario and the tracking waveform are illustrated in Figure
7.5. The time origin is referred to the center of the observation interval T and
for convenience M is assumed to be odd. Thus the observation takes place over
the interval

−SM − 1
2 DTp ≤ t ≤ SM − 1

2 DTp (7.76)

Figure 7.5 Typical tracking scenario and waveform.
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The three geometrical coordinates chosen are range r and two orthogonal cross-
range dimensions x = rux and y = ruy where ux and uy are the cross-range
angles. Measurements of r therefore correspond to measuring the time of arrival
of received echoes as described earlier in this chapter and measurements of x
and y correspond to the angular direction (ux , uy ) in which the sensor is
pointed as a function of time during the observation period. Equation (7.65)
applies to each coordinate and there are actually nine quantities—(s r , s x , s y ),
(vr , vx , vy ), and (ar , ax , ay )—to be estimated. Each coordinate, however, can
be addressed independently by a separate application of (7.75), since they have
been chosen to be orthogonal.

Now suppose we have M measurements of the form7

y (t k ) = z (t k ) + h (t k ), k = 1, 2, . . . , M

where z (t k ) = s + vt k + 1
2at2

k can represent either r , x , or y , and h (t k ) is the
error in the measurement due to noise, which is assumed to have zero mean,
and variance E [h2(t k )] = s2. Chang and Tabaczynski [31] have calculated
unbiased estimates of s , v, and a, together with the variances of the estimates,
based on a weighted-least-square polynomial fit to noisy data. The results are
found to be in very good agreement with Monte Carlo simulations employing
typical tracking algorithms and are therefore typical of what would be encoun-
tered in practice. Let us first consider for simplicity a case in which a is known
exactly so that only s and v are to be estimated. The estimates ŝ and v̂ of s and
v are given by [31]

F ŝ
v̂G = 3

1
M

0

0
12

T 2
p (M + 1)M (M − 1)

43 ∑
(M−1)/2

k=−(M−1)/2
z (t k )

Tp ∑
(M−1)/2

k=−(M−1)/2
kz (t k )4 (7.77)

In order to determine the accuracy of these estimates, the covariance
matrix Q2 of ŝ and v̂ is needed, which is [31]

Q2 = Fs2
s 0

0 s2
v
G = s23

1
M

0

0
12

T 2
p (M + 1)M (M − 1)

4 (7.78)

7. y (t k ) should not be confused with the cross-range coordinate y .
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Thus, Q2 is the coefficient matrix in (7.77) multiplied by s2. To make use
of this result, note that at the end of the observation time tM = 1

2(M − 1)Tp,
the target position is

z (tM ) = s + vtM +
1
2

at2
M (7.79)

and the variance s z
2 of z is

s2
z = E [z (tM ) − z )2] = E [s − s + tM (v − v ) +

1
2

t2
M (a − a )]2 (7.80)

But a ≡ a since a is known and deterministic. Hence

s2
z = s2

s + s2
v t2

M = s2
s + s2

vSM − 1
2 D2T 2

p (7.81)

where the cross terms between s and v vanish since by (7.78) the errors in s
and v are uncorrelated. Referring to (7.78), the standard deviation of z is
therefore

s z = sF 1
M S1 +

3(M − 1)
M + 1 DG1/2

(7.82)

which is the standard deviation of the position measurement at the end of the
tracking interval.

The particular coordinate to which (7.82) applies is identified by the
appropriate value of s . As was discussed in connection with (7.65) the general
form of s is s = kD(2E /N0)1/2 where D is the sensor-system measurement
resolution for that coordinate.8 With regard to resolution, for range, from
(7.35) kD = Dr /1.8. For x and y the measurement resolution D in the x and
y directions is rdux and rduy where dux and duy are the respective sensor
beamwidths and r is the target range. For a sonar system employing a linear
array there would be only one cross-range measurement direction, which would
be nominally horizontal, and du ∼ l /L where l is the signal wavelength and
L the array length. For a radar employing a parabolic reflector, or a laser radar,

8. For a coherent matched filter. For a noncoherent matched filter replace 2E /N0 by E /N0
here and in all following results.
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the beam is circular and the symmetrical angular resolution du is nominally
4l /pD where D is the optical aperture diameter or the antenna diameter (see
Chapter 11); for these cases k ∼ 1/1.8 as before.

Note that as M → ∞ the term in brackets in (7.82) approaches 2/√M
so that,

lim
M→ ∞

s z ≈
2kD

√2ME /N0
(7.83)

and for large M the process of observing the target during its track can be
thought of simply as a means of increasing the effective SNR by integrating
the responses to M pulses. The factor of 2 in the numerator occurs because
there are two unknown parameters. As will be seen shortly, if the acceleration
is also unknown the factor in the numerator is 3.

Now suppose we wish to predict the target position at some time tp after
the end of the tracking interval T. It is only necessary to substitute tp + tM
for tM in (7.79), and (7.82) becomes

s z ≈
kD

[(2E /N0)1/2] 5 1
M 31 +

12Stp +
M − 1

2
TpD2

T 2
p (M + 1)(M − 1) 46

1/2

(7.84)

But if M is not too small, (M + 1)Tp ∼ (M − 1)Tp ∼ T where T is the total
observation time. Hence (7.84) can be written

s z ≈
kD

(2ME /N0)1/2 F1 + 12Stp

T
+

1
2D

2G1/2

(7.85)

If tp << T, this reduces to s z ≈ 2kD/(2ME /N0)1/2 as before. On the other
hand, if tp >> T,

s z ≈
kD

(2ME /N0)1/2 √12
tp

T
(7.86)

and the error increases linearly with tp /T. In all cases, E /N0 is improved by a
factor of M .

In this discussion only position measurements have been considered, and
velocity and acceleration estimates have therefore been based on rates of change
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of target location. As is discussed in Chapter 8, however, range rate can also
be measured by measuring the Doppler shift of the transmitted signal frequency.
Suppose there is available both an estimate of range rate via Doppler shift,
denoted as d , with variance s2

d , and an estimate of range rate, as above, by
means of position measurements only, denoted as v with variance s2

v . Let V
denote the estimate of range rate based on these two independent measurements.
In this case V will be a weighted sum of the form V = Ad + Bv where A + B = 1,
and it can be shown that (see Exercise 7.13) the variance s2

V of V is mini-
mized by choosing A and B such that

V =
s2

v

s2
v + s2

d

d +
s2

d

s2
v + s2

d

v (7.87)

and that in this case s2
V is given by

s2
V =

s2
v s2

d

s2
v + s2

d

(7.88)

Equation (7.87) expresses the notion that the measurement with the smallest
variance should get the greatest weight.

If Doppler measurements are available, the foregoing results are modified
by substituting s2

v s2
d /(s2

v + s2
d ) for s2

v in (7.81) and it can be shown (see
Exercise 7.14) that (7.82) and (7.84) become, for measurement of range r at
the end of the tracking interval,

s r =
s

√M 31 +
3(M − 1)2T 2

p

12
s2

s2
d

+ T 2
p (M − 1)(M + 1)4

1/2

(7.89)

and for the predicted range tp seconds after the observation interval,

s r =
s

√M 31 +
12Ftp + SM − 1

2 DTpG2

12
s2

s2
d

+ T 2
p (M − 1)(M + 1)4

1/2

(7.90)
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where for a rectangular pulse spectrum, s = (c /3.6B )√2E /N0 where c is the
speed of signal propagation. This result, of course, does not apply to the cross-
range coordinates.

To summarize, s and v are estimated using (7.77) and the target position
at future times is then determined using (7.75) where the time is measured
from the center of the tracking interval. The position error at the end of the
tracking interval is given by (7.82) and for later times the predicted-
position error is given by (7.84) and the following discussion; tp here is measured
from the end of the tracking interval, not from t = 0. If velocity measurements
per se are also of interest, the measurement error at the end of the tracking
interval is s /Tp {12/[(M + 1)M (M − 1)]}1/2 where for range rate kD = Dr /1.8,
and for cross-range motion kD = 4l r /1.8pD for a circular aperture of diameter
D , where r is the range.

It is a straightforward matter to extend these results to the case where
the acceleration is also unknown. From [31] the covariance matrix Q3 is

Q3 = 3
s2

s 0 s2
sa

0 s2
v 0

s2
sa 0 sa

4

= s23
3
4

3M 2 − 7
(M − 2)M (M + 2)

0
−30

T 2
p (M − 2)M (M + 2)

0
12

T 2
p (M − 1)M (M + 2)

0

−30

T 2
p (M − 2)M (M + 2)

0
720

T 4
p (M − 2)(M − 1)M (M + 1)(M + 4)

4
(7.91)

which shows that in this case the position and acceleration measurements are
correlated. The estimates ŝ , v̂, and â of s , v, and a are [31]

3
ŝ

v̂

â
4 =

Q3

s23
∑

(M−1)/2

k=−(M−1)/2
z (t k )

Tp ∑
(M−1)/2

k=−(M−1)/2
kz (t k )

T 2
p

2 ∑
(M−1)/2

k=−(M−1)/2
k 2z (t k )

4 (7.92)
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By following the same procedure used to obtain (7.82), the standard deviation
of the position measurement at the end of the tracking interval is

s z =
s

√M F−3(7M 2 − 20M + 17)
4(M − 2)(M + 2)

+
3(M − 1)
(M + 1)

(7.93)

+
45(M − 1)3

4(M − 2)(M + 1)(M + 2)G
1/2

which, as discussed above, approaches 3s /√M as M → ∞. All the foregoing
results obtained for the two-dimensional case can be obtained for unknown a
using (7.91), (7.92), and (7.93).

Exercises for Chapter 7

7.1

Show that if s (t ) = Re[c (t ) e i2p f 0 t ], then z s (t ) = s (t ) + iŝ (t ) is equal to
c (t ) e i2p f 0 t only if c (t ) is band-limited to ±B /2 with B < 2f0. Use the result
of (4.40), that if a (t ) is band-limited as above, then the Hilbert transform of
a (t ) cos 2p f0 t is a (t ) sin 2p0 t .

7.2

Show that for any two analytic signals, za (t ) and zb (t ), that za* (t ) * zb (t ) = 0
and za (t ) * zb (−t ) = 0.

7.3

Verify equations (7.6) through (7.12).

7.4

Show that the approximation of (6.4) is equivalent to the bandlimiting assump-
tion used in obtaining (7.14).

7.5

The output of a filter matched in amplitude only to a signal scattered from a
target at range r = ct0 /2 can be written as
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EPT(t − t0)PT(T − t + t ) cos 2p f0(t − t0) cos [2p f0(T − t − t ) + u ]dt

Show that the response of a square-law-detector to this input is independent
of u, but does not necessarily peak at t = t0 + T.

7.6

Show that for a signal having rectangular spectrum

H ( f ) = HA , | f | ≤ B /2

0, otherwise

The definition (7.21) yields b = 1.8B.

7.7

Verify (7.22) and (7.23) using (7.18), (7.20), and (7.21).

7.8

Show that f ″(tm ) = −2E 2b2 by using (7.22), (7.23), and

dz (t )
dt

= E
∞

−∞

c (t − t0)
dc *(T − t + t )dt

dt

= −E
∞

−∞

c (t − t0)
d
dt

c *(T − t + t )dt

= −E
∞

−∞

c (t − t0)c ′*(T − t + t )dt

7.9

Show that if an estimator is not unbiased, then E [(û − u )2] is not the variance
of û.
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7.10

It is shown in the text that if y is a Gaussian random variable with known
variance s2 and unknown mean m , the MLE of m based on N observations
is

m̂ =
1
N ∑

N

i=1
y i

Show that if m is known and s2 is unknown the (unbiased) MLE ŝ2 of s2

is

ŝ2 =
1
N ∑

N

i=1
( y i − m )2

and if both m and s2 are unknown, the MLE of s2 is

ŝ2 =
1

N − 1 ∑
N

i=1
( y i − m̂ )2

where m̂ is as above.

7.11

The range rate of a target is to be determined by measuring the Doppler shift.
This is done by observing the shift in the peak of the spectrum of the transmitted
pulse from the transmitted carrier frequency.

For a transmitted pulse APT(t ) cos 2p f0 t , calculate b of (7.57). Assume
f0T >> 1 and make the band-limited approximation. Repeat for a Gaussian
pulse, Ae −i 2/2s 2

T cos 2p f0 t .

7.12

Referring to (7.12), 2E = e |c (t ) |2dt = e |c (t − t0) |2dt and therefore

d
dt0

(2E ) = 0 =
d

dt0
E |c (t − t0) |2dt = −2 ReEc ′(t − t0)c *(t − t0)dt

= −2 ReEc ′(t )c *(t )dt = 0
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Referring to (7.20), does this mean that it is always true that
e f |C( f ) |2df = 0? Obviously not. Explain.

7.13

Verify (7.87) and (7.88). (Hint: Use Lagrange multipliers.)

7.14

Verify (7.89) and (7.90).





8
Waveform Analysis, Range-Doppler
Resolution, and Ambiguity

From the results of Chapter 7 it is clear that in order to measure the range to
a target a sensor must transmit a pulse rather than a continuous signal, and in
any application involving search, surveillance, or tracking, the sensor waveform
would consist of a train of repeated pulses or repeated pulse bursts. This leads
to the following problem. Consider a steady-state situation in which a sensor
has been repeatedly transmitting pulses with a time separation between pulses
of Tp seconds or, equivalently, a pulse repetition frequency (PRF) of 1/Tp.
Suppose after transmitting the n th pulse an echo is observed t0 seconds later.
This could be an echo of the n th pulse from a target at a range r = ct0 /2. On
the other hand, it could also be an echo of the (n − 1)st pulse from a target
at a range (cTp /2) + (ct0 /2) or from the (n − 2)nd pulse from a target at range
(2cTp /2) + (ct0 /2), and so on. Thus, the use of a repeated waveform leads to
an ambiguity in the measurement of range, and for a search volume of radius
R it is necessary that Tp satisfy

cTp

2
≥ R (8.1)

otherwise, there will be an ambiguous range interval within the surveillance
volume. For example, in a radar system, if R = 1,000 km, then using c = 3 ×
108 m/s, the PRF 1/Tp can be no greater than 150 pulses/second.

There is also the possibility of ambiguity in the measurement of range
rate. As will be shown, this can occur if the range rate is to be determined

221
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from measurement of the Doppler shift in the transmitted carrier frequency
from an observation over a train of M pulses (on a pulse-by-pulse basis there
is no such Doppler ambiguity for the sinusoidal (i.e., BT ≈ 1) pulses under
consideration here). However, as has been discussed in Chapter 7, target velocity
can also be derived from tracking data for which there is no velocity ambiguity.
Thus ambiguity in range rate is potentially less of a problem for sensing systems
than ambiguity in range. In what follows we first deal with time-frequency
analysis of periodically pulsed waveforms. The ambiguity characteristics of such
waveforms are then considered, which are intimately connected with range-
Doppler resolution capability.

8.1 Waveform Analysis

Let the transmitted waveform be a coherent train of pulses

w (t ) = ∑
M −1

n=0
c (t − nTp ) e i2p f 0 t (8.2)

where c (t ) is a complex lowpass pulse function of duration T < Tp [see (7.5)
and (7.6)]. The transmitted signal spectrum WT( f ) is then

WT( f ) = ∑
M −1

n=0
E

nTp +T /2

nTp −T /2

c (n − nTp ) e i2p f 0 t e −i2p ft dt

= ∑
M −1

n=0
e −i2pnTp ( f − f 0 ) E

T /2

−T /2

c (t ) e −i2p t ( f − f 0 )dt (8.3)

= e −ip (M −1)Tp ( f − f 0 ) sin pMTp( f − f0)

sin pTp( f − f0)
C( f − f0)

where we have used

∑
M −1

n=0
pn =

1 − pM

1 − p
(8.4)

and
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C( f ) = E
∞

−∞

c (t ) e −i2p ft dt

The magnitude of WT( f ) is shown in Figure 8.1(a), which illustrates its
essential features: (1) There is a spectral-line structure described by the function
sin pMTp( f − f0)/sin pTp( f − f0), which arises with the use of a repeated-
pulse waveform. Because the waveform is coherent there is a peak at f = f0.
The frequency separation of the spectral lines is equal to the PRF, 1/Tp. (2)
The spectral resolution is determined by the width of the spectral lines. We
say the resolution is nominally 1/MTp, being determined by the duration of
the waveform ∼MTp not simply the number of pulses. Spectral peaks are
separated by M sidelobe widths 1/MTp. (3) The overall shaping of the spectral
lines is determined by the pulse spectrum C( f ). Since the spectral lines of
interest are always those in the vicinity of the peak, f = f0, the actual pulse
shape is less important in determining the essential spectral properties than the
waveform duration and the PRF. Since the 3-dB spectral width of C( f ) is
nominally ∼1/T there will be ∼Tp /T spectral lines contained within the fre-
quency range of C( f − f0).

A target approaching the sensor with constant range rate v < 0 will at
time t be located at some range r (t ) = r0 + vt . Let transmission of w (t ) begin
at t = 0. As before, dispersion and all propagation effects on the signal amplitude
and phase are ignored; if necessary, as in Chapter 7, all quantities can be
renormalized so that E is the received signal energy. The received signal at time
t is then w (t − t (t )) where t (t ) is the round-trip delay. To determine t (t )
observe that:

t (t ) =
2
c

r (t − t (t )/2) =
2
c Fr0 + vt −

vt (t )
2 G

from which t (t ) = (2r0 + 2vt )/(c + v ) and the received signal is

w (t − t (t )) = wSSc − v
c + vDt −

2r0
c + vD

Therefore, (8.2) becomes

w (a t − t0) = ∑
M −1

n=0
c (a t − t0 − nTp ) e i2p f 0 (a t− t 0 ) (8.5)
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Figure 8.1 Magnitudes of spectra of (a) transmitted and (b) received coherent pulse bursts.
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where

a =
c − v
c + v

≈ 1 −
2v
c

(8.6)

t0 =
2r0

c + v

and in the approximation for a terms of order v2/c2 have been ignored.
By applying the Fourier-transform operation of (8.3) to (8.5) it is found

that the received signal spectrum WR( f ) is

WR( f ) = expS−i2p
f
a

t0D expF−ip (M − 1)TpS f
a

− f0DG (8.7)

×
sin [pM ( f /a − f0)Tp ]

sin [p ( f /a − f0)Tp ]
C( f /a − f0)

a

which reduces to (8.3) for t0 = 0, a = 1.
The magnitude of (8.7) is illustrated in Figure 8.1(b). The following

features are to be noted, all of which arise because the approaching target in
producing the echo produces a time compression in the transmitted waveform.
(1) The spectral peak has been shifted from f0 to a f0 ≈ (1 − 2v /c ) f0 = f0 +
fd where fd = (−2v /c ) f0 is the Doppler shift. (2) Since each pulse has been
time compressed to T /a , the spectral width of C( f ) has been increased to
a /T. (3) Since the separation between pulses has been reduced to Tp /a , the
spectral resolution has been degraded to a /MTp and the width between spectral
peaks has been increased to a /Tp. If in the example the target were receding,
then a < 1, all compressions become expansions, decreases become increases,
and so on. Effect (1) is very important. Whether effects (2) and (3) may be
ignored or not will depend on the particular application, as will be discussed.

The pulse train (8.2) is coherent1 because the phase is contiguous from
pulse to pulse over the entire waveform. One can think of (8.2) as a CW
sinusoid of duration (M − 1)Tp with periodic interruptions in amplitude but
not in phase. On the other hand, a noncoherent pulse train is of the form

w (t ) = ∑
M −1

n=0
c (n − nTp ) e i2p f 0 (t−nTp ) (8.8)

1. See Section 6.3.2 for system coherency requirements.
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which consists of a sum of M carrier pulses with no phase constraints. The
phase relationship between successive pulses is essentially arbitrary, depending
entirely on the choice of f0 and Tp. It is left as an exercise to show that the
transmitted signal spectrum in this case is

WT( f ) = e −ip (M −1)Tp f sin pMTp f

sin pTp f
C( f − f0) (8.9)

and the spectrum of the echo from a moving target is

expS−i2p
f
a

t0D expF−ip (M − 1)Tp
f
a G sin pMTp f /a

sin pTp f /a
1
a

CS f
a

− f0D
(8.10)

The spectral-line structure for the noncoherent transmitted and received
waveforms depends only on the pulse spacing Tp, independent of the carrier
frequency. Only the overall spectral shaping by C( f − f0) contains any frequency
information, as in fact it would if only a single pulse were transmitted. Also,
aside from the factor 1/a , the spectral line structure remains unchanged
and independent of the motion of the target, and the Doppler shift can
therefore not be measured in this case since the information in the position
of the peak of C( f − f0) cannot be recovered because of the presence of
sin pMfTp /sin p fTp. Therefore, if one desired to measure Doppler shift,
coherency would be required.

The foregoing results illustrate important differences in the analysis of
radar/laser radar and sonar waveforms. In the former case, even for a target
traveling at orbital escape velocity of 7 km/second we have a = 1 − (2v /c ) ≈
1.00005 and all time-compression (or expansion) factors influencing resolution,
such as signal bandwidth, are essentially negligible. However, even for a range
rate as small as 50 feet/second the Doppler shift 2vf0 /c for a typical radar
frequency of 1.5 × 109 Hz is ∼150 Hz, which is easily measured. Therefore
in radar and laser radar the effect of target motion can to a very good approxima-
tion be assumed to cause a change in carrier frequency only, and the observed
frequency shifts are reasonably large.

In sonar the situation is quite different. For a target moving at 50 feet/
second (30 knots), the value of 2v /c is 0.02. Although this would cause a
bandwidth compression or expansion in the received signal of only a few percent,
the change is many orders of magnitude larger than for radar or laser radar,
and could be significant in applications requiring very sensitive phase measure-
ments; this matter will be discussed further in connection with the ambiguity
function. Also, for a typical value of f0 = 100 Hz, the Doppler shift in this



227Waveform Analysis, Range-Doppler Resolution, and Ambiguity

case would be only 2 Hz. Furthermore, since the Doppler-velocity resolution
Dv is Dv = l /2T, and since radar and laser radar wavelengths are many orders
of magnitude smaller than for sonar, then to achieve the same Doppler-velocity
resolution much longer signal durations are required for sonar than for radar.

8.2 Range-Doppler Resolution and Ambiguity—
The Generalized Ambiguity Function

We now return to the question of range and Doppler ambiguity, the first of
which has already been illustrated. In the latter case, referring to Figure 8.1,
since the function sin pM ( f /a − f0)Tp /sin p ( f /a − f0)Tp is periodic in
frequency with period a /Tp, there is no means for determining whether or
not a shift in the spectral-line component by an amount ±na /Tp, n = 0, 1,
2, . . . , may have occurred. Thus, a target with a range rate v produces the
same observable as a target with a range rate v ± nal /2Tp. In physical terms,
a target that moves in range a distance d in time Tp is ambiguous in range rate
with a target that moves in range a distance d ± nal /2 in time Tp.

There are a number of ways of dealing with range and Doppler ambiguities.
For range, it may be known a priori that there are no targets beyond the first
ambiguous range interval given by (8.1), or we may not care, in which case
all echoes are treated as if they are at ranges less than or equal to cTp /2. In
another approach, two different PRFs can be used which can be chosen such
that in order to satisfy both solutions the unambiguous range interval extends
out to where the presence of a target is not physically possible. Similarly, for
range rate the system parameters can be chosen such that the ambiguous Doppler
shifts can be ignored either because they are of no interest or impossible. Also,
as noted, if range rate is derived from tracking data the range-rate ambiguity
problem does not arise. In any case however, it is useful to be able to analyze
a given proposed waveform in order to evaluate the range-Doppler ambiguities
which may occur with its use. This is done by means of the ambiguity diagram,
which was evidently first proposed by Woodward [28].

The question of range-Doppler ambiguity is intimately connected with
range-Doppler resolution capability. Let us begin therefore by first considering
echoes w (t − t1) and w (t − t2) from two stationary targets at ranges r1 = ct1 /2,
r2 = ct2 /2. For convenience let all distances be referred to r1 so that we deal
with w (t ) and w (t + t ), where t = t1 − t2 is the time separation between the
echoes. In order to be able to resolve the two objects in range, the composite
return w (t ) + w (t + t ) must exhibit two clearly defined peaks in time. Otherwise,
if t is too small, the composite will exhibit a single peak and the fact that two
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objects are present will not be discerned. Consider the mean-square composite
echo

E
∞

−∞

|w (t ) + w (t + t ) |2dt = E
∞

−∞

|w (t ) |2 + E
∞

−∞

|w (t + t ) |2 (8.11)

+ 2 Re E
∞

−∞

w (t )w *(t + t )dt

Clearly, if w (t ) and w (t + t ) do not overlap, they will be completely resolved
and the cross term will vanish. Therefore, measure of the capability of the
waveform to resolve the two targets is given by a correlation function CR(t ):

CR(t ) = 2 Re E
∞

−∞

w (t )w *(t + t )dt = 2 Re e −i2p f 0 t E
∞

−∞

cN (t )cN* (t + t )dt

(8.12)

where, referring to (8.2)

cN (t ) = ∑
N −1

n=0
c (t − nTp ) (8.13)

By the Schwarz inequality (5.66), (8.12) will, of course, be maximum for
t = 0, and the range-resolution capability of the waveform will be determined
by the extent to which CR(t ) is negligible for t ≠ 0. There is a parallel here
between this discussion and that of Section 7.3.1 regarding the extent to which
phase information can be used to measure range. Here we are interested in
measuring range without using the phase information in the signal and shall
therefore be concerned with evaluating the modulus |CR(t ) | of CR(t ), and
shall ignore the phase term in (8.12).

As an example, let c (t ) be a rectangular pulse

c (t ) = H1, −T /2 ≤ t ≤ T /2

0, otherwise
(8.14)

Then cN (t ) is as illustrated in Figure 8.2(a), and |CR(t ) | is as illustrated in
Figure 8.2(b). By the foregoing discussion, for those time separations t where
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Figure 8.2 (a) Train of rectangular pulses and (b) associated correlation function.
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|C (t ) | is negligible two targets can be resolved in time, or equivalently in
range. Thus, Figure 8.2(b) demonstrates that targets separated by Tp seconds
are indistinguishable or, equivalently, as outlined in the foregoing discussion,
the response to a target at range r is ambiguous with the response to a target
at r + ncTp /2, n = 1, 2, 3, . . . . Figure 8.2 also illustrates that the shorter the
pulse the greater the range resolution and the greater the unambiguous intervals,
since the peaks of |CR(t ) | thereby become narrower. Actually, it is the signal
bandwidth rather than transmitted pulse duration that more fundamentally
determines resolution capability, as will be discussed in Chapter 9. For purely
sinusoidal waveforms, however, for which the time-bandwidth product BT is
essentially unity, there is no such distinction since B ∼ 1/T.

Let us now consider the alternative situation in which two targets at the
same point in space are moving at two different range rates; equivalently, let
one target be stationary and let the other move with a relative range rate v.
Then, setting t = 0 and following exactly the same argument associated with
(8.11) and the following discussion, the correlation function of interest is

E
∞

−∞

w (t )w *(a t )dt (8.15)

In this case, referring to (8.2) and (8.13),

CD( fd ) = E
∞

−∞

cN (t )cN* (a t ) e i2p f 0 (1− a )t dt (8.16)

= E
∞

−∞

cN (t )cN* (a t ) e −i2p f d t dt

which is the Fourier transform of the product of two functions evaluated at
f = (1 − a ) f0 = −fd. By the complex convolution theorem (see Exercise 8.2),
this is

CD( fd ) = E
∞

−∞

CN ( f + fd )CN*S f
a D df

a
(8.17)

= E
∞

−∞

CN (a f + fd )CN* ( f )df
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where

CN ( f ) = E
∞

−∞

cN (t ) e −i2p ft dt

The Doppler information is contained in the frequency shift fd. The
question arises concerning the conditions under which the approximation
a = 1 is valid, since this greatly facilitates calculation of (8.17). It is sometimes
stated that this approximation is valid when the fractional bandwidth B /f0 is
small (i.e., many cycles per pulse). This is clearly irrelevant since c (t ) is a
lowpass function and (8.17) is independent of f0. The important factor is v /c .
For typical radar and laser-radar applications the approximation is valid since
it has been shown that a is negligibly different from unity for all cases of
current practical interest. For sonar, if C( f ) is purely real the approximation
is also valid because in this case (8.17) amounts to a convolution of spectral
magnitudes such as Figure 8.1 and the difference in line width by a factor a ,
which is typically 1.02, can be ignored. In general, however, C( f ) will be
complex and one must be concerned with the effect of a on the phases.
Therefore, for sonar applications one must be careful about making this
approximation.

Finally, the effects of simultaneous range-Doppler ambiguity can be
incorporated into a single normalized function

x (t , fd ) =

E
∞

−∞

cN (t )cN* (a t + t ) exp(−i2p fdt )dt

E
∞

−∞

cN (t )c *(a t )dt

(8.18)

=

E
∞

−∞

CN (a f + fd)CN* ( f ) exp(−i2p ft )df

E
∞

−∞

C(a f )C*( f )df

where, as discussed in connection with (8.12) the factor exp (−i2p f0t ) outside
the integral has been suppressed. With this normalization x (0, 0) = 1. The
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interpretation of (8.18) is that two targets having range and Doppler separation
t and fd are resolvable in range and Doppler depending on the relative magni-
tudes of | x (t , f d) | and | x (0, 0) | = 1 over the two dimensional t , fd plane.
The resolution conditions are summarized as follows:

| x (t , fd ) | << 1 → targets resolvable

| x (t , fd ) | ≈ 1 → resolution difficult

| x (t , fd ) | = 1 → resolution impossible; range-Doppler ambiguity

The ambiguity function is usually found in the literature expressed as in
(8.18) with a = 1. This is because it was originally applied to radar in situations
for which a = 1 was a very good approximation.2 In sonar this approximation
is not necessarily valid and the more general form of (8.18) may be required.
It is left as an exercise to prove that for a = 1

E
∞

−∞

E
∞

−∞

| x (t , fd ) |2dt dfd = 1 (8.19)

which may be interpreted as a conservation of ambiguity, in the sense that
| x (t , fd) | cannot be made everywhere small for any waveform. In its more
generalized form in (8.18), the integral under | x (t , fd) |2 is a function of a
(see Exercise 8.5).

In order to illustrate and summarize these various effects in a simple
manner, consider, as illustrated in Figure 8.3(a), a Gaussian pulse,

c (t ) = S 2E

√pT D
1/2

exp(−t2/2T 2) (8.20)

whose standard deviation T is a measure of its length; the normalization is
such that e |c |2dt = 2E . It is left as an exercise to show that the ambiguity
function x (t , fd ) is Gaussian with st = (1 + a2)1/2T and sf d

=
(1 + a2)1/2/2pT, as illustrated in Figure 8.3(b). Thus the ambiguity diagram
yields the expected result that, excluding large-time-bandwidth signals, as the
pulse duration increases the capability for range resolution decreases and that
for Doppler resolution increases.

2. The approximation is, of course, made after we let f d = (a − 1) f 0.
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Figure 8.3 (a) Gaussian pulse and (b) footprint of associated ambiguity function [footprint
of | x ( f d , t ) | ].

Now, as illustrated in Figure 8.4(a), let the waveform consist of M
Gaussian pulses, each separated by Tp seconds such that (M − 1)Tp = T, and
each standard deviation D << T. It is clear from the foregoing discussion that the
ambiguity diagram appears as in Figure 8.4(b). The overall Doppler resolution
remains unchanged because the overall waveform duration is unchanged, and
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Figure 8.4 (a) Gaussian pulse train and (b) associated ambiguity function [footprint of
| x ( f d , t ) | ].

by transmitting M shorter pulses the range resolution has increased to nomi-
nally cD/2 rather than cT /2. The price paid for this, however, is to introduce
the range-Doppler ambiguities. To this illustration of the interplay between
the various factors in waveform design must be added the constraint on the
PRF = 1/Tp imposed by the radius of the search volume in (8.1).
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Exercises for Chapter 8

8.1

Verify (8.8), (8.9), and (8.10).

8.2

The complex convolution theorem states that e∞
−∞ x (t ) * y *(t ) e −i2p ft dt =

X ( f )Y *(−f ). Prove it, and show also that e∞
−∞ x (t ) y *(t ) e −i2p ft dt =

e∞
−∞ X ( f t + f )Y *( f1)df1.

8.3

Show that the time and frequency representations in (8.18) are equivalent.

8.4

Prove that e∞
−∞ e∞

−∞ | x (t , fd) |2dt dfd = 1 for a = 1.

8.5

Verify that the ambiguity function of the Gaussian pulse of (8.20) is also
Gaussian with st = (1 + a2)1/2T and sf d

= (1 + a2)1/2/2pT. Show that
e∞

−∞ e∞
−∞ | x (t , fd) |2dt dfd = 1

2 (1 + a2).
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Large Time Bandwidth Waveforms

In all of the foregoing material only single-frequency sinusoidal pulses have
been considered. These are signals for which the product of time duration T
and bandwidth B is essentially unity. For such waveforms there is an inherent
conflict between long-range detection and high range-resolution capability.
Because the amplitude of an echo scattered from a target at range r decreases
as r increases (see Chapter 11), then large values of r require large transmitted
signal amplitudes in order to have sufficiently large values of E /N0 for reliable
detection and range estimation. But all active sensing systems have a limitation
on the peak transmitted signal power, which imposes an upper limit on the
transmitted signal amplitude. Of course, the required value of E can also be
obtained by maintaining the transmitted signal amplitude at some maximum
value A and increasing the signal duration T. But since B ∼ 1/T and, as has
been mentioned above and will be proved shortly, it is the signal bandwidth
that is the fundamental parameter determining range-resolution capability, then
achieving the required E by increasing T reduces B, thereby degrading range-
resolution capability—hence, the conflict.

On the other hand, if B can be increased essentially independently of T,
there is no such conflict, and we have seen in Section 4.3 that there is no
fundamental upper limit on the value of BT. As an example, suppose the peak
transmitted-power limitation is A2/2. Then for a given pulse duration T the
transmitted energy ET is A2T /2 = A2/2B for BT = 1. Now suppose BT = 100.
The transmitted energy is then A2T /2 = 100A2/2B, which is 100ET for the
same value of B, and therefore no degradation in range resolution. The limitation
here is on the average power 100A2/2BTp, where Tp is the interpulse spacing,

237
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and therefore the PRF, 1/Tp, must be chosen appropriately. However, this
generally imposes less of a restriction than the peak-power limitation.

To show that B is the fundamental parameter that limits range resolution,
refer to Chapter 8, (8.12), where it is shown that range-resolution capability
is described by the magnitude of the correlation function |CR(t ) | given by

|CR(t ) | = | E∞
−∞

w (t )w *(t + t )dt | (9.1)

where t is the relative time separation between two targets, corresponding to
a separation in range of ct /2 for a rectangular pulse.

We recall that the more narrowly confined |CR(t ) | is in the vicinity of
its peak value, the greater the resolution capability. For purposes of illustration,
let w (t ) be a single pulse rather than a pulse train. It might then be thought
simply that the narrower the pulse |w (t ) | , the narrower will be CR(t ). But
this is not necessarily true because w (t ) is complex and its phase also enters
into the calculation in (9.1). On the other hand, using

W ( f ) = E
∞

−∞

w (t ) e −i2p ft dt

we have

|CR(t ) | = | E∞
−∞

|W ( f ) |2 e −i2p ft df |
which is the Fourier transform of |W ( f ) |2, which is purely real and non-
negative. Now, the width of |W ( f ) |2 directly (inversely) affects the width of
|CR(t ) | . For example, let |W ( f ) |2 be a unit-amplitude rectangle extending
from −B /2 to B /2, in which case |CR(t ) | = | sin pBt /Bt | , which becomes
narrower as B increases. Thus, the bandwidth B of w (t ) is the fundamental
parameter determining range resolution, which for certain waveforms can be
increased essentially independently of the time duration of w (t ).

One of the earliest and probably most widely used large-BT signal is the
linear FM (LFM) or chirp waveform, a history of which is given in [32, 33].
In addition to providing a solution to the long-range/high-resolution problem,
the chirp signal is also a form of Doppler-invariant waveform. In producing
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an echo, a moving target alters the structure of the transmitted signal, and a
filter that is matched to the transmitted signal may therefore be mismatched
to its echo. For example, for BT = 1 waveforms, the carrier frequency of the
echo from a target approaching at a constant range rate v is f0[1 − (2v /c )] =
f0 + fd, and a filter matched to the transmitted signal may be translated out
of the receiver passband and produce no response at all. In this case it would
be necessary to employ a bank of filters each tuned to a different value of f0
± fd over the entire range of possible Doppler shifts, and v would then be
determined by noting which filter produces the maximum response. For the
chirp waveform, however, a filter matched to the transmitted signal is, within
certain limits—which will be derived below—also automatically matched to
the echo from any constant velocity target with arbitrary range rate within the
limits to be prescribed. Because, however, these limits may be restrictive in
certain cases, particularly in sonar systems, an alternative large BT modulation
scheme, hyperbolic frequency modulation, which is essentially free of such
limitations, is also discussed.

9.1 Chirp Waveforms and Pulse Compression

For a chirp waveform the analytic signal is

w (t ) = rectS t
T D expFi2pS f0 t +

k
2

t2DG (9.2)

where for simplicity in the notation that follows the signal is defined to extend
over the interval −T /2 ≤ t ≤ T /2 as described by the rect function, defined as

rectS t
T D = H1, −T /2 ≤ t ≤ T /2

0, otherwise
(9.3)

The instantaneous frequency in (9.2) is

f I =
d
dt S f0 t +

k
2

t2D = f0 + kt (9.4)

where, as illustrated in Figure 9.1, k = B /T is the slope of the instantaneous
frequency, which increases linearly with time; the frequency can of course
equally well be f I = f0 − kt , the former being commonly referred to as an
upsweep, and the latter as a downsweep.
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Figure 9.1 Linear (chirp) frequency modulation.

We wish to determine the response of a filter matched to this signal. For
purposes of this development it is simpler and clearer to deal with a noncausal
matched filter, with impulse response h (t ) = Gw *(−t ), whose response to (9.2)
is

x (t ) = GE
∞

−∞

w (t )w *(t − t )dt (9.5)

= e
i2pS f 0 t −

kt 2

2 DGE
∞

−∞

rectS t
T D rectSt − t

T D e i2pktt dt

where G will be selected for unity gain. The integral in (9.5) is

E
T /2+ t

−T /2

e i2pktt dt , for −T ≤ t ≤ 0

E
T /2

t−T /2

e i2pktt dt , for 0 ≤ t ≤ T

(9.6)



241Large Time Bandwidth Waveforms

and by combining (9.5) and (9.6)

x (t ) = e i2p f 0 tGT rectS t
2T D sin pB ( | t | − t2/T )

pB | t |
(9.7)

The matched-filter response is a single-frequency CW sinusoid with no
phase modulation because the slope of the instantaneous frequency in the filter
impulse response is opposite to that of the signal. It is left as exercises to verify
(9.5), (9.6), and (9.7) and to show, as illustrated in Figure 9.2, that the maximum
response occurs at t = 0, and that for large BT the zeros in the vicinity of
t = 0 occur at t = ±n /B, n = 1, 2, . . . , and the t2/T’ term therefore has a
small effect.

Now if the filter has unity gain, the energy at the output equals energy
at the input, for which it is left as an exercise to show that G = √B /T . Thus
the pulse amplitude has been raised by a factor GT = √BT . Also, for large
BT, the matched filter has effectively compressed the pulse from a width T to
a width ∼1/B, thereby yielding a range resolution equal to the reciprocal of
the transmitted pulse bandwidth, as expected. This technique is for this reason
also referred to as pulse compression. The net effect is as if a pulse of duration
1/B and amplitude greater by a factor of √BT—which may have exceeded the
peak power limitation—had been transmitted. We note the sidelobe structure
in the filter response—the so-called range-time sidelobes, the first one of which
is 13 dB below the peak of the main lobe for a rectangular pulse. If desired,
these sidelobes can be reduced by ∼15–20 dB by employing a nonrectangular
transmitted pulse envelope, the price of which is to degrade the range resolution
by broadening the main lobe somewhat [32, 33]. We do not pursue this further
here.

Although the instantaneous frequency given by (9.4) sweeps over a range
B, this does not necessarily give a true picture of the frequency content of the
transmitted signal. In order to establish this, we take the Fourier transform of
(9.2), which is

W ( f ) = E
∞

−∞

rectS t
T D expFi2pS f0 t +

kt2

2 DG e −i2p ft dt (9.8)

After some manipulation this can be put into the form [32]:

W ( f ) = expF−ip
( f − f0)2

k G √T
B

[F (u1) + F (u2)] (9.9)
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Figure 9.2 Response of filter matched to chirp signal, for BT * 50.
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where

F (u ) = E
u

0

e ipx 2
dx (9.10)

and

u1 =
1
2√BT +

( f − f0)

√k
, u2 =

1
2√BT −

( f − f0)

√k
(9.11)

Equation (9.10) is the Fresnel diffraction integral whose magnitude is
shown in Figure 9.3 for three different values of BT ; the vertical axes are in
units of 1/√k . Figures 9.3(b) and 9.3(c) are recognized as having the appearance
of near-field, Fresnel-zone, knife-edge diffraction patterns that have the same
mathematical form as chirp spectra. Also, the bandwidth is sensibly equal to
the instantaneous frequency sweep B in these cases. For small values of BT,
however, BT ≈ 10 in Figure 9.3(a), the spectrum is very different and the signal
bandwidth in this case is much less well-defined, clearly not being simply equal
to the frequency sweep B. Thus it is to be expected that the benefits to be
gained with the use of chirp pulses—of enabling large signal energy and high
range resolution—require values of BT of, say, at least 50. This conclusion,
based on examination of the signal spectrum, is consistent with the time domain
analysis in which the zeroes of (9.7) are separated by Dt ∼ 1/B for large BT,
as illustrated in Figure 9.2.

Equation (9.8) can also be evaluated to a sufficiently good approximation
by the method of stationary phase, which will be of interest shortly. Consider
the integral

I (n ) = E
b

a

f (t ) e inh (t )dt (9.12)

For large n the term e inh (t ) can oscillate rapidly, in which case e e inh (t )dt
essentially vanishes because neighboring positive and negative areas cancel one
another out. On the other hand, if at some point a < c < b , h ′(c ) = 0, the
phase is stationary at this point, and e inh (t ) is therefore not oscillatory over the
entire interval [a, b ] and e e inh (t )dt does not vanish. Hence, if f (t ) is generally
slowly varying in comparison with e inh (t ), I (n ) can be calculated approximately
by considering only those contributions to the integral in the vicinity of the
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Figure 9.3 Magnitudes of spectrum of chirp signals for various values of BT (from [32]): (a)
BT = 10.125, (b) BT = 60.5, and (c) BT = 100.125.
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stationary phase points. It can be shown [34] that for n >> 1, I (n ) can in this
way be approximated by

I (n ) =
√2p f (c ) e inh (c )± ip /4

[±nh ″(c )]1/2 + 2S 1

n2D (9.13)

where + or − is used depending on whether h ″(c ) is positive or negative. From
the foregoing discussion the term f (c ) e inh (c ) in (9.13) is to be expected; the
remaining factors (2p /±nh ″(c ))1/2 and e ± ip /4 follow from a contour integra-
tion.

To apply (9.13) to (9.8), the integral should be expressed in terms of
dimensionless variables as

W ( f ) = TE
∞

−∞

rect (u ) expFi2pBTSv0u +
u2

2
− uvDGdu (9.14)

where u = t /T, v = f /B, v0 = f0 /B. The parameter n in (9.12) is thus 2pBT
and the approximation should therefore be very good for the range of values
of BT of interest here.

In this case, h (u ) = v0u + 1
2u2 − uv, and dh (u )/du = 0 yields c = v −

v0. Also, h ″(u ) = 1. Hence (9.13) yields

W ( f ) = T √2p
rect (v − v0)

(2pBT )1/2 exp[−ipBT (v − v0)2 + ip /4] (9.15)

= √T
B

expF−ip
( f − f0)2

k
+

ip
4 G rectS f − f0

B D
which may be compared with (9.9) and the following discussion and Figures
9.3(b) and 9.3(c). The stationary-phase method has yielded the quadratic phase
of W ( f ) in (9.9) and also the essential features of the magnitude of the
spectrum for large BT, excluding the Fresnel-integral oscillations in the magni-
tude.

Thus far it has been shown that the chirp signal provides high range
resolution through the phenomenon of pulse compression and its frequency
content has been determined as a function of BT. We now consider its Doppler-
invariant properties.
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9.2 Doppler-Invariant Properties of Chirp Waveforms

The foregoing matched filter response (9.7) is what would be observed for a
motionless target at zero range. The effects of range delay and target motion
on the filter response will now be explored. In this case as discussed in Chapter
8 in connection with (8.5), and ignoring as usual such factors as 1/r propagation
attenuation the echo is

w (t − t (t )) = w (a t − t0)

where r (t ) = r0 + vt , a ≈ 1 − (2v /c ) and t0 = 2r0 /(c + v ). Hence, the response
of a filter matched to the transmitted signal is

x (t ) = √B
T E

∞

−∞

w (at − t0)w *(t − t )dt (9.16)

=
1
a √B

T E
∞

−∞

WS f
a D expS−i2p

f
a

t0DW *( f ) e i2p ft df

where (1/a )W ( f /a ) exp [−i2p ( f /a ) t0] is the spectrum of the echo. The
spectrum X ( f ) of the response of the matched filter to the echo is therefore

X ( f ) =
1
a √B

T
WS f

a D e
−i2p

f
a

t 0
W *( f )

and, by applying the stationary-phase approximation (9.15) to W ( f /a ) and
W *( f ),

X ( f ) =
1
a √T

B
rectS f /a − f0

B D rectS f − f0
B D (9.17)

× expF−i
p
k S f

a
− f0D2G expFi

p
k

( f − f0)2G expS−i2p
f
a

t0D
The effect of the stationary phase approximation on the filter output may

be illustrated by setting a = 1, t0 = 0 whence

x (t ) = E
∞

−∞

X ( f ) e i2p ft df = √T
B E

f 0 +B /2

f 0 −B /2

e i2p ft df = e i2p f 0 t√BT
sin pBt

pBt

(9.18)
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Comparison with (9.7) shows that the stationary phase approximation leads to
removal of the t2 term in the argument of the sin x /x function, which has been
shown to be negligible for large BT. It also leads to a signal of infinite duration
because of the band-limiting properties of rect [( f − f0)/B ], which is an artifact
of the approximation.

Equation (9.17) may be simplified for our purposes as follows. By using
a2 − b2 = (a + b )(a − b ), the quadratic exponents can be written as

−
ip
k FS f

a
− f0D2 − ( f − f0)2G

= −
ip
k FS f S1 + a

a D − 2f0DS f S1 + a
a DDG

= −
ip
k F f 2S1 − a2

a2 D − 2f0 f S1 − a
a DG

Now (1 − a2)/a2 = 4v /c + 2(v2/c2) and (1 − a )/a = 2v /c + 2(v2/c2), so
ignoring terms of 2(v2/c2), the exponent becomes, by completing the square

−
ip
k F4v

c
f 2 −

4v
c

ff0G
= −ip

4v
c F( f − f0)2

k
+

f0 f
k

−
f 2
0
k G

= −ip
4v
c

( f − f0)2

k
+ i2p

ffd
k

+ i
4pv

c
f 2
0
k

since −4pv f0 /c = 2p fd. Hence, ignoring the constant phase term 4pvf 2
0 /ck

and recognizing that if terms of 2(v2/c2) are ignored, we can write fd ≈ fd /a

X ( f ) = e
−ip

4v
c

( f − f 0)2

k rectS f − f0
B D (9.19)

×
1
a √T

B
e

i2p
f
a S f d

k
− t 0D rectS f /a − f0

B D = A ( f ) × B ( f )

Thus, by the convolution theorem, the filter response x (t ) is a convolution
of the inverse Fourier transforms a (t ) and b (t ) of A ( f ) and B ( f ). Taking
the second one first,
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b (t ) = ST
B D

1/2 E
∞

−∞

rectS f /a − f0
B D expFi2p

f
a S fd

k
− t0DG e i2p ft df

a

= ST
B D

1/2

expFi2p f0S fd
k

− t0DG E
∞

−∞

rectS f
B D (9.20)

× expFi2p f S fd
k

− t0DG exp[i2p ( f + f0)a t ]df

= √BT expHi2p f0Fa t +
fd
k

− t0GJ
sin pBFa t +

fd
k

− t0G
pBFa t +

fd
k

− t0G
Before dealing with the effect of the convolution with a (t ), which will

result in a smearing of b (t ), let us examine b (t ), which is the essential undistorted
filter response. This may be verified by setting a = 1, t0 = 0 in which case
(9.20) reduces to (9.18), which is the matched-filter response under the
stationary-phase approximation.

We observe in (9.20) that, whereas if the target were stationary, the
maximum filter response would occur at time t = t0 [or t = t0 + T for a causal
filter as discussed in Chapter 7 in (7.15)], because of target motion the response
occurs at t = (1/a ) (t0 − fd /k ). The time-compression/expansion factor a that
affects B as well as t0 is a very small effect here. The important points are that:
(1) Target motion is manifested as an apparent change in range—by an amount
fd /k—from what would otherwise be observed if the target were stationary;
and (2) for purposes of target detection, within certain limits to be derived
shortly, the same filter is matched to stationary as well as moving targets, which,
as discussed above, is not the case for BT = 1 waveforms. Item (2) of course
simplifies the signal processing, but (1) means that the chirp pulse embodies
an inherent range-Doppler ambiguity, in the sense that there are an infinite
number of combinations of target positions and range rates that can be associated
with any given observation of the time of occurrence of the maximum filter
response. There are, however, methods for resolving this which are discussed
in Section 9.3 in connection with the ambiguity function for large BT signals.

Thus, as discussed earlier, the chirp or LFM waveform is Doppler-invariant
in this sense. There is, however, a limit, which arises from the convolution of
b (t ) with a (t ).

By the foregoing approximations, A ( f ) in (9.19) is
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A ( f ) = expF−i
4pv

c
( f − f0)2

k G rectS f − f0
B D (9.21)

which, by referring to (9.15) is the spectrum of a chirp pulse of duration 4vT /c .
For purposes of this discussion it is necessary to consider only the magnitude
|x (t ) | of the filter output, which is

|a (t ) * b (t ) | = |√BT rectS t
T ′D expFi2pS f0 t −

k ′
2

t2DG (9.22)

* e i2p f 0 a t
sin pBFa t +

fd
k

− t0G
pBSa t +

fd
k

− t0D |
where k ′ = BT ′, T ′ = |4vT /c | , and * denotes convolution. Equation (9.22)
can be written as (see Exercise 9.7)

| E∞
−∞

√BT rectSt − t
T ′ D

sin pBFat +
fd
k

− t0G
pBFat +

fd
k

− t0G
× expHi2pF f0(t − t ) −

k ′
2

(t − t )2GJ exp[i2p f0(at + a t − a t )]dt |
= √BT |expF−i2pS fd t +

k ′t2

2 DG rectS t
T ′D *

sin pBFa t +
fd
k

− t0G
pBFa t +

fd
k

− t0G |
(9.23)

Now the phase term fd t + 1
2k ′t2 is very slowly varying because

| fd | = | (1 − a ) f0 | << f0 and also, T ′ << T. Therefore in (9.23) the phase
will vary very little over the duration of rect (t /T ′ ) and to good approximation
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|x (t ) | = |a (t ) * b (t ) | = √BT | rectS t
T ′D *

sin pBFa t +
fd
k

− t0G
pBFa t +

fd
k

− t0G |
(9.24)

Since the width of the convolution of two functions is nominally the sum
of the widths of the two functions, the width Dx of the response x (t ) is

Dx ≈
1

aB
+

1
B

4v
c

BT =
1
B F 1

1 + (2v /c )
+

4v
c

BTG (9.25)

≈
1
B S1 +

4v
c

BTD
We could also write, approximately

Dx =
1
B F1 + S4v

c
BTD2G1/2

(9.26)

which would be exact if a (t ) and b (t ) were Gaussian. In either case, it has
been shown that 1/B is the nominal width of the compressed pulse for a
stationary target. Thus the convolution with a (t ) effectively reduces the band-
width of the filter response by a factor [1 + (4v /c )BT ], thereby degrading the
range resolution by this amount.

In radar or laser radar for extreme values of v, say, 7 km/second, values
of BT4v /c can be on the order of unity for relatively modest values of BT, in
this case BT ≈ 8,000, and this effect must be considered. In many other
applications of such systems, however, the effect can be ignored and target
motion can be assumed to cause only a shift in carrier frequency from f0 to
f 0 + fd . On the other hand, in sonar the effect is much more significant because
of the much larger values of v /c . As an example, typical BT values can be
∼1,000, in which case, for v = 30 knots BT4v /c ≈ 40, which would be
unacceptable. In fact, typically, BT4v /c ≥ 1 for v ≥ 1 foot/second, which, of
course, includes all targets of interest. In order to avoid this there is an alternative
large BT modulation scheme [35] that can be employed, which will now be
considered.
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9.3 Hyperbolic Frequency Modulation (HFM)

It has been shown that an LFM signal w (a t ) scattered from a moving target
can be mismatched to a filter that is matched to the transmitted LFM signal
w (t ). Referring to (9.16), which expresses the matched filter output, and to
(9.2), this arises essentially because of the quadratic phase term in the integrand,
k (1 − a2)t2 ≈ (B /T ) (4v /c )t2. Thus, since the range of integration on t is
T, the mismatch will, as we have seen, be insignificant if BT4v /c is small. The
mismatch occurs because of the change in time scale, w (t ) → w (a t ). However,
if the phase modulation was such that w (a t ) = w (t − t ′ )—that is, so that
vehicle motion imparts an effective delay to the signal rather than a scale
change—then only a phase shift would occur and there would be no degradation
in range resolution or, in fact, matched-filter output power. This suggests a
logarithmic phase modulation, because we can write

log (a + ba t ) = log a (a + b (t − t ′ )) = log a + log (a + b (t − t ′ ))

where t ′ = a (a − 1)/ab and the residual constant phase shift is proportional
to log a .

Now we note that if the instantaneous frequency is described by a
hyperbola,

f0
1 − (k /f0)t

= f0 + kt +
k2

2f0
t2 + . . . (9.27)

which yields the chirp, linear frequency modulation to a first approximation,
then the phase is

E f0
1 − (k /f0)t

dt =
−f 2

0
k

logS1 −
kt
f0
D (9.28)

which is of the desired form. Thus, the transmitted signal is

w (t ) = rectS t
T D expF−i2p

f 2
0
k

logS1 −
kt
f0
DG (9.29)
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Following the procedure of the preceding section, the transmitted signal
spectrum is

W ( f ) = E
T /2

−T /2

expF−i2p
f 2
0
k

logS1 −
kt
f0
DG e −i2p ft dt (9.30)

which, using (9.13), is

W ( f ) ≈ √1
k

f0
f

expF−i2p
f 2
0
k

logS f0
f DG (9.31)

× expS−i2p
ff0
k D expSi2p

f 2
0
k D exp(+ip /4)

and, referring to (9.16), the Fourier transform of the filter output is—ignoring
unity-gain considerations,

1
a

WS f
a D expS−i2p

ft0
a DW *( f ) =

1
k

expS−i2p
f 2
0
k

log aD (9.32)

× S f0
f D

2

expF−i2p f St0
a

+
f0
k

(1 − a )
a DG

The exponent contains only a term linear in f such as that in B ( f ) in
(9.19) and therefore there will be no degradation such as that brought about
by the dispersive term ( f − f0)2 in the phase of A ( f ) in (9.19). Now, referring

to (9.12) and the following discussion, since h ′(t ) = 0 for t =
f0
k S1 −

f0
f D,

and −T /2 < t < T /2, the corresponding limits on f are

f0

1 +
B

2f0

≤ f ≤
f0

1 −
B

2f0

(9.33)
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1
a E

∞

−∞

WS f
a DW *( f ) expFi2p f St −

t0
a DGdf (9.34)

~
1
k E

f 0 /(1−B /2f 0 )

f 0 /(1+B /2f 0 )

S f0
f D

2

expHi2p f Ft −
1
a St0 −

fd
k DGJdf

We wish to determine (1) the time instant that the peak output occurs,
and (2) the width of the main lobe of the time response, which, as before, will
be of the form sin x /x . For these purposes it is not necessary to evaluate (9.34)
explicitly. For (1), since the phase in the exponential is linear in f , it is therefore
equal to zero for all t satisfying

t =
1
a St0 −

fd
k D (9.35)

The maximum value of (9.34) therefore occurs for this value of t by a stationary-
phase argument. Thus, HFM is Doppler-invariant, independent of
|4BTv /c | , and exhibits the range-Doppler ambiguity as discussed for the chirp
waveform.

For (2), since ( f0 /f )2 is slowly varying, (9.34) will to a very good approxi-
mation have zeroes for values of t for which there are an integral number of
cycles in the range of integration

f0
1 − (B /2f0)

−
f0

1 + (B /2f0)
=

B

1 − (B2/4f 2
0 )

We therefore require

Ft −
1
a St0 −

fd
k DG B

1 − (B2/4f 2
0 )

= n (9.36)

for n = ±1, 2, . . . . This is satisfied by

t =
1
a St0 −

fd
k D +

n
B S1 −

B2

4f 2
0
D (9.37)

and the compressed pulse width is negligibly different from 1/B, independent
of |4BTv /c | since we always have B /f0 ≤ 1. [If a more exact evaluation of
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possible degradation in range resolution is required, the integral in (9.34) should
be evaluated.] Thus, HFM offers the possibility of avoiding the degradation
in range resolution that can accompany the use of LFM waveforms in sonar
applications, and also in radar and laser radar but generally less often.

9.4 Ambiguity Functions for Large BT Waveforms

The ambiguity function is (ignoring the normalizing factor)

|X (a , t ) | = | E∞
−∞

w (t )w *(a t + t )dt | (9.38)

which is only trivially different from the matched filter response (9.16); to
make the correspondence exact, in (9.16) set t = x , t0 = −t , and t = 0. Hence,
in discussing the properties of |X (a , t ) | or |X ( fd, t ) | as the case may be, the
results of Section 9.2 can be applied directly.

For the LFM pulse, the footprint of |X ( fd, t ) | is determined at once
from (9.24) by the foregoing transformation; also we assume (4v /c )BT << 1
so that the convolution with rect function in (9.24) can be ignored. The essential
features of the footprint in this case are illustrated in Figure 9.4(a). It is seen
that it is possible to simultaneously achieve a range resolution commensurate
with the instantaneous frequency sweep B and a Doppler resolution commensu-
rate with the transmitted pulse duration T. For example, if BT = 1,000, then
a range resolution can be achieved equivalent to a pulse duration T /1,000
seconds, and at the same time a Doppler resolution can be achieved equivalent
to B /1,000 Hz. This may be compared with a CW, BT = 1, pulse of duration
T where, as illustrated in Figure 9.4(b), although a Doppler resolution 1/T can
be achieved, the range resolution would be 1,000 times as coarse.

The solid-line shape in Figure 9.4(a) corresponds to an instantaneous
frequency with an upsweep, that is f I = f0 + kt . However, an instantaneous
frequency with a downsweep, f I = f0 − kt , is equally possible, for which the
corresponding diagram is shown with a dotted line. From this it is clear that
illumination of a target by an upsweep signal followed by a downsweep is one
way to resolve the LFM range-Doppler ambiguity, provided, of course, that
the target range does not change appreciably during the interpulse spacing.
More precisely, referring to (9.20), for an upsweep signal the peak filter response
occurs at t = (1/a ) (t0 − fd /k ), and for a downsweep it occurs at t = 1/a (t0
+ f a /k ). Thus, the arithmetic mean of the time instances of maximum response
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Figure 9.4 Ambiguity footprints for CW and LFM or HFM pulses: (a) chirp and HFM pulse
and (b) CW pulse.
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for two successive pulses with opposite sweeps yields t0 /a , and one-half of the
difference yields fd /ak . Of course, as is discussed in the introduction to Chapter
8, if the range rate can be determined by means of tracking, this problem is
avoided. The slight error in the measurement caused by 1/a is of the second
order.

If we write out |X (a , t ) | exactly for the chirp signal, it is, ignoring terms
of 2(v2/c2),

|X (a , t ) | = | E∞
−∞

rectS t
T D rectSa t + t

T D (9.39)

× expF−i2pka tS fd
k

+ tDG expFip
4kvt2

c Gdt |
The quadratic term in the exponential is (4v /c )(Bt2/T ) as before. Hence, if
(4v /c )BT is not too large the quadratic exponential term can be ignored and
the integral achieves its maximum value for fd = −kt , yielding the footprint
of |X (a1t ) | given by (9.38), with reference to (9.24).

On the other hand, consider the ambiguity function for HFM, which,
referring to (9.29), is

|X (a , t ) | = | E∞
−∞

rectS t
T D rectSa t + t

T D (9.40)

× expH−i2p
f 2
0
k FlogS1 −

kt
f0
D − logS1 −

k (a t + t )
f0

DGJdt |
The exponential can be written as

2p f 2
0

k FlogS1 −
kt
f0
D − logS1 −

k (a t + t )
f0

DG (9.41)

=
2p f 2

0
k FlogS1 −

kt
f0
D − log aS f0 − kt

a f0
−

kt
f0
DG



257Large Time Bandwidth Waveforms

and if ( f0 − kt )/a f0 = 1, or t = (1 − a ) f0 /k = −fd /k the exponential term
becomes a constant, exp[−i2p ( f 2

0 /k ) log a ] and the integral in (9.40) achieves
its maximum value. For HFM the ambiguity diagram follows the contour
fd = ±kt exactly in all cases, and does not require (4v /c )BT << 1. Thus,
consistent with its Doppler-invariant properties, HFM yields an ambiguity
diagram, which is also devoid of the errors that occur in the LFM ambiguity
diagram for large 4vBT /c . Again, this makes HFM especially useful for sonar.

9.5 Coded Waveforms

For completeness we discuss briefly another large BT waveform currently used
in CDMA wireless, which is generally of the form

w (t ) = ∑
M

n=1
an rect [B (t − n /B )] e i2p f 0 (t−n /B ) (9.42)

where

rect (Bt ) = 51, −
1

2B
≤ t ≤

1
2B

0, otherwise

and, typically, the an are elements of a pseudorandom sequence of plus and
minus ones; these are also referred to as pseudonoise (PN) sequences and
sometimes also as pseudorandom noise waveforms. Thus the signal is a sequence
of carrier pulses, with energy determined by the length of the sequence and
bandwidth determined by the rate at which the phase reversals in the carrier
take place. Such signals are also used in direct-sequence spread spectrum commu-
nications [36].

Clearly, the BT products for such signals can be made arbitrarily large.
The matched filter for such a signal consists essentially of a tapped delay line
with tap weights equal to the an , as illustrated in Figure 9.5. If the sequence
an is chosen properly, the summed output, which is the autocorrelation function
of the sequence, will be very small until correlation occurs, at which point the
response will reach a magnitude ∼M in a time period ∼1/B. Since an

2 = 1 for
all n , at the instant of correlation the contents of the output signal register
consists of a CW sinusoid of duration M /B = T, which can be processed to
determine Doppler shift with a frequency resolution of 1/T. Thus the coded



258
SignalProcessing

Fundam
entals

and
Applications

Figure 9.5 Receiver for PN sequence.
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waveform exhibits the same desirable high-resolution properties of LFM and
HFM, which is as expected since the fundamental quantity for such schemes
is BT, regardless of the particular modulation.

The correlation function shown in Figure 9.6 is for a maximal-length
[36] pseudorandom sequence for which correlation functions having this shape
are guaranteed. In nonmaximum-length sequences the tails of the correlation
function will in general be larger and may exhibit sidelobe structure which of
course is not as desirable. Maximal-length sequences, however, can be easily
decoded and jammed by an adversary and more complicated nonlinear codes
are often employed, for which the structure of the correlation function must
be studied.

Ideally, the ambiguity diagram of PN sequences possesses very desirable
characteristics which is a major reason for interest in their use with active
sensors. Clearly, the most desirable form of ambiguity function is the thumbtack
function illustrated in Figure 9.7, which is devoid of all the range-Doppler
ambiguities characteristic of CW pulse trains, LFM, and HFM. Ideally, such
thumbtack ambiguity functions, which are essentially two-dimensional versions
of the correlation function in Figure 9.6, are possible using coded waveforms.

Figure 9.6 Autocorrelation function for M -pulse maximum-length PN sequence.
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Figure 9.7 Thumbtack ambiguity function for PN sequence.

Exercises for Chapter 9

9.1

Verify (9.5), (9.6), and (9.7).

9.2

Show that for large BT, the zeros of (9.7) occur for t = ±n /B, n = 1, 2, . . . .

9.3

Verify (9.19) and (9.20).
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9.4

Show that for large BT the energy x (t ) in (9.7) is G 2T 2/B ; use (3.72) and
the following discussion. Therefore, for unity gain G = √B /T . Show that the
pulse-compression operation can be represented as a system which increases
the input amplitude by a factor of √BT and reduces (divides) the pulse duration
by a factor of BT.

9.5

Discuss the result of Exercise 9.4 in terms of matched filtering.

9.6

Suppose the available peak power was unlimited. Define a CW (i.e., time-
bandwidth-product = unity) signal that yields the same target detectability and
range resolution as a LFM pulse of amplitude A , duration T, and bandwidth
B. How do the ambiguity diagrams for the LFM and CW pulses differ?

9.7

Verify that (9.23) is correct. The addition and subtraction of a t in the exponent
are necessary.





10
Generalized Coherent and Noncoherent
Detection and Processing

In what follows, coherent and noncoherent detection and processing are treated
using an arbitrary complex signal. This serves to demonstrate the generality of
the results of Chapter 6, in which a particular form of s (t ) was used.

In particular, referring to Section 7.1, the complex input signal and noise
z s(t ) and zn(t ) are

z s(t ) = c (t ) e i (2p f 0 t+ u ) (10.1)

zn(t ) = n (t ) − in̂ (t )

where u may be unknown, s (t ) = Re(z s(t )), n (t ) is a realization of mean-zero
white Gaussian noise, n̂ (t ) is the HT of n (t ), and

E
∞

−∞

|c (t ) |2dt = 2E (10.2)

E [n (t1)n (t2)] =
N0
2

d (t1 − t2)

The complex amplitude c (t ) is assumed to be band-limited with B ≤ 2f0,
which, as discussed in Section 7.1, permits the form of z s(t ) in (10.1). Also,

E [n̂ (t1) n̂ (t2)] =
N0
2

d (t2 − t1) (10.3)

263
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This holds because if

N ( f ) = E
∞

−∞

n (t ) e −i2p ft dt (10.4)

then

E
∞

−∞

n̂ (t ) e −i2p f 0 t dt = −i sgn ( f )N ( f ) (10.5)

where sgn f = ±1 for f _ 0. Thus the HT operation is equivalent to passing
n (t ) through a filter with transfer function −i sgn f . But by (3.11) the power
spectral density at the output of such a filter is |−i sgn f |2 = 1 multiplied by
the input power spectral density, which therefore remains unchanged. On the
other hand, using (4.34) and (10.3),

E [n (t1) n̂ (t2)] =
1
p E

∞

−∞

E [n (t1)n (x )]
t2 − x

dx =
N0
2p

1
t2 − t1

(10.6)1

The complex impulse response of the noncoherent filter matched in amplitude-
only to z s(t ) is

z s*(T − t ) = c *(T − t ) e −i2p f 0 (T− t ) (10.7)

where the arbitrary signal duration T is included for causality.

10.1 Noncoherent Detection of a Single Pulse

The complex quadrature receiver is diagrammed in Figure 10.1, for which the
complex filter output z y (t ) is

1. The reader might wonder about the behavior of (10.6) for t 1 = t 2. This can be determined
by considering white noise band-limited to | f | < B and letting B → ∞. It can be shown
that E (n (t ) n̂ (t + t )) = N0(sin pBt )2/pt , which vanishes at t = 0 for any value of B.
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Figure 10.1 Generalized quadrature receiver for complex signals.

z y (t ) = e −i [2p f 0 (T− t )−u ] E
∞

−∞

c (t )c *(T − t + t )dt (10.8)

+ e −i2p f 0 (T− t ) E
∞

−∞

zn (t )c *(T − t + t ) e −i2p f 0 t dt

and the counterparts of the in-phase and quadrature components of the real
quadrature receiver output at the time of signal correlation t = T are, respectively,

Re z y (T ) = X = 2E cos u + ReE
∞

−∞

zn (t )c *(t ) e −i2p f 0 t dt = 2E cos u + U

Im z y (T ) = Y = 2E sin u + ImE
∞

−∞

zn (t )c *(t ) e −i2p f 0 t dt = 2E sin u + V

(10.9)

The random variables U and V are mean-zero, Gaussian, and independent
(see Exercise 10.1). The receiver output

z = (2E cos u + U )2 + (2E sin u + V )2 (10.10)

therefore has a noncentral chi-square distribution with two degrees of freedom,
which, as is discussed in Section 6.4.2, takes the simple form

1

2s2 expF−
(z + b )

2s2 G I0F(zb )1/2

s2 G (10.11)
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where b = 4E 2 and s2 = Var (U ) = Var (V ), which we now calculate.
The variance s2 is

s2 = E31
2 E

∞

−∞

zn (t )c *(t ) e −i2p f 0 t dt +
1
2 E

∞

−∞

zn*(t )c (t ) e i2p f 0 t dt4
2

=
1
4 E

∞

−∞

E
∞

−∞

E [zn (t1)zn (t2)]c *(t1)c *(t2) e −i2p f 0 (t 1 +t 2 )dt1 dt2

+ complex conjugate (10.12)

+
1
4 E

∞

−∞

E
∞

−∞

E [zn (t1)zn*(t2)]c *(t1)c (t2) e −i2p f 0 (t 1 −t 2 )dt1 dt2

+ complex conjugate

The first two terms with e ±i2p f 0 (t 1 +t 2 ) vanish (see Exercise 10.2). The third
term is

1
4 E

∞

−∞

E
∞

−∞

E [(n (t1) − in̂ (t1)) (n (t2) + in̂ (t2))] (10.13)

× c *(t1)c (t2) e −i2p f 0 (t 1 −t 2 )dt1 dt2

Now, using (10.3) and (10.6),

E [n (t1) − in̂ (t1)] [n (t2) + in̂ (t2)] = N0d (t1 − t2) +
iN0
p

1
t1 − t2

(10.14)

and (10.13) is therefore equal to

1
432EN0 + iN0 E

∞

−∞

c *(t1) e −i2p f 0 t 1 dt1
1
p E

∞

−∞

c (t2) e i2p f 0 t 2 dt2
t1 − t2 4

(10.15)
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But the integral on t2 is just the HT of c (t2) e i2p f 0 t 2, which, because c (t2)
is band-limited as described above, is equal to −ic (t1) e i2p f 0 t 1 (see Exercise
10.3). Therefore, (10.15) is equal to

1
4

(2EN0 + 2EN0) (10.16)

which is real, and (10.12) yields

s2 = 2EN0 (10.17)

Hence, referring to Section 6.4.2

Pfa = E
∞

h 2

expS−
z

4EN0
D dz

4EN0
= expS−

h2

4EN0
D (10.18)

and

Pd = E
∞

h 2

expS−
z + 4E 2

4N0E D I0Sz1/2

N0
D dz

4N0E
(10.19)

= E
∞

(−2 ln Pfa)
1/2

x expF−
(x2 + a2)

2 G I0(xa )dx

where a2 = 2E /N0, which is identical to the results of Section 6.2 in which
envelope rather than square-law detection was used. This further demonstrates
the equivalence of monotonic detection schemes in the single-pulse case.

10.2 Coherent and Noncoherent Integration

With noncoherent integration the output of the square-law detector after inte-
gration is

SM = ∑
M

i=1
(2E cos ui + Ui )2 + (2E sin ui + Vi )2 = ∑

M

i=1
Ri
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where

Ui = ReE
∞

−∞

zni (t )c *(t ) e −i2p f 0 t dt (10.20)

Vi = ImE
∞

−∞

zni (t )c *(t ) e −i2p f 0 t dt

and ui is allowed to vary from pulse to pulse.
Again, we apply the central limit theorem to the random variable

Ri = (2E cos ui + Ui )2 + (2E sin ui + Vi )2 (10.21)

whose probability density approaches a Gaussian as M becomes large, with
mean mM and variance s

2
M given by

mM = ME (Ri ) = M (4E 2 + 4EN0) = 4MEN0S1 +
E

N0
D (10.22)

s
2
M = M [E (R 2

i ) − (E (Ri ))2]

As before in Section 6.3.1, using (6.40),

E (U 2
i V 2

i ) = E (Ui Ui Vi Vi ) = E (U 2
i )E (V 2

i ) + 2(E (Ui Vi ))2 (10.23)

= E (U 2
i )E (V 2

i ) = 4E 2N 2
0

Also by (6.40)

E (U 4
i ) = 3E (U 2

i ) = 12N 2
0 E 2 = E (V 4

i ) (10.24)

Evaluation of s
2
M , P fa, and Pd proceeds exactly as in Section 6.4.2 and

s
2
M = M16E 2N 2

0 S1 +
2E
N0
D (10.25)

and
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Pfa = E
∞

h

expF−
(x − m )2

2s2 G dx

√2ps2
=

1
2

[1 − erf(g )] (10.26)

where m and s are obtained from (10.22) and (10.25) by setting E /N0 = 0.
In this case the threshold h is

h = 4MN0ES1 + g √ 2
M D (10.27)

and, as before

Pd =
1
2 31 + erf1√M

2
E

N0
− g

S1 +
2E
N0
D1/2 24 (10.28)

For coherent integration the output of the square-law detector is

12ME cos u + ∑
M

i=1
Ui2

2

+ 12ME sin u + ∑
M

i=1
Vi2

2

= (B1 + x1)2 + (B2 + x2)2

(10.29)

which, again, has a chi-square distribution with two degrees of freedom
with B1 = 2ME cos u, B2 = 2ME sin u, x1 = SM

i=1Ui , x2 = SM
i=1Vi and it is

assumed that u remains constant over the integration time.
In this case

Pd = E
∞

h 2

expS−
z + b

2s2 D I0F(zb )1/2

s2 G dz

2s2 (10.30)

where

b = 4M 2E 2, s2 = 2MEN0, h = (−2s2 ln Pfa)
1/2

which yields
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Pd = E
∞

(−2 ln Pfa)
1/2

x expS−
(x2 + a2

2 D I0(xa )dx (10.31)

where a2 = 2ME /N0 which, again, is identical to the result in Section 6.4.2.

Exercises for Chapter 10

10.1

Show by using (10.1) that U and V in (10.10) are independent.

10.2

Show by using (10.1) that

1
4 E

∞

−∞

E
∞

−∞

E [zn (t1)zn (t2)]c *(t1)c *(t2) e −i2p f 0 (t 1 +t 2 )dt = 0

10.3

Show that

1
p E

∞

−∞

c (t1) e i2p f 0 t 2 dt2
t1 − t2

= −ic (t2) e i2p f 0 t 1

by using the fact that c (t2) is a band-limited function, with B < 2f0.
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Systems Considerations

11.1 Beampatterns and Gain of Antennas and Arrays

Consider an idealized one-dimensional reflector-type antenna with aperture-
width D as diagrammed in Figure 11.1. In the vicinity of the reflector (the
near field) the radiation is collimated and at large distances (the far field) it
becomes spread out due to diffraction with, as will be shown, most of the
energy being confined to an angular range l /D, where l is the wavelength.
The far-field radiation pattern is of interest here, and the distance R that may
be taken as the boundary for the beginning of the far field can be determined
from the accompanying geometrical diagram due to Lord Rayleigh. It is seen that
for distances greater than D2/l the width of the radiation field corresponding to
the far-field angular width l /D exceeds that of the collimated beam. We
therefore say that for R > D2/l we are in the far field of the antenna.

In order to calculate the far-field pattern each incremental element dx
over the aperture of the reflector is treated as a source of radiation (Huygens’
principle) of the form A (x ) exp [i (2p f0 t + f (x )]dx where f0 = c /l is the
carrier frequency and c the propagation speed. The field F (P ) at some point
P at range R will contain the contributions from each element over the aperture
and be of the form

F (P ) = K E
D /2

−D /2

A (x )

expFiS2p f0St −
R
c D + f (x )DG

R
dx (11.1)
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where the factor 1/R accounts for attenuation of the field amplitude with
distance and K is a complex constant.

From Figure 11.2

R = (R 2
0 − 2xx ′ + x2)1/2 = R0S1 −

2xx ′
R 2

0

+
x2

R 2
0
D1/2

(11.2)

∼ R0 +
x2

2R0
−

xx ′
R0

S1 +
xx ′
2R 2

0
D + . . .

and the phase term involving R in the exponent of (11.1) is therefore

2p FR0
l

+
x2

2lR0
−

xx ′
lR0

S1 +
xx ′
2R 2

0
D + . . .G

Now in practice

x2

2lR0
≤

D 2

2lR0
,

x ′
R0

= sin u ≤ 1 (11.3)

hence, for R0 >> D2/l the terms x2/2lR0 and xx ′/2R 2
0 in the exponent can

be ignored. Also to a good approximation the attenuation factor 1/R can be
replaced by 1/R0, which yields the Fraunhofer diffraction integral

Figure 11.2 Diffraction geometry.
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f (u ) =

expFi2pS f0 t +
R0
l DG

R0
K E

D /2

−D /2

A (x ) expF−iS2p
x sin u

l
+ f (x )DGdx

(11.4)

which is the Fourier transform, in terms of the variable sin u /l , of the aperture
amplitude and phase distribution A (x ) e if (x ).

Consider a uniform amplitude and phase distribution, A (x ) e if (x ) = 1.
The magnitude of the response is of interest here which in this case is, ignoring
K /R0

| f (u ) | = | sin pD (sin u /l )
p (sin u /l ) | (11.5)

The extension to a two-dimensional rectangular reflector with dimensions
(Dx , Dy ) and angles sin ux = x ′/R0, sin uy = y ′/R0 is immediate and given by

| f (ux , uy ) | = | sin pDx (sin ux /l )
p (sin ux /l ) | | sin pDy (sin uy /l )

p (sin uy /l ) | (11.6)

and a circular aperture of diameter D with uniform illumination yields the
Airy pattern

f (u ) = F2J1(pD sin u )/l )
pD (sin u /l ) G

where J1 is the ordinary Bessel function of the first order.
In exact parallel with the discussion in Section 4.3 dealing with the

spectrum of a rectangular pulse the half-power beamwidth D sin u of the uni-
formly illuminated rectangular aperture of width D is from the foregoing results

(D sin u ) ≈ Du =
l
D

(11.7)

since in practice l << D . For a circular aperture the beamwidth is slightly
larger, given by

Du ∼
4
p

l
D

(11.8)
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Array antennas differ from continuous-aperture antennas in that they are
made up of a number of discrete antenna elements that are operated collectively.
The discrete elements can be anything from simple dipoles to large parabolic
reflectors. For arrays there are results similar to those for continuous antennas,
but there are also important differences. Consider an array of isotropic radiators
as illustrated in Figure 11.3. Let each radiator be excited by a signal e i2p ft and
consider the field at a point P at a distance R in the far field, with angle of
incidence to the array u. As R → ∞, the rays drawn from each radiator to P
are all effectively parallel and the relative phase shifts in the contributions from
elements at ±nd on either side of the element at the center are ±2pnd sin u /l .
The field amplitude at P is therefore, assuming for convenience that N is odd,

f (u ) =
K
R ∑

(N −1)/2

n=−(N −1)/2
expFi2pS f0 t +

nd sin u
l DG

where K is a complex constant and the magnitude of the response is, again
ignoring K /R

| f (u ) | = | sin pN (d sin u /l )
sin p (d sin u /l ) | (11.9)

where we have used

∑
(N −1/2)

n=(N −1/2)
e inz =

sin pNz
sin pz

(11.10)

The half-power beamwidth is therefore, as before:

D sin u ∼ Du =
l

Nd
∼

l
L

(11.11)

where L = (N − 1), d is the length of the array, which is essentially identical
to (11.7). The pattern of f (u ) has a principal maximum at sin u = 0, but, in
addition, there are also maxima for sin u = l /d , 2l /d , 3l /d , . . . , which
continuous radiation sources do not have. These secondary and generally
unwanted maxima are referred to as grating lobes, and are mathematically
equivalent to the Doppler ambiguities considered in Section 8.1, as will be
discussed. In practice, each array element will have some beampattern b (u )
and (11.9) would be |b (u ) f (u ) | .

On reception, for a radiation source in the far field located broadside to
the array, that is, u = 0, the phase relationships between the signals at the
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Figure 11.3 Linear array antenna.
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outputs of the elements will be identical to those in the preceding discussions
for transmission. Also, for u ≠ 0 the phase difference between adjacent elements
will, as before, be 2pd sin u /l . Thus arrays, and in fact all antennas, are
reciprocal, in the sense that the beampatterns are the same for transmission or
reception. Off broadside, transmission or reception of energy for some angular
location u0 ≠ 0 is accomplished by implementing a phase shift of ±n (d /l ) sin u0
radians at the input (output) of each element located at a distance ±nd from
the center of the array, in which case the transmission or reception beampattern
is, ignoring b (u ),

| f (u ) | = | sin (pNd /l ) (sin u − sin u0)
sin (pd /l ) (sin u − sin u0) | (11.12)

In this discussion the central element has been used as the phase-reference
point, but of course the phase can be referred to any point on the array with
no change in the magnitude of the beampattern. In this way linear and planar
arrays are steered electronically. For reflector-type antennas steering is, of course,
accomplished by physically pointing the antenna in the appropriate direction.

Now returning to the subject of grating lobes, if an array has grating
lobes in the visible half space, −90° ≤ u ≤ 90°, there is essentially no way of
determining whether a source of radiation in the far field is at an angular
location corresponding to the principal maximum or at an angular location
u = sin−1 [n (l /d )], n = ±1, ±2, . . . , on either side of it. Also, transmitted
energy becomes distributed over the grating lobes rather than being confined
to a single desired direction. However, grating lobes can be effectively eliminated
as follows. We note that if the lobes can be separated by p radians, which
corresponds to forward and backward radiation, then there is only a single such
lobe, which only just begins to enter the visible half space (at 790°) when
the principal maximum is steered to end-fire, at ±90°. This requires that
sin p [(d /l ) sin p /2] = 1, and d = l /2. Thus, if d < l /2, grating lobes are
effectively eliminated. Note that for d = l /2, the array beamwidth is

l
(N − 1)d

=
2

N − 1
radians ≈

115
N

degrees (11.13)

In any sensing system it is desirable to be able to concentrate the trans-
mitted power as much as possible toward a specific point in space, and also to
enhance the sensitivity of the sensor, on reception, for signals from a particular
direction. This increases the range at which a target at a particular point can
be detected—recall the factor 1/R0 in (11.4)—and enables the angular location
of a scatterer to be more accurately identified. By the reciprocity property of
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antennas these two capabilities are equivalent and are minimally satisfied by
an isotropic radiator, which has a uniform angular response over 4p stearadians
for transmission and reception. On the other hand, for a radiator with a
rectangular aperture of dimensions Dx and Dy it has been shown that transmitted
radiation is confined for the most part to a solid angle of

l2

Dx Dy
∼

l2

A
stearadians (11.14)

where A is the area of the aperture. We therefore define the gain of an antenna
relative to an isotropic radiator as

G =
4p

solid-angle beamwidth
=

4pA

l2 (11.15)

To repeat, G is a measure of capability for selecting a given localized region
in space both for transmission and reception of energy. Gain increases directly
with the area of the aperture, and the region becomes more localized and the
antenna angular response more selective with increase in the gain. Note that
the maximum value of (11.6) is Dx Dy = A which occurs at ux = uy = 0.
Thus, the gain of the antenna is proportional to the maximum value of the
beampattern. Equation (11.15) holds equally for two-dimensional arrays as well
as reflectors of all kinds.

Arrays, when used in radar or satellite communications applications, are
usually two-dimensional, and the extension of (11.9) and (11.12) to the rectan-
gular case is immediate, and exactly analogous to (11.6). In sonar, however, it
is more customary at present to employ linear arrays, and (11.9) and (11.12)
apply directly. The question of array gain in sonar is also handled somewhat
differently. A linear array of N elements receiving a plane wave representing
scattering from a point target in the far field, yields a signal amplitude N times
that of a single element, because the signal amplitude is coherent from element
to element. The signal gain in radar would therefore be proportional to 20 log N.
In sonar, however, one often deals with the gain in SNR rather than just signal
power alone. In this case, assuming spatially white ambient noise—that is,
independent from element to element—the noise power at the output is
10 log N. We therefore have the array gain (AG) for the received signal

AG = 20 log N − 10 log N = 10 log N

which is the improvement in SNR over that which would be achieved by a
single array element.
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11.2 The Radar and Sonar Equations

Let a target at range R from a measurement point be illuminated by a plane
wave E inc. If the target scatters energy uniformly over 4p stearadians and E sc
is the scattered wave at the location of the target, the received power P is

P =
|E sc |2

4pR 2 (11.16)

The scattered field at the target E sc can be written in terms of the incident
field as |E sc |2 = s |E inc |2 where the constant of proportionality s is the scatter-
ing cross-section, which has dimensions of area and in terms of the received
power is given by

s = 4p
P

|E inc |2
R 2 (11.17)

In most cases of interest targets do not scatter uniformly over 4p stearadians
and s is therefore a function of the angle between the incident field vector
and the vector pointing from the target toward the receiver. In radar the factor
of 4p is nevertheless retained, and the radar cross section is therefore a measure
of the effective area of an equivalent isotropic scatterer capable of scattering
4p times the amount of power per unit solid angle that is actually scattered
toward the receiver. In general the angular directions to the receiver and to the
transmitter may not coincide, in which case we speak of bistatic scattering and
bistatic-scattering cross sections s ( |kI − kS | ), where |kI − kS | represents the
angle between the incident and scattered wave vectors. Here, however, we shall
deal only with backscatter—for which the transmitter and receiver coincide—
and denote s , with no argument, as the backscatter cross-section.

In sonar the equivalent quantity is known as the target strength, which
is related to s but defined somewhat differently. For an incident wave e ikx,
where k = 2p /l , the amplitude W of the scattered wave in the far field at a
distance R can be written as

W =
f ( |kI − kS | ) e ikx

R
(11.18)

where f ( |kI − kS | ) describes the scattering properties of the target as a function
of the angle between the incident and scattered waves. The function
f ( |kI − kS | ) has dimensions of length and is related to s by
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s = 4p | f |2 (11.19)

In sonar the dimensionless target strength (TS) is defined in terms of W in
(11.18), with R set equal to 1m, as

TS = 10 log |W |2 = 10 log | f |2 dB (11.20)

Thus, TS is a measure of the scattered power referred to 1m from the scattering
point in the direction of interest.

In transmission, in a radar system a voltage is converted into an electro-
magnetic wave that is radiated by the antenna. In sonar the electrical signal is
converted via an electroacoustic transducer into an acoustic signal which is a
mechanical vibration. Let us consider the former case first. Let PT denote the
peak transmitted power; for a rectangular pulse of amplitude v this would be
v2. If the antenna gain is G, the power per stearadian in the direction of the
maximum of the beam pattern is

PTG
4p

(11.21)

The solid angle subtended at the transmitter/receiver by a target of radar cross
section s at range R is s /R 2 and the power intercepted by the target is therefore

PTGs

4pR 2 (11.22)

Since radar cross section is defined in terms of an equivalent isotropic radiator,
the scattered power per unit area at the receiver is

PTGs

4pR 2
1

4pR 2 (11.23)

The power collected by the antenna is the area A multiplied by (11.23), and
using (11.15) the received power P can be written as

P =
PTl2G 2s

(4p )3R 4 (11.24)

which is sometimes more convenient to express in terms of the area of the
antenna as
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P =
PT A2s

4pl2R 4 (11.25)

Note that as G increases, and the beamwidth becomes narrower, the collecting
area increases.

The most important features of the radar equation, (11.24) or (11.25),
are: the 1/R 4 dependence, which incorporates the two-way 1/R 2 attenuation
that the signal undergoes in propagating up and back; the dependence on the
area of the aperture; and the fact that, for fixed A , P increases with increase
in frequency f = c /l . In (11.25) A should be taken as the effective aperture,
which is the actual geometrical aperture multiplied by an efficiency factor that
may range anywhere between 0.3 and 0.9.

For a rectangular pulse of magnitude v—either a CW pulse with BT = 1
or a large time-bandwidth rectangular pulse with BT >> 1 such as those
discussed in Chapter 9—the transmitted energy ET is PTT = v2T /2. Therefore,
by multiplying both sides of (11.25) by T /N0, where N0 /2 is the two-sided
noise power spectral density, the ratio of received signal energy to noise spectral
density, which is the SNR at the output of a noncoherent matched filter, is

E
N0

=
ET A2s

N04pl2R 4 (11.26)

In (11.26) the value of N0 should represent the noise due to the effective
antenna temperature plus the overall system noise characteristics, which includes
the front-end amplifier and noise generated in lossy elements, which can be
calculated using the results of Section 3.7. From (3.59) it is clear that in a
properly designed system the overall system noise characteristics are established
by the noise generated in the front end.

Derivation of a corresponding equation for sonar is much less straight-
forward owing to the more complex propagation environment in the ocean.
In radar spherical spreading of the electromagnetic waves can be assumed, but
in sonar this holds only for relatively short distances from the transmitter,
before reflections from the sea surface and the bottom come into play. Also,
the depth dependence of the sound speed is generally such that a duct or
channel is created within which a sonar signal may be confined over long
distances by refraction—the SOFAR channel. Ducting can also occur in radar,
but is the exception rather than the rule. Thus, a sonar signal propagation path
can involve bounces between the surface and the bottom, channeling due to
refraction, and also hybrid paths consisting of a top and/or a bottom reflection
plus refraction. As a result, propagation can be similar to that in a waveguide
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with spreading of the signal becoming cylindrical rather than spherical [37],
and amplitude attenuation by a factor of 1/√R rather than 1/R , which can
result in very long-range propagation.

Let us now consider a monostatic sonar system employing a linear array
of N elements. A given amount of electrical power input to each element will
produce a pressure wave of some amplitude and some duration T in the water.
It is customary to work with logarithmic quantities (decibels) with a reference
pressure of 1 microPascal (mPa; 1 mPa = 10−5 dyn/cm2). Denote the pressure
wave in decibels produced by each element as source level (SL). Since there
are N elements, there will be a signal power gain of 20 log N in the direction
of interest over a single isotropic radiator. In propagating to the target there
will be a transmission loss (TL) and in scattering there will be a gain by a
factor of the target strength (TS). In the return path there is an additional loss
of TL and at the array gain in SNR of 10 log N, which, as discussed above,
assumes spatially white ambient noise. The SNR of the output of the array,
in the sense given by (11.26), is therefore given by

SNR = SL + 10 log T + 30 log N − 2TL + TS − 10 log N0 (11.27)

where the power spectral density N0 here represents ambient noise and noise
generated in the receivers.

In using (11.27) it is necessary to evaluate TL, which is dependent on
the particular situation of interest and will generally require use of such things
as computer codes and ray tracing routines. Also, (11.27) does not include
effects of reverberation, which in sonar is the counterpart of radar clutter.
Reverberation, however, is usually much more of a serious problem than clutter
for a radar, owing to the presence of the surface and bottom of the ocean as
well as the presence of such factors as shipping and marine life, which is
exacerbated by the long-range acoustic propagation.

11.3 The Search Problem

The results of the preceding sections express operational capabilities of sensors
in terms of the peak power that can be generated. The average power, however,
is of equal importance, particularly in multipulse functions such as signal
integration, which has already been mentioned, and in search, which we now
consider for radar. From (11.26) the range at which a radar is capable of
realizing a certain value of (E /N0) for a single pulse is

R = FA2(ET/N0)s

4pl2(E /N0) G
1/4

(11.28)
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Now suppose the sensor is to search in some time TS over a volume
defined by a solid angle V and a range R . The volume search rate (SR) can
be defined as

SR =
VR 3

3TS
(11.29)

We can express the search angle approximately in numbers of antenna beam-
widths as

V ≈ N
l2

A
(11.30)

where l2/A is the solid-angle antenna beamwidth of the sensor and N is an
integer. The search over the volume can be accomplished by transmitting a
periodic waveform consisting of a pulse of duration T every Tp seconds, pointing
the sensor during the time interval TS to N different discrete beam positions,
which cover V, and dwelling for a time Tp at each beam position in order to
allow the scattering from a possible target at the maximum range R to be
received. We require1

Tp =
TS
N

(11.31)

Now using (11.28), (11.29), and (11.30),

SR =
1

3R
VR 4

TS
=

1
3R

Nl2

A
A2(ET/N0)s

4pl2(E /N0)NTp
(11.32)

=
s

12pRN0

(PTT /Tp )A

(E /N0)

since ET = PTT. The ratio T /Tp of pulse duration to interpulse spacing is the
duty factor and PTT /Tp is the average power Pav, and we can write

SR =
s

12pRN0

Pav A
(E /N0)

(11.33)

1. The constraint of (8.1) must of course also be satisfied.
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Thus, search capability is dependent on the power-aperture product, Pav A of
the sensor, where Pav is the average power capability. The dependence on the
other parameters is as might be expected. Although the search scenario chosen
is not the only possibility, the results remain substantially unchanged. The
noise power spectral density N0 has been written separately from E /N0 because
the latter quantity may be specified as a separate numerical parameter dependent
on required values of Pd and P fa.

11.4 Specification of the False-Alarm Probability, P fa

The results of Chapters 5 and 6, in which sensor operation and capability is
analyzed and evaluated in terms of detection and false-alarm probabilities, all
refer to single observations. That is, they deal with the probability that at any
given instant the detection threshold is or is not exceeded, given that a target
is or is not present. The threshold is dependent on the false-alarm probability
P fa and we now deal with the question of how P fa might be specified. As a
general rule, issues related to detection and false-alarm probabilities are most
important during search—that is, prior to positive identification and acquisition
of a target. How this is accomplished varies with the application. Typically,
an exceedance of a threshold associated with illumination of a point in space
is followed by reinterrogation of that point—or more precisely a small volume
around the point in order to allow for target motion. A voting procedure then
might be implemented in which, say, at least m exceedances out of n successive
trials are required in order for the observation to be taken as sufficient evidence
of positive sighting. Sometimes the detection threshold is changed during the
voting process in order to further reduce the possibility of a false acquisition.
Clearly there is no general rule for specifying how a particular value of P fa
might be reached. However, since this issue is often most important during
search, let us consider the following example, which gives an idea of how this
might be done.

Let there be the requirement that a certain volume in space is to be
searched in a time TS and that during some fraction h of each search interval
TS—that is during a time hTS—the probability that there shall be not more
than one false alarm is p ; the value of p might typically be 0.999. This may
be stated mathematically as:

P [no false alarms in hTS seconds] (11.34)

+ P [1 false alarm in hTS seconds] = p

Thus, the problem of specifying p has been substituted for the problem of
specifying P fa, but the number of false alarms per search interval has more
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direct operational and physical meaning than does P fa. Now, if the bandwidth
of the signal is B, there are B independent noise samples per second at the
output of a filter matched to the signal, and therefore BTS opportunities in
TS seconds for an exceedance of the threshold due to noise alone to occur.
Hence, the average number of false alarms during the interval hTS is hTSBP fa.

Now referring to Section 2.2, it has been shown that the Poisson distribu-
tion can be applied when l /n is small, where l is the expected value of the
number of events that occur during n Bernoulli trails, and l /n is the probability
of the occurrence of the event. In this case the event is the occurrence of a
false alarm and the relevant quantity is hTSBP fa /hTSB = P fa. Let us assume
that P fa ≤ 10−5. Poisson statistics can therefore be applied, and referring to
(2.11) and (11.34) and denoting x = hTSBP fa, we have

e −x(1 + x ) = p (11.35)

Typical values of these parameters are: TS = 10−4 seconds, B = 100 MHz, and
if P fa ≤ 10−5 then x << 1. If for any reason this does not hold, (11.35) can
easily be solved for x by trial and error. In this example, however, we can write

e −x(1 + x ) ∼ (1 − x ) (1 + x ) = 1 − x2 = p (11.36)

and

P fa =
(1 − p )1/2

hBTS
(11.37)

For p = 0.999. h = 1 and the foregoing value of BTS = 104, we find that

P fa ≈ 6 × 10−6

It is always important to check the self-consistency of assumptions that have
been made, which, of course, is satisfied in this case since P fa < 10−5 was
assumed.





Appendix A:
Table of Values of the Error Function

Erf(x ) =
2

√p E
x

0

e −t 2
dt

x 0 1 2 3 4 5 6 7 8 9

0.00 0.00 000 00 113 00 226 00 339 00 451 00 564 00 677 00 790 00 903 01 016
0.01 0.01 128 01 241 01 354 01 467 01 580 01 692 01 805 01 918 02 031 02 144
0.02 0.02 256 02 369 02 482 02 595 02 708 02 820 02 933 03 046 03 159 03 271
0.03 0.03 384 03 497 03 610 03 722 03 835 03 948 04 060 04 173 04 286 04 398
0.04 0.04 511 04 624 04 736 04 849 04 962 05 074 05 187 05 299 05 412 05 525

0.05 0.05 637 05 750 05 862 05 975 06 087 06 200 06 312 06 425 06 537 06 650
0.06 0.06 762 06 875 06 987 07 099 07 212 07 324 07 437 07 549 07 661 07 773
0.07 0.07 886 07 998 08 110 08 223 08 335 08 447 08 559 08 671 08 784 08 896
0.08 0.09 008 09 120 09 232 09 344 09 456 09 568 09 680 09 792 09 904 10 016
0.09 0.10 128 10 240 10 352 10 464 10 576 10 687 10 799 10 911 11 023 11 135

0.10 0.11 246 11 358 11 470 11 581 11 693 11 805 11 916 12 028 12 139 12 251
0.11 0.12 362 12 474 12 585 12 697 12 808 12 919 13 031 13 142 13 253 13 365
0.12 0.13 476 13 587 13 698 13 809 13 921 14 032 14 143 14 254 14 365 14 476
0.13 0.14 587 14 698 14 809 14 919 15 030 15 141 15 252 15 363 15 473 15 584
0.14 0.15 695 15 805 15 916 16 027 16 137 16 248 16 358 16 468 16 579 16 689

0.15 0.16 800 16 910 17 020 17 130 17 241 17 351 17 461 17 571 17 681 17 791
0.16 0.17 901 18 011 18 121 18 231 18 341 18 451 18 560 18 670 18 780 18 890
0.17 0.18 999 19 109 19 218 19 328 19 437 19 547 19 656 19 766 19 875 19 984
0.18 0.20 094 20 203 20 312 20 421 20 530 20 639 20 748 20 857 20 966 21 075
0.19 0.21 184 21 293 21 402 21 510 21 619 21 728 21 836 21 945 22 053 22 162

287
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x 0 1 2 3 4 5 6 7 8 9

0.20 0.22 270 22 379 22 487 22 595 22 704 22 812 22 920 23 028 23 136 23 244
0.21 0.23 352 23 460 23 568 23 676 23 784 23 891 23 999 24 107 24 214 24 322
0.22 0.24 430 24 537 24 645 24 752 24 859 24 967 25 074 25 181 25 288 25 395
0.23 0.25 502 25 609 25 716 25 823 25 930 26 037 26 144 26 250 26 357 26 463
0.24 0.26 570 26 677 26 783 26 889 26 996 27 102 27 208 27 314 27 421 27 527

0.25 0.27 633 27 739 27 845 27 950 28 056 28 162 28 268 28 373 28 479 28 584
0.26 0.28 690 28 795 28 901 29 006 29 111 29 217 29 322 29 427 29 532 29 637
0.27 0.29 742 29 847 29 952 30 056 30 161 30 266 30 370 30 475 30 579 30 684
0.28 0.30 788 30 892 30 997 31 101 31 205 31 309 31 413 31 517 31 621 31 725
0.29 0.31 828 31 932 32 036 32 139 32 243 32 346 32 450 32 553 32 656 32 760

0.30 0.32 863 32 966 33 069 33 172 33 275 33 378 33 480 33 583 33 686 33 788
0.31 0.33 891 33 993 34 096 34 198 34 300 34 403 34 505 34 607 34 709 34 811
0.32 0.34 913 35 014 35 116 35 218 35 319 35 421 35 523 35 624 35 725 35 827
0.33 0.35 928 36 029 36 130 36 231 36 332 36 433 36 534 36 635 36 735 36 836
0.34 0.36 936 37 037 37 137 37 238 37 338 37 438 37 538 37 638 37 738 37 838

0.35 0.37 938 38 038 38 138 38 237 38 337 38 436 38 536 38 635 38 735 38 834
0.36 0.38 933 39 032 39 131 39 230 39 329 39 428 39 526 39 625 39 724 39 822
0.37 0.39 921 40 019 40 117 40 215 40 314 40 412 40 510 40 608 40 705 40 803
0.38 0.40 901 40 999 41 096 41 194 41 291 41 388 41 486 41 583 41 680 41 777
0.39 0.41 874 41 971 42 068 42 164 42 261 42 358 42 454 42 550 42 647 42 743

0.40 0.42 839 42 935 43 031 43 127 43 223 43 319 43 415 43 510 43 606 43 701
0.41 0.43 797 43 892 43 988 44 083 44 178 44 273 44 368 44 463 44 557 44 652
0.42 0.44 747 44 841 44 936 45 030 45 124 45 219 45 313 45 407 45 501 45 595
0.43 0.45 689 45 782 45 876 45 970 46 063 46 157 46 250 46 343 46 436 46 529
0.44 0.46 623 46 715 46 808 46 901 46 994 47 086 47 179 47 271 47 364 47 456

0.45 0.47 548 47 640 47 732 47 824 47 916 48 008 48 100 48 191 48 283 48 374
0.46 0.48 466 48 557 48 648 48 739 48 830 48 921 49 012 49 103 49 193 49 284
0.47 0.49 375 49 465 49 555 49 646 49 736 49 826 49 916 50 006 50 096 50 185
0.48 0.50 275 50 365 50 454 50 543 50 633 50 722 50 811 50 900 50 989 51 078
0.49 0.51 167 51 256 51 344 51 433 51 521 51 609 51 698 51 786 51 874 51 962

0.50 0.52 050 52 138 52 226 52 313 52 401 52 488 52 576 52 663 52 750 52 837
0.51 0.52 924 53 011 53 098 53 185 53 272 53 358 53 445 53 531 53 617 53 704
0.52 0.53 790 53 876 53 962 54 048 54 134 54 219 54 305 54 390 54 476 54 561
0.53 0.54 646 54 732 54 817 54 902 54 987 55 071 55 156 55 241 55 325 55 410
0.54 0.55 494 55 578 55 662 55 746 55 830 55 914 55 998 56 082 56 165 56 249

0.55 0.56 332 56 416 56 499 56 582 56 665 56 748 56 831 56 914 56 996 57 079
0.56 0.57 162 57 244 57 326 57 409 57 491 57 573 57 655 57 737 57 818 57 900
0.57 0.57 982 58 063 58 144 58 226 58 307 58 388 58 469 58 550 58 631 58 712
0.58 0.58 792 58 873 58 953 59 034 59 114 59 194 59 274 59 354 59 434 59 514
0.59 0.59 594 59 673 59 753 59 832 59 912 59 991 60 070 60 149 60 228 60 307

0.60 0.60 386 60 464 60 543 60 621 60 700 60 778 60 856 60 934 61 012 61 090
0.61 0.61 168 61 246 61 323 61 401 61 478 61 556 61 633 61 710 61 787 61 864
0.62 0.61 941 62 018 62 095 62 171 62 248 62 324 62 400 62 477 62 553 62 629
0.63 0.62 705 62 780 62 856 62 932 63 007 63 083 63 158 63 233 63 309 63 384
0.64 0.63 459 63 533 63 608 63 683 63 757 63 832 63 906 63 981 64 055 64 129

0.65 0.64 203 64 277 64 351 64 424 64 498 64 572 64 645 64 718 64 791 64 865
0.66 0.64 938 65 011 65 083 65 156 65 229 65 301 65 374 65 446 65 519 65 591
0.67 0.65 663 65 735 65 807 65 878 65 950 66 022 66 093 66 165 66 236 66 307
0.68 0.66 378 66 449 66 520 66 591 66 662 66 732 66 803 66 873 66 944 67 014
0.69 0.67 084 67 154 67 224 67 294 67 364 67 433 67 503 67 572 67 642 67 711
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x 0 1 2 3 4 5 6 7 8 9

0.70 0.67 780 67 849 67 918 67 987 68 056 68 125 68 193 68 262 68 330 68 398
0.71 0.68 467 68 535 68 603 68 671 68 738 68 806 68 874 68 941 69 009 69 076
0.72 0.69 143 69 210 69 278 69 344 69 411 69 478 69 545 69 611 69 678 69 744
0.73 0.69 810 69 877 69 943 70 009 70 075 70 140 70 206 70 272 70 337 70 403
0.74 0.70 468 70 533 70 598 70 663 70 728 70 793 70 858 70 922 70 987 71 051

0.75 0.71 116 71 180 71 244 71 308 71 372 71 436 71 500 71 563 71 627 71 690
0.76 0.71 754 71 817 71 880 71 943 72 006 72 069 72 132 72 195 72 257 72 320
0.77 0.72 382 72 444 72 507 72 569 72 631 72 693 72 755 72 816 72 878 72 940
0.78 0.73 001 73 062 73 124 73 185 73 246 73 307 73 368 73 429 73 489 73 550
0.79 0.73 610 73 671 73 731 73 791 73 851 73 911 73 971 74 031 74 091 74 151

0.80 0.74 210 74 270 74 329 74 388 74 447 74 506 74 565 74 624 74 683 74 742
0.81 0.74 800 74 859 74 917 74 976 75 034 75 092 75 150 75 208 75 266 75 323
0.82 0.75 381 75 439 75 496 75 553 75 611 75 668 75 725 75 782 75 839 75 896
0.83 0.75 952 76 009 76 066 76 122 76 178 76 234 76 291 76 347 76 403 76 459
0.84 0.76 514 76 570 76 626 76 681 76 736 76 792 76 847 76 902 76 957 77 012

0.85 0.77 067 77 122 77 176 77 231 77 285 77 340 77 394 77 448 77 502 77 556
0.86 0.77 610 77 664 77 718 77 771 77 825 77 878 77 932 77 985 78 038 78 091
0.87 0.78 144 78 197 78 250 78 302 78 355 78 408 78 460 78 512 78 565 78 617
0.88 0.78 669 78 721 78 773 78 824 78 876 78 928 78 979 79 031 79 082 79 133
0.89 0.79 184 79 235 79 286 79 337 79 388 79 439 79 489 79 540 79 590 79 641

0.90 0.79 691 79 741 79 791 79 841 79 891 79 941 79 990 80 040 80 090 80 139
0.91 0.80 188 80 238 80 287 80 336 80 385 80 434 80 482 80 531 80 580 80 628
0.92 0.80 677 80 725 80 773 80 822 80 870 80 918 80 966 81 013 81 061 81 109
0.93 0.81 156 81 204 81 251 81 299 81 346 81 393 81 440 81 487 81 534 81 580
0.94 0.81 627 81 674 81 720 81 767 81 813 81 859 81 905 81 951 81 997 82 043

0.95 0.82 089 82 135 82 180 82 226 82 271 82 317 82 362 82 407 82 452 82 497
0.96 0.82 542 82 587 82 632 82 677 82 721 82 766 82 810 82 855 82 899 82 943
0.97 0.82 987 83 031 83 075 83 119 83 162 83 206 83 250 83 293 83 337 83 380
0.98 0.83 423 83 466 83 509 83 552 83 595 83 638 83 681 83 723 83 766 83 808
0.99 0.83 851 83 893 83 935 83 977 84 020 84 061 84 103 84 145 84 187 81 229

1.00 0.84 270 84 312 84 353 84 394 84 435 84 477 84 518 84 559 84 600 84 640
1.01 0.84 681 84 722 84 762 84 803 84 843 84 883 84 924 84 964 85 004 85 044
1.02 0.85 084 85 124 85 163 85 203 85 243 85 282 85 322 85 361 85 400 85 439
1.03 0.85 478 85 517 85 556 85 595 85 634 85 673 85 711 85 750 85 788 85 827
1.04 0.85 865 85 903 85 941 85 979 86 017 86 055 86 093 86 131 86 169 86 206

1.05 0.86 244 86 281 86 318 86 356 86 393 86 430 86 467 86 504 86 541 86 578
1.06 0.86 614 86 651 86 688 86 724 86 760 86 797 86 833 86 869 86 905 86 941
1.07 0.86 977 87 013 87 049 87 085 87 120 87 156 87 191 87 227 87 262 87 297
1.08 0.87 333 87 368 87 403 87 438 87 473 87 507 87 542 87 577 87 611 87 646
1.09 0.87 680 87 715 87 749 87 783 87 817 87 851 87 885 87 919 87 953 87 987

1.10 0.88 021 88 054 88 088 88 121 88 155 88 188 88 221 88 254 88 287 88 320
1.11 0.88 353 88 386 88 419 88 452 88 484 88 517 88 549 88 582 88 614 88 647
1.12 0.88 679 88 711 88 743 88 775 88 807 88 839 88 871 88 902 88 934 88 966
1.13 0.88 997 89 029 89 060 89 091 89 122 89 154 89 185 89 216 89 247 89 277
1.14 0.89 308 89 339 89 370 89 400 89 431 89 461 89 492 89 522 89 552 89 582

1.15 0.89 612 89 642 89 672 89 702 89 732 89 762 89 792 89 821 89 851 89 880
1.16 0.89 910 89 939 89 968 89 997 90 027 90 056 90 085 90 114 90 142 90 171
1.17 0.90 200 90 229 90 257 90 286 90 314 90 343 90 371 90 399 90 428 90 456
1.18 0.90 484 90 512 90 540 90 568 90 595 90 623 90 651 90 678 90 706 90 733
1.19 0.90 761 90 788 90 815 90 843 90 870 90 897 90 924 90 951 90 978 91 005
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x 0 1 2 3 4 5 6 7 8 9

1.20 0.91 031 91 058 91 085 91 111 91 138 91 164 91 191 91 217 91 243 91 269
1.21 0.91 296 91 322 91 348 91 374 91 399 91 425 91 451 91 477 91 502 91 528
1.22 0.91 553 91 579 91 604 91 630 91 655 91 680 91 705 91 730 91 755 91 780
1.23 0.91 805 91 830 91 855 91 879 91 904 91 929 91 953 91 978 92 002 92 026
1.24 0.92 051 92 075 92 099 92 123 92 147 92 171 92 195 92 219 92 243 92 266

1.25 0.92 290 92 314 92 337 92 361 92 384 92 408 92 431 92 454 92 477 92 500
1.26 0.92 524 92 547 92 570 92 593 92 615 92 638 92 661 92 684 92 706 92 729
1.27 0.92 751 92 774 92 796 92 819 92 841 92 863 92 885 92 907 92 929 92 951
1.28 0.92 973 92 995 93 017 93 039 93 061 93 082 93 104 93 126 93 147 93 168
1.29 0.93 190 93 211 93 232 93 254 93 275 93 296 93 317 93 338 93 359 93 380

1.30 0.93 401 93 422 93 442 93 463 93 484 93 504 93 525 93 545 93 566 93 586
1.31 0.93 606 93 627 93 647 93 667 93 687 93 707 93 727 93 747 93 767 93 787
1.32 0.93 807 93 826 93 846 93 866 93 885 93 905 93 924 93 944 93 963 93 982
1.33 0.94 002 94 021 94 040 94 059 94 078 94 097 94 116 94 135 94 154 94 173
1.34 0.94 191 94 210 94 229 94 247 94 266 94 284 94 303 94 321 94 340 94 358

1.35 0.94 376 94 394 94 413 94 431 94 449 94 467 94 485 94 503 94 521 94 538
1.36 0.94 556 94 574 94 592 94 609 94 627 94 644 94 662 94 679 94 697 94 714
1.37 0.94 731 94 748 94 766 94 783 94 800 94 817 94 834 94 851 94 868 94 885
1.38 0.94 902 94 918 94 935 94 952 94 968 94 985 95 002 95 018 95 035 95 051
1.39 0.95 067 95 084 95 100, 95 116 95 132 95 148 95 165 95 181 95 197 95 213

1.40 0.95 229 95 244 95 260 95 276 95 292 95 307 95 323 95 339 95 354 95 370
1.41 0.95 385 95 401 95 416 95 431 95 447 95 462 95 477 95 492 95 507 95 523
1.42 0.95 538 95 553 95 568 95 582 95 597 95 612 95 627 95 642 95 656 95 671
1.43 0.95 686 95 700 95 715 95 729 95 744 95 758 95 773 95 787 95 801 95 815
1.44 0.95 830 95 844 95 858 95 872 95 886 95 900 95 914 95 928 95 942 95 956

1.45 0.95 970 95 983 95 997 96 011 96 024 96 038 96 051 96 065 96 078 96 092
1.46 0.96 105 96 119 96 132 96 145 96 159 96 172 96 185 96 198 96 211 96 224
1.47 0.96 237 96 250 96 263 96 276 96 289 96 302 96 315 96 327 96 340 96 353
1.48 0.96 365 96 378 96 391 96 403 96 416 96 428 96 440 96 453 96 465 96 478
1.49 0.96 490 96 502 96 514 96 526 96 539 96 551 96 563 96 575 96 587 96 599
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x 0 2 4 6 8

1.50 0.96 611 96 634 96 658 96 681 96 705
1.51 0.96 728 96 751 96 774 96 796 96 819
1.52 0.96 841 96 864 96 886 96 908 96 930
1.53 0.96 952 96 973 96 995 97 016 97 037
1.54 0.97 059 97 080 97 100 97 121 97 142

1.55 0.97 162 97 183 97 203 97 223 97 243
1.56 0.97 263 97 283 97 302 97 322 97 341
1.57 0.97 360 97 379 97 398 97 417 97 436
1.58 0.97 455 97 473 97 492 97 510 97 528
1.59 0.97 546 97 564 97 582 97 600 97 617

1.60 0.97 635 97 652 97 670 97 687 97 704
1.61 0.97 721 97 738 97 754 97 771 97 787
1.62 0.97 804 97 820 97 836 97 852 97 868
1.63 0.97 884 97 900 97 916 97 931 97 947
1.64 0.97 962 97 977 97 993 98 008 98 023

1.65 0.98 038 98 052 98 067 98 082 98 096
1.66 0.98 110 98 125 98 139 98 153 98 167
1.67 0.98 181 98 195 98 209 98 222 98 236
1.68 0.98 249 98 263 98 276 98 289 98 302
1.69 0.98 315 98 328 98 341 98 354 98 366

1.70 0.98 379 98 392 98 404 98 416 98 429
1.71 0.98 441 98 453 98 465 98 477 98 489
1.72 0.98 500 98 512 98 524 98 535 98 546
1.73 0.98 558 98 569 98 580 98 591 98 602
1.74 0.98 613 98 624 98 635 98 646 98 657

1.75 0.98 667 98 678 98 688 98 699 98 709
1.76 0.98 719 98 729 98 739 98 749 98 759
1.77 0.98 769 98 779 98 789 98 798 98 808
1.78 0.98 817 98 827 98 836 98 846 98 855
1.79 0.98 864 98 873 98 882 98 891 98 900

1.80 0.98 909 98 918 98 927 98 935 98 944
1.81 0.98 952 98 961 98 969 98 978 98 986
1.82 0.98 994 99 003 99 011 99 019 99 027
1.83 0.99 035 99 043 99 050 99 058 99 066
1.84 0.99 074 99 081 99 089 99 096 99 104

1.85 0.99 111 99 118 99 126 99 133 99 140
1.86 0.99 147 99 154 99 161 99 168 99 175
1.87 0.99 182 99 189 99 196 99 202 99 209
1.88 0.99 216 99 222 99 229 99 235 99 242
1.89 0.99 248 99 254 99 261 99 267 99 273

1.90 0.99 279 99 285 99 291 99 297 99 303
1.91 0.99 309 99 315 99 321 99 326 99 332
1.92 0.99 338 99 343 99 349 99 355 99 360
1.93 0.99 366 99 371 99 376 99 382 99 387
1.94 0.99 392 99 397 99 403 99 408 99 413

1.95 0.99 418 99 423 99 428 99 433 99 438
1.96 0.99 443 99 447 99 452 99 457 99 462
1.97 0.99 466 99 471 99 476 99 480 99 485
1.98 0.99 489 99 494 99 498 99 502 99 507
1.99 0.99 511 99 515 99 520 99 524 99 528
2.00 0.99 532 99 536 99 540 99 544 99 548

x 0 2 4 6 8

2.00 0.99 532 99 536 99 540 99 544 99 548
2.01 0.99 552 99 556 99 560 99 564 99 568
2.02 0.99 572 99 576 99 580 99 583 99 587
2.03 0.99 591 99 594 99 598 99 601 99 605
2.04 0.99 609 99 612 99 616 99 619 99 622

2.05 0.99 626 99 629 99 633 99 636 99 639
2.06 0.99 642 99 646 99 649 99 652 99 655
2.07 0.99 658 99 661 99 664 99 667 99 670
2.08 0.99 673 99 676 99 679 99 682 99 685
2.09 0.99 688 99 691 99 694 99 697 99 699

2.10 0.99 702 99 705 99 707 99 710 99 713
2.11 0.99 715 99 718 99 721 99 723 99 726
2.12 0.99 728 99 731 99 733 99 736 99 738
2.13 0.99 741 99 743 99 745 99 748 99 750
2.14 0.99 753 99 755 99 757 99 759 99 762

2.15 0.99 764 99 766 99 768 99 770 99 773
2.16 0.99 775 99 777 99 779 99 781 99 783
2.17 0.99 785 99 787 99 789 99 791 99 793
2.18 0.99 795 99 797 99 799 99 801 99 803
2.19 0.99 805 99 806 99 808 99 810 99 812

2.20 0.99 814 99 815 99 817 99 819 99 821
2.21 0.99 822 99 824 99 826 99 827 99 829
2.22 0.99 831 99 832 99 834 99 836 99 837
2.23 0.99 839 99 840 99 842 99 843 99 845
2.24 0.99 846 99 848 99 849 99 851 99 852

2.25 0.99 854 99 855 99 857 99 858 99 859
2.26 0.99 861 99 862 99 863 99 865 99 866
2.27 0.99 867 99 869 99 870 99 871 99 873
2.28 0.99 874 99 875 99 876 99 877 99 879
2.29 0.99 880 99 881 99 882 99 883 99 885

2.30 0.99 886 99 887 99 888 99 889 99 890
2.31 0.99 891 99 892 99 893 99 894 99 896
2.32 0.99 897 99 898 99 899 99 900 99 901
2.33 0.99 902 99 903 99 904 99 905 99 906
2.34 0.99 906 99 907 99 908 99 909 99 910

2.35 0.99 911 99 912 99 913 99 914 99 915
2.36 0.99 915 99 916 99 917 99 918 99 919
2.37 0.99 920 99 920 99 921 99 922 99 923
2.38 0.99 924 99 924 99 925 99 926 99 927
2.39 0.99 928 99 928 99 929 99 930 99 930

2.40 0.99 931 99 932 99 933 99 933 99 934
2.41 0.99 935 99 935 99 936 99 937 99 937
2.42 0.99 938 99 939 99 939 99 940 99 940
2.43 0.99 941 99 942 99 942 99 943 99 943
2.44 0.99 944 99 945 99 945 99 946 99 946

2.45 0.99 947 99 947 99 948 99 949 99 949
2.46 0.99 950 99 950 99 951 99 951 99 952
2.47 0.99 952 99 953 99 953 99 954 99 954
2.48 0.99 955 99 955 99 956 99 956 99 957
2.49 0.99 957 99 958 99 958 99 958 99 959
2.50 0.99 959 99 960 99 960 99 961 99 961
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x 0 1 2 3 4 5 6 7 8 9

2.5 0.99 959 99 961 99 963 99 965 99 967 99 969 99 971 99 972 99 974 99 975
2.6 0.99 976 99 978 99 979 99 980 99 981 99 982 99 983 99 984 99 985 99 986
2.7 0.99 987 99 987 99 988 99 989 99 989 99 990 99 991 99 991 99 992 99 992
2.8 0.99 992 99 993 99 993 99 994 99 994 99 994 99 995 99 995 99 995 99 996
2.9 0.99 996 99 996 99 996 99 997 99 997 99 997 99 997 99 997 99 997 99 998
3.0 0.99 998 99 998 99 998 99 998 99 998 99 998 99 998 99 998 99 999 99 999
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Noise temperature, 56–59
matched filter yielding, 202

amplifier, 49, 57
sufficient, 200

effective, 49, 56
of unknown parameter, 201 lossy element, 60
usefulness, 200 total, 58

Mean-square composite echo, 228 total system, 59
Measurement accuracy, 194 Noncoherent detection, 160–67
Measurement error, 215 coherent detection comparison, 153–59
MIT Radiation Laboratory Series, 8 detection probability, 158
Mixer, 12 generalized, 263–70
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Neyman-Pearson criterion, 114 processing results, 179
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SNR requirements comparison, 176 Position error, 215
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Nonlinear detectors, 162 standard deviation of, 212, 216
Nyquist rate, 77, 83, 84, 90, 125 Postdetection integration, 187, 195
Nyquist’s theorem, 38, 39–41 Power spectral densities, 33–37

defined, 41 of input, 37
diagram for, 39 one-sided, 65
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Observable interest, 189 of random process, 35
Optical receivers of shot noise, 41–46

illustrated, 47, 120 of stationary process, 36
noise current at output, 48 of thermal noise, 39–41, 65
optical radiation, 121 two-sided, 41, 134
polarization alignment, 46
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shot noise and, 46–50

voltage, 67
Optical systems

Predetection integration, 175, 177, 187,
detector, 14

195shot noise and, 10, 50–56
Prediction, parameter estimation and,Orbital escape velocity, 226

209–16Organization, this book, 2–4
Probability density functionsOversampling, 78, 84

of random variables, 29–30Over-the-horizon (OTH) radar, 6
of sum of independent variables, 22

Pulse compression, 239–45Parameter estimation
Pulse repetition frequency (PRF), 221, 227application to tracking and prediction,
Pulse train209–16

coherent, 225generalized, 195–200
Gaussian, 234noise and, 209
noncoherent, 225Parameters

as duration of tracking time, 209
Quadrature receiverunknown, 197, 201

with envelope detection, 149Parseval’s theorem, 92, 134
equivalent, 150with analytic signals, 96–97

Quantization noise, 38–39defined, 64
defined, 38Phase modulation, 251
elimination, 39Planck radiation law, 39
See also NoisePlanck’s constant, 40, 49
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M -pulse maximum-length, 259 Quantum limit, 46–50
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Radar cross section, 280 limiting parameter, 238
width, 194Radar equation, 279–82

Random processes Range-time sidelobes, 241
Rayleigh distribution, 19, 155–56average power, 60

continuous, 33 illustrated, 55
noise and, 54defined, 33

discrete, 33 for noise envelope, 159
See also Rice distributionmean, 33–34

power spectral density of, 35 Received signal spectrum, 225
ReceiversRandom time functions, 33

Random variables for coherent integration implementation,
167, 168central limit theorem applied to, 268

characteristic function of, 21 complex quadrature, 264, 265
detection stage, 13conditional pdfs of, 116

continuous, 16 final output, 14
front-end amplifier, 12degree of dependence between, 34

functions of, 29–30 generic, diagram of, 11
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joint distribution of, 22 local oscillator and mixer, 12
optical, 46–50, 120–21limit of sequence of, 24
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sensitivity, 159–60power measurement, 61
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typical, 188variance of, 17
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estimation, 184–95 Rectangular pulse spectrum, 215
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HFM, 253 measurement, 212
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simultaneous, 231 range-Doppler, 227–34
spectral, 223Range-Doppler resolution, 227–34

Range measurement, 184 symmetrical angular, 213
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of rectangular pulse, 194error, 194

noise effect on, 189–90 RF systems, 10
front-end amplifier, 12Range rate, 205, 227

ambiguity in, 222 shot noise and, 10, 50–56
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estimate, 214 Rice distribution, 19, 155, 202
illustrated, 56measurement, 214

Range resolution, 230, 232, 251 noise and, 54
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capability, 194 Riemann-Lebesgue lemma, 93
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Schwartz inequality, 91, 135, 188, 197, 228 Spectrum
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channel, 131–33 output, 165, 175, 188, 192, 195
output, with noise present, 193current variance, 45

defined, 38 output, of time, 192
peak response, 193fluctuations, 50

matched filter for, 131–33 for predetection integration, 175
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accuracy, 194, 195process, sensing systems influence on,
error, 1944–14
noise and, 189–90Signal-to-noise ratio (SNR)

Targetscoherent detection, 157
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