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Abstract. We prove that certain subcategorieghfconsisting of complete modules having

a quasi-Verma flag with respect to a Levi subalgebra, admit a combinatorial description
similar to Soergel’s results on categafy Using the Enright completion functor we also
reprove Soergel's character formula for tilting module$iiand Ringel self-duality for the
principal block ofO.

1. Introduction

Let & be a simple complex finite-dimensional Lie algebra with a fixed Cartan
subalgebra) and a fixed triangular decompositién= 9_ & $H & N... For such a
situation, Bernstein, Gelfand and Gelfand [BGG] defined their celebrated category
0. Verma modules are produced by starting with a finite-dimensigralodule,
inflating it to the Borel subalgebr®, = $ & 91, and then inducing up té-
modules.

Basic properties o© are the following: There is a block decomposition such
that each block has finitely many simple objects (up to isomorphism); there exist
enough projective objects, and these are filtered by Verma modules — in modern
terms: a block is equivalent to the module category of a quasi-hereditary algebra
— and there is the BGG-reciprocity principle relating composition multiplicities in
Verma modules to filtration multiplicities of Verma modules in projective objects.
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Moreover, Soergel ([S2]) has given a combinatorial description of the blocks of
O which includes the following features: The endomorphism ring of the big projec-
tive module (in the principal block) is the coinvariant algebra (which is isomorphic
to the cohomology algebra of the flag manifold). There is a double centralizer prop-
erty relating the coinvariant algebra with the algebra of the principal block (via the
mutual actions on the big projective module). Furthermore ([S3]), categdsyts
own Ringel dual.

The setup for defining can be generalized as follows: LBt > 91, be a
parabolic subalgebra @, P = ' & 0, wheret is nilpotent and’ is reductive.
Let also2’ = A @ H, where2 is semi-simple andh? is abelian and central.
Then we can start witRl’-modules as input for inflation t&® and then induce up
to produce generalized Verma modules. At this point, there is no need to restrict
attention to finite-dimension&l’-modules.

Therefore, in [FKM1] we defined and studied a certain parabolic general-
ization O(P, A) of O. It has been shown that, under some natural conditions,
these categories correspond to projectively stratifiest@ndardly stratified) finite-
dimensional algebras (but usually not to quasi-hereditary algebras) and there are
analogues of the BGG-reciprocity principle.

The main problem now is to find a combinatorial description in the spirit of
Soergel's approach. We have studied a basic exam@&®f A) in [FKM2]. There
we proved that in the case, whehis isomorphic tos/(2, C), certain categories
do appear, whose blocks can be given a combinatorial description, analogous to
Soergel’s description oD. In fact, the coinvariant algebra is the endomorphism
algebra of the big projective module in the principal block and there is a double
centralizer property. The main tool in proving these results was a special fufictor
which produces an equivalence®@fP, A) with a full subcategory o). We took
the idea to define and study this functor from [M]. As soon as we constructed and
investigatedE, all the properties o©(P, A) can be deduced from the analogous
properties of0.

The image ofE carries an abelian structure coming fr@®{?, A), and this
abelian structure is not inherited from thatth hence it looks slightly mysterious
from the Lie theoretic point of view.

In the present paper we want to consider a general situation, i.e. we assume
that®l is an arbitrary semi-simple finite-dimensional Lie algebra. There are several
examples oo (P, A) for such situations (see, for example [FKM1, Sect. 11]), but
we do not know how to construct an analogue of the funé&dor them. In the
hope that the machinery, worked out in [FKM2], should work in the general case,
we tried to determine the candidate imageFdfif such anE would exist and have
all necessary properties). This approach led us to study certain subcategdlies in
which possess a combinatorial description similar to Soergel’s results on classical
category®. We call such categori€s-subcategories. The main result of this paper
is a construction of a series Sfsubcategories i, which consist of complete (in
the sense of Enright, [EPI-modules having a quasi-Verma flag. We also prove that
our category has enough tilting modules and the algebra of the principal block is
isomorphic to its Ringel dual.
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The paper is organized as follows. In Sect. 2 we define the (new) notion of a
module with a quasi-Verma flag 1. The usual notion of a module having a Verma
flag seems to be insufficient, at least we did not manage to work out the correspond-
ing categories. In Sect. 3 we recall Mathieu’s version of the Enright functor (which
seems to be the most convenient one for us) and establish its basic properties. We
also recall the notion of a complete module ([E]). In Sect. 4 we study the subcate-
gory of O, which consists of all complete modules having a quasi-Verma flag and
prove that it is admissible in the sense of [FKM1]. The most difficult place here
is to define an abelian structure (which, as we already know, cannot be inherited
from O). In Sect. 5 we study the correspondi@§P, A) and prove that it is an
S-subcategory ir0 (the lastO is with respect ta). In Sect. 6 we study a duality
on O(P, A), the tilting modules irO(P, A) and prove the Ringel self-duality for
the principal block. Finally, in Sect. 7 we introduce a family of subcategories of the
category of modules with quasi-Verma flag. These subcategories are parametrized
by elements in the Weyl group, and we get the previously studied subcategory as
a special case. The main result in this section provides us with equivalences be-
tween these categories. As a corollary, we obtain a new proof of Soergel’s character
formula for tilting modules.

2. Moduleswith quasi-Vermaflagin O

Let2A be a semi-simple complex finite-dimensional Lie algebra with a fixed Cartan
subalgebrafg and the corresponding root system Fix a basist in A and
consider the corresponding decomposition U A_ of A and the corresponding
triangular decompositiodit_ @ $Ho b N of A. Consider the BGG categofy of
2 ([BGG]) with respect to the triangular decomposition above. We recall@hat
is a full subcategory in the category of @lfmodules and consists of all finitely
generatedfyy-diagonalizable and locallyy (91,.)-finite modules. Foi € $3 let
M () (resp.L())) denote the Verma module (resp. the unique simple quotient of
the Verma module) with the highest weight- p, wherep is half of the sum of all
positive roots ([D, Chapter 7]). We also choose a Weyl-Chevalley Basia € A,
H,,acmxin.

We will say that a moduléf € O has aguasi-Verma flag if there is a filtration

O0=MoCMiCMyC---CMy_1CM=M, 1)

such thatM; /M;_1 is isomorphic to a submodule of som&();),i = 1,2, ..., k.
Denote byF the full subcategory of?, which consists of all modules with quasi-

Verma flag.
Further we will need some easy propertiesrofT he filtration (1) will be called
non-degenerated if M;/M;_1isnotzeroforali = 1,2, ..., k. We will also callk

thelength of the filtration (1). We recall ([BGG]) that any module@, and hence
in F has finite length.

Lemmal. Let M € F. Then any two non-degenerate quasi-Verma flags of M have
the same length. Moreover, this common length is equal to the number of simple
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subquotients of M (taken with their multiplicities), which areisomorphic to Verma
modules.

Proof. This follows from the fact that any Verma module has a simple socle, which
is again a Verma module (the unique simple Verma module in this block) [D,
Proposition 7.6.3]. O

If M € F and (1) is a non-degenerate quasi-Verma flag/ofwe will call k
thequasi-Verma length of M and will denote it by qV{M). According to Lemma 1
this notion is well-defined.

LemmaZ2. Let M € F. Then for any « € 7 the operator X_, acts injectively
on M.

Proof. A Verma module is free ovel/ (91_), hence torsion-free. Its submodules
are torsion-free as well.O

3. Enright functor (Mathieu’sversion)

Fix for some time a rootr € 7 and denote by(* the corresponding/(2)-
subalgebra ofl. Let U, denote the Ore localization &f (2() with respect to the
multiplicative sef{ X’ , |i € Z}. Itis well-defined according to [M, Lemma 4.2].
Denote byr, the endofunctor o), obtained as a composition of the following
functors:

e Uy ®ue —»
e restriction toU (1),
o taking the locallyX,-finite part.

By [De, Sect. 2]r, coincides onX,-torsion free modules with the Enright comple-
tionfunctorC, (see [E, Sect. 3]). Itis straightforward to check that well-defined
on O (see also [M, Appendix]) and, o r, = r,. Order the elements of in an
arbitrary way:w = {a1, @2, ..., and setr =rq, 0rq, 0+ 0 Fy,.

Lemma3.Lete M, N € O, M C N anda € . Then

1. ro(M) C roy(N),
2. rg(N/M) D ry(N)/re(M).

Proof. Follows from the left exactness af ([E, Proposition 3.17]). O

Lemmad4. 1. Let P, = U) Quey —. Then Py ory =rq 0 Py.

2. Let P = 2A* 4+ Hy + M4 be a parabolic subalgebra in 2L and let P =
UR)®yp)y_ be the functor of the corresponding induction. Then P o r, =
rg o P.

Proof. The first part follows from the natural identity, ® 2 U () Qu ey M =
Us ®uae), U@ e ®uae) M, WwhereU (%), is the localization ot/ (%) with
respecttdX’ , |i € Z,}. The second part follows from the first onex
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Lemmab. Let A € Hj, « € 7 and s, be the reflection with respect to «. Then
ra(M(A) =~ M(A) if M(L) ¢ M(sq (X)) and ro,(M (X)) >~ M(sq (M) If M(X) C
M (5o (X)).

Proof. This is a standard property of the Enright functor ([E, De]). We show, how it
can be easily deduced from Lemma 4. We recall that any Verma modul@masr

be obtained from the Verma module o using the functor® from Lemma 4.
Now from Lemma 4 it follows that it is enough to check the statement in the case
2 =A% for which it is trivial. O

Lemmab. Let M € O and o € 7. Then

1. M C rq(M) for any M € F and thisinclusion is functorial;

2. gVI(rea(M)) = qVI(M) for any M € F;

3. M =rq(M) if and only if M, viewed as an 2(*-module, is an (infinite) direct
sum of projective modules from the corresponding category O. In particular, if
M € F,then as an 2*-module, r, (M) coincides with the minimal direct sum
of projective modules containing M.

Proof. The first statement follows directly from Lemma 2. L& = M; D
My_1 D ... be aquasi-Verma flag dff. Thenr, (M) = ro (My) D rq(Mi—1) D
is a filtration of ry(M). Moreover, ro(M;)/roq(M;—1) is contained in

rq(M;/M;_1) by Lemma 3. We know thaM;/M;_1 C M(};) for somex; €
$y- Hence, by Lemma 3 we havg (M;/M;_1) C ro(M(%;)). By Lemma 5,
ro (M (A;)) is aVerma module and hengg(M) has a quasi-Verma flag. Moreover,
gVl(re(M)) < qVI(M). According to the first statement we haveC r, (M) and
hence g\Viry(M)) = gqVI(M). The second statement is proved.

For the last statement we recall thgto r, = r, SO it is enough to prove only
the first part. By Lemma 4, it is enough to prove the last statemert fer 2*.
But in this case it is trivial. O

Recall that a modulé/ is calleda-completeif r, (M) >~ M ([E]) andcomplete
if rg(M) >~ Mforall g € . Itis clear thatV/ is complete ifand only if (M) = M.
We will denote by stF the full subcategory of, consisting of all complete modules.

Lemma 7. Forany M € Fthereexistsk € Nsuchthat /(M) = roro---or(M) €
stF (r occurs k timesin the composition).

Proof. Follows from Lemma 6 and the fact that any Verma module has finite length.
|

Denote by st the composition - - o r o r in whichr occurs|A | times. From
[De] and [H, Section 1.8] it follows that, o st(M) = st(M) foranyM € F (even
M € O) anda € . Hence, st is a well-defined functor frafito stF. Moreover,
the objects in sF are precisely those objects fwhich are invariant (i.e. stable)
under st. This explains our notation.

Corollary 1. st(M (3)) isaVermamodulefor any A € $,. Inparticular, for integral
A the module st(M (1)) >~ M (), where u is the element from the orbit of A with
respect to theWeyl group action, lying in the closure of the dominant Weyl chamber.

Proof. Follows from Lemma5. O
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4. An abelian structure and admissibility of stFin;

Lemma8.Let M,N € stF and f : M — N be an 2(-homomorphism. Then
r(ker(f)) = ker(f), i.e. ker(f) iscomplete.

Proof. Clearly, itis enough to prove this f@f = 2*. But in this case the statement
is trivial. O

Denote by stFint (resp.Oint) the full direct summand of sk (resp.Q), which
consists of all modules, whose weights belong to the integral weight lattice. For
N € O by a(N) we will denote the number of simple subquotientsMpwhich
are Verma modules. Thus, fof € F holdsa(N) = gVI(N). The key statement of
this section is the following.

Proposition 1. Let M € stFiy and N be a complete submodulein M. Then N €
st Fint, moreover, there exists a quasi-Verma flag of M of the form (1) such that
M; = N for somei.

To prove this we will need the following lemmas.

Lemma9. Let M € O and o € . Assume that X_, actsinjectively on M. Then
rq (M) /M isadirect sum of finite-dimensional 2(-modules.

Proof. SinceX_, acts injectively onM we haveM C r,(M). Now the statement
follows from ansi(2)-computation. O

Lemma10. Let M and N be two complete modules in Ojnt, N € M. Then
any simple submodule in M/N is a simple Verma module. In particular, from
a(M/N) =0follows M = N.

Proof. Clearlyitis enoughto prove the first statement. Suppose thatthereis asimple
submodule of\//N that has the forni (1), for integrali which does not belong

to the closure of the antidominant Weyl chamber. Hence theredsr, such that

L () contains a (non-zero) direct sum of finite-dimensional modules with respect
to /A*. Therefore,M /N has elements on whick_, acts locally nilpotent. But

by Lemma 3r,(M/N) D rq(M)/re(N) >~ M/N D L(1), which is impossible,
becauseX _, acts injectively on,(M/N). O

Lemmall. Let N € stFjnt, M beacompletemodulein Ojt and N € M. Assume
thata(M/N) = 1. Then M /N isasubmodule of someVerma module, in particular,
M (S St]:int.

Proof. We only have to prove tha//N is a submodule in some Verma module.
Let M () be the simple Verma subquotient &f/N. From Lemma 10 it follows
that M (w) is the simple socle oM/N. Indeed, consider the submodulé =
M(uw)+NinM.LetM” = st(M’). Sincea(M/M") = 0, we obtair¥ = M” from
Lemma 10. On the other hant,” /N C sttM”/N) C st(M(w)). By Corollary 1
we have stM (1)) ~ M (u™) for someu ™. This completes the proof.o
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Lemmal2. Let N, M € stFin, N C M. Then any quasi-Verma flag of N can be
extended to a quasi-Verma flag of M.

Proof. We use inductionin = a(M)—a(N).If n = 0,thenM = N by Lemma 10.

Now let M' > N be a complete submodule &f such thata(M') = a(M) —

1. To find suchM’, extend 0C N C M to a composition series o¥/. Then

there is a submodul®/ c M, such thata(M) = a(M) — 1 andM > N. Set

M' = st(M). We only have to show that(M’) = a(M). The last follows from
Lemma 9 and the fact that simple Verma modules are direct sums of indecomposable
strictly infinite-dimensiona®®-modules for any € 7. Now assume that we have
already constructed the extension of a quasi-Verma flag f¥ota M’ (inductive
assumption). By Lemma 134/M’ is a submodule of a Verma module and we
obtain the desired quasi-Verma flag far. O

Proof of Proposition 1. We will prove the statement by induction ir(N). First
suppose thai(N) = 0. Then, by Lemma 10y = 0 and our statement for su¢h
is obvious.

Now we prove the induction step. Suppose that the statement is true fo¥'any
such thata(N’) < a(N) and consider a submodul’ C N such thata(N’) =
a(N) — 1. Such submodule exists sin¥ehas a composition series. We recall that
N is complete and se¥” = st(N') ¢ N. We havea(N") = a(N') < a(N) by
the same arguments as in Lemma 12, and ndévis complete. From the inductive
assumption tav”, we get, in particulartN” € st Fin; and furthermore(N/N") =
1. HenceN € stFin: by Lemma 11. We complete the proof applying Lemma 12.
O

Now the definition of an abelian structure on; is quite transparent. Let
M, N € stFin, andf : N - M an2-homomorphism. By Lemma 8 and Propo-
sition 1, ke f) € stFin. We define the “image” off inside this category as
st(Im(f)), which belongs to sFi,; by Proposition 1, and the “cokernel” of
as stM/st(lIm(f))). From Proposition 1 it follows thad/st(Im(f)) € Fint
and hence sM/st(lm(f))) € stFn. Moreover, one can see that
qQVI(N) = qVi(ker(f)) + qVI(stim(f))) and qVkM) = qVI(stIm(f)))
+qVi(st(M/ st(Im(/)))).

Lemma 13. The category st Fint with kernels, images and cokernels defined as
above is an abelian category.

Proof. We have to check the universal properties of the kernel and cokernel only.
The universal property of the kernel is trivial since the kernel iftigt coincides

with the kernel in the category @-modules. The universal property of cokernel
follows easily from Lemma 8. O

Proposition 2. st Fiyt is admissible in the sense of [FKM1], i.e. it is an abelian
category, afull subcategory in the category of 2(-modules, it consistsof finitely gen-
erated modulesand it is stable under tensoring with finite-dimensional 2(-modules.

Proof. stFin: is abelian by Lemma 13 and is a full subcategoryinHence we
only have to check that % is stable under tensoring with finite-dimensional
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2A-modules. LetM e stFipt and F be a finite-dimensiona-module. Clearly

F ® M € Oint. We recall thatF ® _ is an exact functor (in the category of all
2-modules) and any” ® M (1), 1 € H3 has a Verma flag ([BGG,D]). Hence
F ® M € F. From the exactness d¢f ® _ and the third statement of Lemma 6
it follows also that stF is stable under tensoring with finite-dimensional modules.
HenceF ® M e stF, which completes the proof.o

Lemma 14. For any simplefinite-dimensional module F thefunctor F ® _ isexact
on st Fint.

Proof. Follows from Lemma 8 and [De, Theorem 3.1]a

5. S-subcategoriesin O and the main result

The admissible category &, of 2-modules constructed in the previous Sec-
tion extends in a natural way to an admissible category: A (stFn) of $H-
diagonalizable2(’-modules. Now we turn back to the situation described in the
Introduction, where we thought abditas the semisimple part of the Levi factor
of a parabolic subalgebrg in a simple finite-dimensional Lie algebea Con-
sider the categor)(P, A) of &-modules consisting of finitely generated?-
diagonalizable®i-finite modules, which decompose into a direct sum of objects
from A as2U'-modules (this category was introduced in [FKM1]). It is clear that
O(P, A) is a full subcategory of the categotyfor &. At the same tim& (P, A)
is an abelian category, whose abelian structure is derived from one &inom
Proposition 2 and Lemma 14 it follows thé&(P, A) is closed under tensoring
with finite-dimensional modules, anfl ® _, F finite-dimensional, is an exact
functor onO(P, A). Denote byE the natural inclusion functor fro®(P, A) to
O.We will useE in order to emphasize that the abelian structuregg(®, A) and
O are different.

Denote byOyy the principal block of0. We will say that a full subcategory
M c O is anS-subcategory if the following conditions are satisfied.

S1. M is an abelian category.

S2. M is stable under tensoring with finite-dimensiogaimodules.

S3. Myiv = M N Oiv is a direct summand oM.

S4. M has enough projective objects, which are also projectiv@.in

S5. The big projective modul® in Oyy (i.e. the projective cover of the unique
simple Verma module iy, ) belongs taM.

S6. (Soergel’s double centralizer property) The finite-dimensional algebra corre-
sponding taMyy is isomorphic to the endomorphism algebraryfviewed
as a module over its endomorphism ring.

Itis clear thatO itself is anS-subcategory ir¥. Another example of a8 subcate-
gory in O was constructed in [FKM2] and coincides with the image of the functor
E considered in that paper.

The main result of this paper is the following statement.

Theorem 1. O(P, A(StFint)) isan S-subcategory in O.
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The rest of this section will be dedicated to the proof of Theorem 1. In fact
we will prove a bit more than what is claimed in this theorem. We start with the
description of projective modules it and inO(P, A).

Lemma 15. A has a block decomposition with a unique simple module in each
block.

Proof. Itis enough to prove this for kint, which we can decompose with respect
to the central characters Bt = @, cz)* StFint(x) in a natural way. Let/ be

a simple module in st (x). Clearly, qVkM) = 1 and hencéf = M ().), where

A is an integral weight lying in the closure of the dominant Weyl chamber, since
M is complete. Now the uniqueness of suti)) in stFin:(x) follows from the
Harish-Chandra Theorem ([D, Theorem 7.4.5, Proposition 7.4.7]).

Lemma 16. A has enough projective modules.

Proof. Again it is enough to prove the statement fofFgf. Since any module in
st Fint has finite length it is enough to construct a projective cover of the simple
module M (1), wherea is an integral weight lying in the closure of the dominant
Weyl chamber. LeM (L) € stFint(x) for somey € Z(21)*. Letwg be the longest
elementinthe Weyl group and consider the projective mog&iiey(1)). Obviously,
there is an epimorphism® (wo(1)) — M ()) (in stFint, not in O). However, we
have to show thaP (wg(A)) is a projective object in skjp;. From Lemma 6 it
follows easily thatP (wg(1)) € stFint. Moreover, sinceP (wg(1)) is projective in

O and by virtue of Lemma 1, we have diftom o (P (wo(A)), M)) = qVI(M) for
any M e stFint(x). From this it follows that the functor HotP (wo(1)), ) is
exact on stFint(x ) and hence? (wo()) is projective in stFin;. Clearly, P (wo()) is
indecomposable since it is indecomposabl@iand the top of? (wg (1)) coincides
with st(L (wg(1))) = M (A). This completes the proof.o

Corollary 2. 1. O(P, A) hasablock decompositionwith afinite number of simple
modulesin each block.

2. O(P, A) has enough projective modules.

3. Any block of O(P, A) isequivalent to the module category over a finite-dimen-
sional projectively stratified algebra.

Note that the definition of “projectively stratified algebra” in the sense of [FKM1,
FKM2] coincides with the earlier notion of “standardly stratified algebra” used in
[AHLU].

Proof. This follows from Lemmal5, Lemma 16 and [FKM1, Sects. 4 and 5], but
we present a proof here in order to keep the paper self-contained. First we note that,
asO(P, A) is a subcategory ab, the first claim is trivial.

Now, using an analogue of Rocha—Wallach’s construction ([RW]), we construct
projective modules i (P, A) as projections on blocks of the modules

PV, =U®) @ (Ue/wen)ev),
U(P)
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wherek is big enough and is projective inA. By the same arguments as in [BGG,
Theorem 1] this forces the existence of enough projectived(iR, A) giving us
the second claim.

At this stage abstract nonsense tells us that each bla®Bf A) with finitely
many simple objects is equivalent to the module category over a finite-dimensional
algebra. For an indecomposable projective= A choose the moduld/ (V) =
U(®) ®yp V to be standard. Under such choice the simple moduléx, A)
will be exactly the unique simple quotierigV) of the moduled/ (V). Fix a block
of O(P, A) with a partial order on the isoclasses of simple modules, induced from
$H*. AsP is a parabolic subalgebra, the kernel of the natural surjection M)
ontoL (V) isfiltered by simples, which are less or eqUakith respect to our order.
Let P(V) be the projective cover di(V). From the other hand, as tensoring with a
finite-dimensional module is exa@(V, k), and hence any projective(P, A) is
filtered by standard modules (this follows using the arguments analogous to [BGG,
Proposition 2]). From the construction &f(V, k) it follows that M (V) occurs
exactly one time in such a filtration and all other standard modules correspond to
strongly bigger simples (again with respect to our order). Clearly, this means that
the same is true fod (V) and by definition we obtain that the finite-dimensional
algebra of our block is projectively stratified. This completes the proof.

Proposition 3. Any indecomposable projectivemodulein O(P, A) isalso aninde-
composable projective module in O. Furthermore, P(A) € O(P, A) (for » € H*)
if and onlyif A is2A-integral and belongsto the closure of the A-antidominant Weyl
chamber.

Proof. Let V be a projective module in. From the proof of Lemma 16 it follows

that as arkl-module, P is a direct sum of som& (u), whereu is -integral and
belongs to the closure of the antidominant Weyl chamber. Recall one more time that
that any projective ifO(P, A) can be constructed as a projection on a block of the
moduleP (V, k), defined in the proof of Corollary 2. Directly from this construction

it follows that any projective il (P, A) is projective inO. Since the functoF ® _

is exact for any finite-dimensional, the moduleP (V, k), as arRl-module is also

a direct sum of som® (i), whereu is 2(-integral and belongs to the closure of the
antidominant Weyl chamber. This completes the proaf.

SetOP, Myiv = OP, A) N Oiy. It is clear thatO(P, A)yiv is a direct
summand oD (P, A).

Coroallary 3. The big projective module from O belongsto O(P, A), moreover it
is an indecomposable projective object in O(P, A).

Proof. Obvious. O

Corallary 4. The projectively stratified finite-dimensional algebra B associated
with the block O (P, A)iv isa subalgebra of the quasi-hereditary finite-dimensio-
nal algebra A associated with Oyjy. Futhermore, the canonical duality on A re-
strictsto a duality on B.
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Proof. The first statement follows directly from Proposition 3. Fetienote the
canonical duality or©. To prove the second statement it is enough to show that
P* € O(P, A) for any projectiveP € O(P, A). We have already seen that as an
2A-module, P is a direct sum of som® (u), wherep is 2-integral and belongs to

the closure of the antidominant Weyl chamber. Now the statement follows from the
fact that each suck (w) is self-dual (i.e. a tilting module fat). O

We note that sinc& (P, A) is a full subcategory K is a full functor), the
endomorphism ring of the big projective module is the coinvariant algebra ([S2]).
Now we can prove our main result.

Proof of Theorem 1. We only have to prove the Soergel’s double centralizer property.
For that purpose we are going to use abstract notationsA ie&tsp.B) denote the
algebra associated witByiy (resp.O(P, A)iv). According to Corollary 4B is a
matrix subalgebra afl.. Let e be the primitive idempotent of such thatAe is the

big projective module iy, . ThenBe is the big projective module i@ (P, A)iv
andC = eAe = eBeisthe coinvariant algebra, which is the endomorphism algebra
of Ae andBe. LetT = Hom 4(Ae, _) denote the functor used in Soergel’s proof
([S2]). Recall that by Soergel's Theorem ([S2, Struktursatz 2]) for ®@ng Oyiy

and any projectived € Oy holds

Hom 4 (M, Q) =~ Hom c—eac (T (M), T(Q)).

We start fromB = Hom g(B, B). Since E is a full functor, we have
Hom p(B, B) >~ Hom 4(E(B), E(B)). Now applying Soergel's result we ob-
tain that Homy (E(B), E(B)) >~ Hom .4.(T(E(B)), T(E(B))). We know that
eAe = eBe. Recall thatE(Be) = Ae, henceT (E(B)) = Hom 4(Ae, E(B)) =
Hom 4(E(Be), E(B)) ~ Hom p(Be, B) = ¢B. Finally,

Hom 4. (T (E(B)), T(E(B))) ~ HOm .p.(eB, eB).

By Corollary 4, the algebraB has a duality, from which it follows that
Hom .p.(eB, eB) >~ Hom .p.(Be, Be). This completes the proof.o

6. Tilting modulesin O(P, A)

In Corollary 4 we have shown that there exists a natural dualityppor more
generally orO(P, A). We will denote this duality by, as forO. We also know that
forany projectiveP € O(P, A) the corresponding dual moduke € O(P, A) can
be computed ii© (i.e. the dual modules t8 in O(P, A) and inO are isomorphic).
Having a duality it is natural to consider the tilting modules.

Let V be an indecomposable projective moduleAin SettingMVv = 0, we
define an induced moduldp (V) = U (&) ®y(p) V, which we will call astandard
module. SinceV is projective inA, as an-module Mp (V) is a direct sum of
projective modules im\ and hence is self-dual as @8amodule.

Lemmal7. Let Mp (V) € O(P, A) beastandard module. Then the dual modules
to Mp(V)in O(P, A) andin O areisomorphic.
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Proof. We reduce our consideration to a block®@€P, A), which corresponds to

a projectively stratified finite-dimensional algebra. [Sebe the partially ordered

set of simple modules. Thefialso parametrizes the standard modules. From the
construction of the projective modules@(P, A) it follows that Mp (V) can be
written asP(V)/N, whereP (V) is an indecomposable projective modulehas a
standard filtration and all the standard subquotients of this filtration are bigger than
Mp (V) with respect taS. We know that the dual modules fér(V) in O(P, A)

andO coincides. Now the statement follows by inductiorSin O

We will call Mp(V)*, V is an indecomposable projective v, costandard
modules. Consider the full subcategotf(A) (resp.F(v)) of O(P, A) which
consists of all modules havingstandard filtration (resp.costandard filtration), i.e.
a filtration, whose quotients are standard (resp. costandard) modules.

Corollary 5. Let M € F(A) U F(v). Then the dual modulesto M in O(P, A)
and in O are isomorphic.

Proof. Follows from Lemma 17 and exactness of the dualities.

A moduleM € F(A) N F(v) will be called atilting module. Hence, by virtue
of Corollary 5, it should be a tilting module @. Itis known (see for example [KK])
that any tilting module ir© is a direct sum of indecomposable tilting modules and
there is a natural bijection between indecomposable tilting modules and simple
modules inO. LetT (1), A € $* denote the unique indecomposable tilting module
in O, whose Verma flag starts with/ (). First of all we determine th@ (1)
belonging toO (P, A).

Lemmal18. T(A) € O(P, A) if and only if A is -integral and belongs to the
closure of the 2(-dominant Weyl chamber.

Proof. Let M € O(P, A) be a module having a standard filtration. This filtration
can be refined to a Verma flag@ Let M (1) be aVerma submodule i1 occuring
inthisVermaflag. TheM (1) is complete im\ and hence is2-integral and belongs

to the closure of th@l-dominant Weyl chamber. Therefore, the only candidates for
being inO(P, A) areT (), which satisfy the condition of our Lemma.

Let wo denote the longest element in the Weyl grouploFirst considef (1),
wherep is 2-integral and belongs to the closure of #elominant Weyl chamber,
such thatV (wo(w)) is simple. Therf (w) is a self-dual standard module and hence
T () € O(P, A). To complete the proof we recall that(P, A), F(A) andF(v)
are closed under tensoring with finite-dimensional modules and énysuch that
A satisfies the condition of our Lemma can be obtained as a direct summand in
T (1) ® F for some finite-dimensional’ and some’" (1) as above ([Cl]). O

Theorem 2. Any tilting module in O(P, A) is a direct sum of indecomposable
tilting modules of the form T (1), where 1 is2(-integral and belongs to the closure
of the 2(-dominant eyl chamber.
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Proof. We have already proved that dl(1), wherea is 2(-integral and belongs to

the closure of th@&-dominant Weyl chamber, are tilting modulesi®{P, A). Re-

call that blocks of0 (P, A) correspond to projectively stratified finite-dimensional
algebras. Now the uniqueness of an indecomposable tilting module corresponding
to a given simple module follows from an abstract result [AHLU, 2.1 and 2.2] on
tilting modules over stratified algebraso

Consider again the algeb®, which corresponds t® (P, A)yiv and letT be
the direct sum of all indecomposable tilting modulei@P, A)yiy. We recall that
End(T) is usually called th&ingel dual of B.

Theorem 3. B isisomorphic toits Ringel dual.

Proof. Let S denote the semi-reguléf(®)-bimodule ([S1,S3]) and letg be the
highest weight of the triviay-module. Letwg be the longest element in the Weyl
group W of &. Then the functoS ® _ mapsP (w(rg)) to T (wwp(rg)) for any

w € W ([S3]). Note thatifw (1) belongs to the closure of tRe-antidominant Weyl
chamber, themwo(Ag) belongs to the closure of t¥-dominant Weyl chamber.
HenceS ® _ transfers projective modules fro@(P, A)yiy to tilting modules in
O(P, Myiv- ThusS ® _ produces an isomorphism betweRrand its Ringel dual.
O

7. Some other subcategories of Fint

In this Section we again restrict our attention to the alg@br&bove we have been
working with the subcategory $i,; of . Here we introduce other subcategories
of F and study a connection between them arg gt As a corollary we construct a
functor with properties analogous§® . We begin with the following observation.

Lemmal9.Let M,N; € F, N; ¢ M and qVI(M) = gVI(N;), i € I. Then
N = N;erN; € Fand gqVI(N) = qVI(M).

Proof. The assumption g¥M) = gVI(»;) means that each modulé contains
all the composition factors aif which are simple Verma modules. The same then
is true for the intersectiom.
We use induction on q¥M). For qVI(M) = 1 the statement follows from the
fact that any Verma module has a simple socle, which is a simple Verma submodule.
Letus prove the induction step. Fix a quasi-Verma flaiyas in (1) and gMIM) =
k. Thenfori =1, 2

O=MoNN; CMi1NN; CM2NN; C---CMy_1NN; CMyNN; =N,

is a quasi-Verma flag oN;. Moreover, this quasi-Verma flag is non-degenerate
since qVIN;) = qVI(M). By the inductive assumptiodf;_1 N N € F and its
guasi-Verma length equats— 1.ThenN /(My_1 N N) is a non-trivial submodule

in My/M;_1 and the lemma follows. O
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Let W be the Weyl group ofA. We will denote by< the Bruhat order or/
(assuming that the identity is the maximal elementdf Fix w € W and letwg
be the minimal element iW with respect to< (i.e. wo is the longest element in
W). ForM € F let ¢,,(M) denote the intersection of all submodul®sin M
which satisfy the following condition(M : L(w’(1))) = (N : L(w’(1))) for any
w’ < w and any dominant. By Lemma 19¢,,(M) € F. ForanyM, N € F and
any homomorphisnyf : M — N one hasf (¢p,(M)) C ¢, (N), hencep,, can be
considered as a well-defined endofunctofofvhich acts on the homomorphisms
by restriction. Let mip, Fint (resp. min, F) denote the full subcategory dfint
(resp.F), which consists of alM such thatf,,(M) = M. The key result of this
Section is the following statement.

Theorem 4. 1. The functors st : min, Fint — StFint and ¢, : StFne —
min,, Fint are mutually inverse equivalences of categories. In particular,
min,, Fint has a natural abelian structure.

2. Forany M e stFint (resp. M € miny, Fint) and anyfinite-dimensional module F
holdsp, (M Q F) >~ ¢,(M)R F (resp. sttM ® F) ~ st(M)® F). In particular,
min,, Fint is closed under tensoring with finite-dimensional modules.

Proof. The second statement follows from the first one and [De, Theorem 3.1],
so we have to prove the first statement only. From Lemma 6 and Lemma 21 it
follows that sty (M)) >~ M andg,, (st(N)) >~ N forany M € stFi andN €

min,, Fint. From Lemma 8 and Lemma 10 it follows tha}, is faithful. Hence, to
complete the proof we only have to show tiatis full. Denote by mig, iyt the
imageg,, (st Fint). Then min, Fiy: is an abelian category, whose abelian structure
is inherited from stFn; via ¢,,. Moreover, we know thap,, is faithful. Hence,
min,, Fint and stFip; are equivalent and it remains to show that gif; is a full
subcategory in mip Fint. We have to prove a lemma before we can complete the
proof.

Lemma 20. 1. Category min,, Fint has a block decomposition with a unique sim-
ple module in each block.

2. Category min,, Fint has enough projective modules, in particular the big pro-
jective module in the principal block of O is projective in min,, Fint.

Proof. The proof is analogous to that of Lemma 15 and Lemma 16. We only note
that simple modules in mifti,; are Verma modulesf (w(1)), and indecomposable
projectives areP (wo(1)), A integral dominant. O

Now we return to the proof of Theorem 4 in order to prove that iy, is
a full subcategory in mig Fint. Let P be a projective in sEini(x), x € Z&)*.
Then g, (P) = P by Lemma 16 and Lemma 20. Moreover, we have for any
M e stFint(x) an equality dim Hon{P, M) = dim Hom(P, ¢,,(M)) = qVI(M),
sinceP is projective inO.

Let M, N € stFn(x) and f : ¢, (M) — ¢, (N) be a morphism. LefP
be the projective cover o/, which is also the projective cover @f,(M). Let
a: P — ¢, (M) be a canonical epimorphism. Singeis projective, there exists
x:P— Mandy: P — N such thatp, (x) = a andg,(y) = f oa. We also
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have keu C ker f o a. Hence ker C kery, sinceg,, is a restriction. Therefore,
for m € M we can defines (m) = y o x~1(m) and obtain that/ is a well-defined
morphism andp,, (¥/) = f. This completes the proof.o

Corollary 6. All categories min,, Fint are blockwise equivalent.
Proof. Follows immediately from Theorem 4.0

Remark 1. Having Theorem 4 available, one can produce more natural equivalences
between the categories mjFint. Leta € & ands, be the simple reflection with
respect tax. Assume thaw < w’ andw = s,w’. Thenr, and f,, are mutually
inverse equivalences between piAi; and min,, Fint. Indeed, we already have

the abelian structure on both m)jdFi,: and min,, Fin: inherited from stFn; and we

know thatr,, and f,, are full, faithful and exact with respect to the image. Moreover,
rq Sends simple (resp. projectives) from miftin: to simples (resp. projectives) in
min,, Fint. Since any object in mip Fint has finite length, everything follows by
standard induction in the length of a module.

Set minFint = Miny, Fint and min= f,,.

Lemma2l. M € minFiy if and only if for any « € 7, the module M, when
viewed as an “-module, is a direct sum of tilting modules in the corresponding
category O.

Proof. ConsiderM as an*-module. LetN be a maximal direct sum of tilting
modules contained in/. From the definition of, we haver,(N) D M. Hence

it is enough to show thaV¥ is an2(-submodule ofM. The last follows by stan-
dard arguments from the fact that tilting modules are stable under tensoring with
finite-dimensional modules ard(2l) is a direct sum of finite-dimension&l(2A*)-
modules under the adjoint actiono

Corollary 7. Category min Fin: contains all tilting modules from Ojt.

Proof. Follows directly from Lemma 21, Theorem 4, and the fact that tilting mod-
ules are stable under tensoring with finite-dimensional modules and [@l].

Itis easy to see that the intersection af; and minFin is an additive closure
of the sum of allP (1), A integral antidominant. Moreover, the functors min and st
have some properties, which are analogous to that of Soergel’s fuhgtar (see
Theorem 3). In fact, one has the following.

Proposition 4. Let 1 bean integral dominant weight. Then for any element w € W
holds min(P (w(1))) >~ T (wwp(2)) and st(T (wwo(1))) =~ P(w(A)).

Proof. It is enough to prove the first equality. In the simplest case we have
min(P (1)) = min(M (1)) >~ M(wo(r)) = T (wo(r)). Moreover, for any finite-
dimensional modulé” we have migP (1) ® F) >~ T (wo(1)) ® F by Theorem 4.
Now the statement follows by induction applying the projection on the correspond-
ing block of O. O



502 V. Futorny et al.

Corollary 8. For integral dominant A and w1, wp, € W there is an equality
[T (w1(2)) : M(w2(2))] = [P(wiwo(R)) : M (wawo(2))].

Proof. Follows from Proposition 4 and the fact that min and st are exact with respect
to the abelian structures onBt: and minf;,; (the last coming from sFy; via
min) by induction with respect to the Bruhat order@dn 0O

In particular, this also gives an independent proof of Soergel’s character formu-
lae for tilting modules in the case of finite-dimensional Lie algebras ([S3]) and of
Theorem 3.

In the same way as in Section 5, we can associate with, thji an admissible
category[\ = A(miny Fin) of $H*-diagonalizablel’-modules. It is not a big
surprise thatD(P, A) andO(P, A) are closely connected. In fact, the following
statement is true.

Theorem 5. O(P, A) and O(P, A) are blockwise equivalent.

Proof. It is easy to verify that st and,, can be extended to mutually inverse
equivalences betwee&n(P, A) andO(P, A). The main pointto be checked here is
that f,, (M), M € O(P, A) is a®-module. This follows from the second statement
of Theorem 4 and the fact thelt(®) is a direct sum of finite-dimensiordkmodules
under the adjoint action. The rest is standard.
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