

What Readers Are Saying About

Seven Databases in Seven Weeks

The flow is perfect. On Friday, you’ll be up and running with a new database. On

Saturday, you’ll see what it’s like under daily use. By Sunday, you’ll have learned

a few tricks that might even surprise the experts! And next week, you’ll vault to

another database and have fun all over again.

➤ Ian Dees

Coauthor, Using JRuby

Provides a great overview of several key databases that will multiply your data

modeling options and skills. Read if you want database envy seven times in a row.

➤ Sean Copenhaver

Lead Code Commodore, backgroundchecks.com

This is by far the best substantive overview of modern databases. Unlike the host

of tutorials, blog posts, and documentation I have read, this book taught me why

I would want to use each type of database and the ways in which I can use them

in a way that made me easily understand and retain the information. It was a

pleasure to read.

➤ Loren Sands-Ramshaw

Software Engineer, U.S. Department of Defense

This is one of the best CouchDB introductions I have seen.

➤ Jan Lehnardt

Apache CouchDB Developer and Author

Seven Databases in Seven Weeks is an excellent introduction to all aspects of

modern database design and implementation. Even spending a day in each

chapter will broaden understanding at all skill levels, from novice to expert—

there’s something there for everyone.

➤ Jerry Sievert

Director of Engineering, Daily Insight Group

In an ideal world, the book cover would have been big enough to call this book

“Everything you never thought you wanted to know about databases that you

can’t possibly live without.” To be fair, Seven Databases in Seven Weeks will

probably sell better.

➤ Dr Nic Williams

VP of Technology, Engine Yard

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond

Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase and CouchDB

logos are trademarks of The Apache Software Foundation. Used with permission. No endorse-

ment by The Apache Software Foundation is implied by the use of these marks.

The team that produced this book includes:

Jackie Carter (editor)

Potomac Indexing, LLC (indexer)

Kim Wimpsett (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-692-0

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1..0—May 2012

http://pragprog.com

Contents

Foreword vii

Acknowledgments ix

Preface xi

1. Introduction 1

1.1 It Starts with a Question 1

1.2 The Genres 3

1.3 Onward and Upward 7

2. PostgreSQL 9

That’s Post-greS-Q-L 92.1

2.2 Day 1: Relations, CRUD, and Joins 10

2.3 Day 2: Advanced Queries, Code, and Rules 21

2.4 Day 3: Full-Text and Multidimensions 35

2.5 Wrap-Up 48

3. Riak 51

Riak Loves the Web 513.1

3.2 Day 1: CRUD, Links, and MIMEs 52

3.3 Day 2: Mapreduce and Server Clusters 62

3.4 Day 3: Resolving Conflicts and Extending Riak 80

3.5 Wrap-Up 91

4. HBase 93

Introducing HBase 944.1

4.2 Day 1: CRUD and Table Administration 94

4.3 Day 2: Working with Big Data 106

4.4 Day 3: Taking It to the Cloud 122

4.5 Wrap-Up 131

5. MongoDB 135

Hu(mongo)us 1355.1

5.2 Day 1: CRUD and Nesting 136

5.3 Day 2: Indexing, Grouping, Mapreduce 151

5.4 Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS 165

5.5 Wrap-Up 174

6. CouchDB 177

Relaxing on the Couch 1776.1

6.2 Day 1: CRUD, Futon, and cURL Redux 178

6.3 Day 2: Creating and Querying Views 186

6.4 Day 3: Advanced Views, Changes API, and Replicating

Data 200

6.5 Wrap-Up 217

7. Neo4J 219

Neo4J Is Whiteboard Friendly 2197.1

7.2 Day 1: Graphs, Groovy, and CRUD 220

7.3 Day 2: REST, Indexes, and Algorithms 238

7.4 Day 3: Distributed High Availability 250

7.5 Wrap-Up 258

8. Redis 261

Data Structure Server Store 2618.1

8.2 Day 1: CRUD and Datatypes 262

8.3 Day 2: Advanced Usage, Distribution 275

8.4 Day 3: Playing with Other Databases 291

8.5 Wrap-Up 304

9. Wrapping Up 307

9.1 Genres Redux 307

9.2 Making a Choice 311

9.3 Where Do We Go from Here? 312

A1. Database Overview Tables 313

A2. The CAP Theorem 317

A2.1 Eventual Consistency 317

A2.2 CAP in the Wild 318

A2.3 The Latency Trade-Off 319

Bibliography 321

Index 323

vi • Contents

Foreword

Riding up the Beaver Run SuperChair in Breckenridge, Colorado, we wondered

where the fresh powder was. Breckenridge made snow, and the slopes were

immaculately groomed, but there was an inevitable sameness to the conditions

on the mountain. Without fresh snow, the total experience was lacking.

In 1994, as an employee of IBM’s database development lab in Austin, I had

very much the same feeling. I had studied object-oriented databases at the

University of Texas at Austin because after a decade of relational dominance,

I thought that object-oriented databases had a real chance to take root. Still,

the next decade brought more of the same relational models as before. I

watched dejectedly as Oracle, IBM, and later the open source solutions led

by MySQL spread their branches wide, completely blocking out the sun for

any sprouting solutions on the fertile floor below.

Over time, the user interfaces changed from green screens to client-server to

Internet-based applications, but the coding of the relational layer stretched

out to a relentless barrage of sameness, spanning decades of perfectly compe-

tent tedium. So, we waited for the fresh blanket of snow.

And then the fresh powder finally came. At first, the dusting wasn’t even

enough to cover this morning’s earliest tracks, but the power of the storm

took over, replenishing the landscape and delivering the perfect skiing expe-

rience with the diversity and quality that we craved. Just this past year, I

woke up to the realization that the database world, too, is covered with a fresh

blanket of snow. Sure, the relational databases are there, and you can get a

surprisingly rich experience with open source RDBMS software. You can do

clustering, full-text search, and even fuzzy searching. But you’re no longer

limited to that approach. I have not built a fully relational solution in a year.

Over that time, I’ve used a document-based database and a couple of key-

value datastores.

The truth is that relational databases no longer have a monopoly on flexibility

or even scalability. For the kinds of applications that we build, there are more

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

appropriate models that are simpler, faster, and more reliable. As a person

who spent ten years at IBM Austin working on databases with our labs and

customers, this development is simply stunning to me. In Seven Databases

in Seven Weeks, you’ll work through examples that cover a beautiful cross

section of the most critical advances in the databases that back Internet

development. Within key-value stores, you’ll learn about the radically scalable

and reliable Riak and the beautiful query mechanisms in Redis. From the

columnar database community, you’ll sample the power of HBase, a close

cousin of the relational database models. And from the document-oriented

database stores, you’ll see the elegant solutions for deeply nested documents

in the wildly scalable MongoDB. You’ll also see Neo4J’s spin on graph

databases, allowing rapid traversal of relationships.

You won’t have to use all of these databases to be a better programmer or

database admin. As Eric Redmond and Jim Wilson take you on this magical

tour, every step will make you smarter and lend the kind of insight that is

invaluable in a modern software professional. You will know where each

platform shines and where it is the most limited. You will see where your

industry is moving and learn the forces driving it there.

Enjoy the ride.

Bruce Tate

author of Seven Languages in Seven Weeks

Austin, Texas, May 2012

viii • Foreword

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Acknowledgments

A book with the size and scope of this one cannot be done by two mere authors

alone. It requires the effort of many very smart people with superhuman eyes

spotting as many mistakes as possible and providing valuable insights into

the details of these technologies.

We’d like to thank, in no particular order, all of the folks who provided their

time and expertise:

Jan LenhardtMark PhillipsIan Dees

Dave PurringtonOleg BartunovRobert Stam

Sean CopenhaverMatt AdamsDaniel Bretoi

Andreas KolleggerEmil EifremLoren Sands-Ramshaw

Finally, thanks to Bruce Tate for his experience and guidance.

We’d also like to sincerely thank the entire team at the Pragmatic Bookshelf.

Thanks for entertaining this audacious project and seeing us through it. We’re

especially grateful to our editor, Jackie Carter. Your patient feedback made

this book what it is today. Thanks to the whole team who worked so hard to

polish this book and find all of our mistakes.

Last but not least, thanks to Frederic Dumont, Matthew Flower, Rebecca

Skinner, and all of our relentless readers. If it weren’t for your passion to

learn, we wouldn’t have had this opportunity to serve you.

For anyone we missed, we hope you’ll accept our apologies. Any omissions

were certainly not intentional.

From Eric: Dear Noelle, you’re not special; you’re unique, and that’s so much

better. Thanks for living through another book. Thanks also to the database

creators and commiters for providing us something to write about and make

a living at.

From Jim: First, I have to thank my family; Ruthy, your boundless patience

and encouragement have been heartwarming. Emma and Jimmy, you’re two

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

smart cookies, and your daddy loves you always. Also a special thanks to all

the unsung heroes who monitor IRC, message boards, mailing lists, and bug

systems ready to help anyone who needs you. Your dedication to open source

keeps these projects kicking.

x • Acknowledgments

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Preface

It has been said that data is the new oil. If this is so, then databases are the

fields, the refineries, the drills, and the pumps. Data is stored in databases,

and if you’re interested in tapping into it, then coming to grips with the

modern equipment is a great start.

Databases are tools; they are the means to an end. Each database has its

own story and its own way of looking at the world. The more you understand

them, the better you will be at harnessing the latent power in the ever-growing

corpus of data at your disposal.

Why Seven Databases

As early as March 2010, we had wanted to write a NoSQL book. The term had

been gathering buzz, and although lots of people were talking about it, there

seemed to be a fair amount of confusion around it too. What exactly does the

term NoSQL mean? Which types of systems are included? How is this going

to impact the practice of making great software? These were questions we

wanted to answer—as much for ourselves as for others.

After reading Bruce Tate’s exemplary Seven Languages in Seven Weeks: A

Pragmatic Guide to Learning Programming Languages [Tat10], we knew he was

onto something. The progressive style of introducing languages struck a chord

with us. We felt teaching databases in the same manner would provide a

smooth medium for tackling some of these tough NoSQL questions.

What’s in This Book

This book is aimed at experienced developers who want a well-rounded un-

derstanding of the modern database landscape. Prior database experience is

not strictly required, but it helps.

After a brief introduction, this book tackles a series of seven databases

chapter by chapter. The databases were chosen to span five different database

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

genres or styles, which are discussed in Chapter 1, Introduction, on page 1.

In order, they are PostgreSQL, Riak, Apache HBase, MongoDB, Apache

CouchDB, Neo4J, and Redis.

Each chapter is designed to be taken as a long weekend’s worth of work, split

up into three days. Each day ends with exercises that expand on the topics

and concepts just introduced, and each chapter culminates in a wrap-up

discussion that summarizes the good and bad points about the database.

You may choose to move a little faster or slower, but it’s important to grasp

each day’s concepts before continuing. We’ve tried to craft examples that

explore each database’s distinguishing features. To really understand what

these databases have to offer, you have to spend some time using them, and

that means rolling up your sleeves and doing some work.

Although you may be tempted to skip chapters, we designed this book to be

read linearly. Some concepts, such as mapreduce, are introduced in depth

in earlier chapters and then skimmed over in later ones. The goal of this book

is to attain a solid understanding of the modern database field, so we recom-

mend you read them all.

What This Book Is Not

Before reading this book, you should know what it won’t cover.

This Is Not an Installation Guide

Installing the databases in this book is sometimes easy, sometimes challeng-

ing, and sometimes downright ugly. For some databases, you’ll be able to use

stock packages, and for others, you’ll need to compile from source. We’ll point

out some useful tips here and there, but by and large you’re on your own.

Cutting out installation steps allows us to pack in more useful examples and

a discussion of concepts, which is what you really want anyway, right?

Administration Manual? We Think Not

Along the same lines of installation, this book will not cover everything you’d

find in an administration manual. Each of these databases has myriad options,

settings, switches, and configuration details, most of which are well document-

ed on the Web. We’re more interested in teaching you useful concepts and

full immersion than focusing on the day-to-day operations. Though the

characteristics of the databases can change based on operational settings—

and we may discuss those characteristics—we won’t be able to go into all the

nitty-gritty details of all possible configurations. There simply isn’t space!

xii • Preface

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

A Note to Windows Users

This book is inherently about choices, predominantly open source software

on *nix platforms. Microsoft environments tend to strive for an integrated

environment, which limits many choices to a smaller predefined set. As such,

the databases we cover are open source and are developed by (and largely

for) users of *nix systems. This is not our own bias so much as a reflection

of the current state of affairs. Consequently, our tutorial-esque examples are

presumed to be run in a *nix shell. If you run Windows and want to give it a

try anyway, we recommend setting up Cygwin1 to give you the best shot at

success. You may also want to consider running a Linux virtual machine.

Code Examples and Conventions

This book contains code in a variety of languages. In part, this is a conse-

quence of the databases that we cover. We’ve attempted to limit our choice

of languages to Ruby/JRuby and JavaScript. We prefer command-line tools

to scripts, but we will introduce other languages to get the job done—like

PL/pgSQL (Postgres) and Gremlin/Groovy (Neo4J). We’ll also explore writing

some server-side JavaScript applications with Node.js.

Except where noted, code listings are provided in full, usually ready to be

executed at your leisure. Samples and snippets are syntax highlighted accord-

ing to the rules of the language involved. Shell commands are prefixed by $.

Online Resources

The Pragmatic Bookshelf’s page for this book2 is a great resource. There you’ll

find downloads for all the source code presented in this book. You’ll also find

feedback tools such as a community forum and an errata submission form

where you can recommend changes to future releases of the book.

Thanks for coming along with us on this journey through the modern database

landscape.

Eric Redmond and Jim R. Wilson

1. http://www.cygwin.com/
2. http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks

Code Examples and Conventions • xiii

http://www.cygwin.com/
http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 1

Introduction

This is a pivotal time in the database world. For years the relational model

has been the de facto option for problems big and small. We don’t expect

relational databases will fade away anytime soon, but people are emerging

from the RDBMS fog to discover alternative options, such as schemaless or

alternative data structures, simple replication, high availability, horizontal

scaling, and new query methods. These options are collectively known as

NoSQL and make up the bulk of this book.

In this book, we explore seven databases across the spectrum of database

styles. In the process of reading the book, you will learn the various function-

ality and trade-offs each database has—durability vs. speed, absolute vs.

eventual consistency, and so on—and how to make the best decisions for

your use cases.

1.1 It Starts with a Question

The central question of Seven Databases in Seven Weeks is this: what database

or combination of databases best resolves your problem? If you walk away

understanding how to make that choice, given your particular needs and

resources at hand, we’re happy.

But to answer that question, you’ll need to understand your options. For that,

we’ll take you on a deep dive into each of seven databases, uncovering the

good parts and pointing out the not so good. You’ll get your hands dirty with

CRUD, flex your schema muscles, and find answers to these questions:

• What type of datastore is this? Databases come in a variety of genres,

such as relational, key-value, columnar, document-oriented, and graph.

Popular databases—including those covered in this book—can generally

be grouped into one of these broad categories. You’ll learn about each

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

type and the kinds of problems for which they’re best suited. We’ve

specifically chosen databases to span these categories including one

relational database (Postgres), two key-value stores (Riak, Redis), a col-

umn-oriented database (HBase), two document-oriented databases

(MongoDB, CouchDB), and a graph database (Neo4J).

• What was the driving force? Databases are not created in a vacuum. They

are designed to solve problems presented by real use cases. RDBMS

databases arose in a world where query flexibility was more important

than flexible schemas. On the other hand, column-oriented datastores

were built to be well suited for storing large amounts of data across sev-

eral machines, while data relationships took a backseat. We’ll cover cases

in which to use each database and related examples.

• How do you talk to it? Databases often support a variety of connection

options. Whenever a database has an interactive command-line interface,

we’ll start with that before moving on to other means. Where programming

is needed, we’ve stuck mostly to Ruby and JavaScript, though a few other

languages sneak in from time to time—like PL/pgSQL (Postgres) and

Gremlin (Neo4J). At a lower level, we’ll discuss protocols like REST

(CouchDB, Riak) and Thrift (HBase). In the final chapter, we present a

more complex database setup tied together by a Node.js JavaScript

implementation.

• What makes it unique? Any datastore will support writing data and reading

it back out again. What else it does varies greatly from one to the next.

Some allow querying on arbitrary fields. Some provide indexing for rapid

lookup. Some support ad hoc queries; for others, queries must be planned.

Is schema a rigid framework enforced by the database or merely a set of

guidelines to be renegotiated at will? Understanding capabilities and

constraints will help you pick the right database for the job.

• How does it perform? How does this database function and at what cost?

Does it support sharding? How about replication? Does it distribute data

evenly using consistent hashing, or does it keep like data together? Is

this database tuned for reading, writing, or some other operation? How

much control do you have over its tuning, if any?

• How does it scale? Scalability is related to performance. Talking about

scalability without the context of what you want to scale to is generally

fruitless. This book will give you the background you need to ask the right

questions to establish that context. While the discussion on how to scale

each database will be intentionally light, in these pages you’ll find out

2 • Chapter 1. Introduction

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

whether each datastore is geared more for horizontal scaling (MongoDB,

HBase, Riak), traditional vertical scaling (Postgres, Neo4J, Redis), or

something in between.

Our goal is not to guide a novice to mastery of any of these databases. A full

treatment of any one of them could (and does) fill entire books. But by the

end you should have a firm grasp of the strengths of each, as well as how

they differ.

1.2 The Genres

Like music, databases can be broadly classified into one or more styles. An

individual song may share all of the same notes with other songs, but some

are more appropriate for certain uses. Not many people blast Bach’s Mass in

B Minor out an open convertible speeding down the 405. Similarly, some

databases are better for some situations over others. The question you must

always ask yourself is not “Can I use this database to store and refine this

data?” but rather, “Should I?”

In this section, we’re going to explore five main database genres. We’ll also

take a look at the databases we’re going to focus on for each genre.

It’s important to remember that most of the data problems you’ll face could

be solved by most or all of the databases in this book, not to mention other

databases. The question is less about whether a given database style could

be shoehorned to model your data and more about whether it’s the best fit

for your problem space, your usage patterns, and your available resources.

You’ll learn the art of divining whether a database is intrinsically useful to

you.

Relational

The relational model is generally what comes to mind for most people with

database experience. Relational database management systems (RDBMSs)

are set-theory-based systems implemented as two-dimensional tables with

rows and columns. The canonical means of interacting with an RDBMS is by

writing queries in Structured Query Language (SQL). Data values are typed

and may be numeric, strings, dates, uninterpreted blobs, or other types. The

types are enforced by the system. Importantly, tables can join and morph

into new, more complex tables, because of their mathematical basis in rela-

tional (set) theory.

The Genres • 3

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

There are lots of open source relational databases to choose from, including

MySQL, H2, HSQLDB, SQLite, and many others. The one we cover is in

Chapter 2, PostgreSQL, on page 9.

PostgreSQL

Battle-hardened PostgreSQL is by far the oldest and most robust database

we cover. With its adherence to the SQL standard, it will feel familiar to anyone

who has worked with relational databases before, and it provides a solid point

of comparison to the other databases we’ll work with. We’ll also explore some

of SQL’s unsung features and Postgres’s specific advantages. There’s some-

thing for everyone here, from SQL novice to expert.

Key-Value

The key-value (KV) store is the simplest model we cover. As the name implies,

a KV store pairs keys to values in much the same way that a map (or

hashtable) would in any popular programming language. Some KV implemen-

tations permit complex value types such as hashes or lists, but this is not

required. Some KV implementations provide a means of iterating through the

keys, but this again is an added bonus. A filesystem could be considered a

key-value store, if you think of the file path as the key and the file contents

as the value. Because the KV moniker demands so little, databases of this

type can be incredibly performant in a number of scenarios but generally

won’t be helpful when you have complex query and aggregation needs.

As with relational databases, many open source options are available. Some

of the more popular offerings include memcached (and its cousins mem-

cachedb and membase), Voldemort, and the two we cover in this book: Redis

and Riak.

Riak

More than a key-value store, Riak—covered in Chapter 3, Riak, on page 51—

embraces web constructs like HTTP and REST from the ground up. It’s a

faithful implementation of Amazon’s Dynamo, with advanced features such

as vector clocks for conflict resolution. Values in Riak can be anything, from

plain text to XML to image data, and relationships between keys are handled

by named structures called links. One of the lesser known databases in this

book, Riak, is rising in popularity, and it’s the first one we’ll talk about that

supports advanced querying via mapreduce.

4 • Chapter 1. Introduction

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Redis

Redis provides for complex datatypes like sorted sets and hashes, as well as

basic message patterns like publish-subscribe and blocking queues. It also

has one of the most robust query mechanisms for a KV store. And by caching

writes in memory before committing to disk, Redis gains amazing performance

in exchange for increased risk of data loss in the case of a hardware failure.

This characteristic makes it a good fit for caching noncritical data and for

acting as a message broker. We leave it until the end—see Chapter 8, Redis,

on page 261—so we can build a multidatabase application with Redis and

others working together in harmony.

Columnar

Columnar, or column-oriented, databases are so named because the important

aspect of their design is that data from a given column (in the two-dimensional

table sense) is stored together. By contrast, a row-oriented database (like an

RDBMS) keeps information about a row together. The difference may seem

inconsequential, but the impact of this design decision runs deep. In column-

oriented databases, adding columns is quite inexpensive and is done on a

row-by-row basis. Each row can have a different set of columns, or none at

all, allowing tables to remain sparse without incurring a storage cost for null

values. With respect to structure, columnar is about midway between rela-

tional and key-value.

In the columnar database market, there’s somewhat less competition than

in relational databases or key-value stores. The three most popular are HBase

(which we cover in Chapter 4, HBase, on page 93), Cassandra, and Hypertable.

HBase

This column-oriented database shares the most similarities with the relational

model of all the nonrelational databases we cover. Using Google’s BigTable

paper as a blueprint, HBase is built on Hadoop (a mapreduce engine) and

designed for scaling horizontally on clusters of commodity hardware. HBase

makes strong consistency guarantees and features tables with rows and

columns—which should make SQL fans feel right at home. Out-of-the-box

support for versioning and compression sets this database apart in the “Big

Data” space.

Document

Document-oriented databases store, well, documents. In short, a document

is like a hash, with a unique ID field and values that may be any of a variety

of types, including more hashes. Documents can contain nested structures,

The Genres • 5

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

and so they exhibit a high degree of flexibility, allowing for variable domains.

The system imposes few restrictions on incoming data, as long as it meets

the basic requirement of being expressible as a document. Different document

databases take different approaches with respect to indexing, ad hoc querying,

replication, consistency, and other design decisions. Choosing wisely between

them requires understanding these differences and how they impact your

particular use cases.

The two major open source players in the document database market are

MongoDB, which we cover in Chapter 5, MongoDB, on page 135, and CouchDB,

covered in Chapter 6, CouchDB, on page 177.

MongoDB

MongoDB is designed to be huge (the name mongo is extracted from the word

humongous). Mongo server configurations attempt to remain consistent—if

you write something, subsequent reads will receive the same value (until the

next update). This feature makes it attractive to those coming from an RDBMS

background. It also offers atomic read-write operations such as incrementing

a value and deep querying of nested document structures. Using JavaScript

for its query language, MongoDB supports both simple queries and complex

mapreduce jobs.

CouchDB

CouchDB targets a wide variety of deployment scenarios, from the datacenter

to the desktop, on down to the smartphone. Written in Erlang, CouchDB has

a distinct ruggedness largely lacking in other databases. With nearly incor-

ruptible data files, CouchDB remains highly available even in the face of

intermittent connectivity loss or hardware failure. Like Mongo, CouchDB’s

native query language is JavaScript. Views consist of mapreduce functions,

which are stored as documents and replicated between nodes like any other

data.

Graph

One of the less commonly used database styles, graph databases excel at

dealing with highly interconnected data. A graph database consists of nodes

and relationships between nodes. Both nodes and relationships can have

properties—key-value pairs—that store data. The real strength of graph

databases is traversing through the nodes by following relationships.

In Chapter 7, Neo4J, on page 219, we discuss the most popular graph database

today, Neo4J.

6 • Chapter 1. Introduction

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Neo4J

One operation where other databases often fall flat is crawling through self-

referential or otherwise intricately linked data. This is exactly where Neo4J

shines. The benefit of using a graph database is the ability to quickly traverse

nodes and relationships to find relevant data. Often found in social networking

applications, graph databases are gaining traction for their flexibility, with

Neo4j as a pinnacle implementation.

Polyglot

In the wild, databases are often used alongside other databases. It’s still

common to find a lone relational database, but over time it is becoming pop-

ular to use several databases together, leveraging their strengths to create

an ecosystem that is more powerful, capable, and robust than the sum of its

parts. This practice is known as polyglot persistence and is a topic we consider

further in Chapter 9, Wrapping Up, on page 307.

1.3 Onward and Upward

We’re in the midst of a Cambrian explosion of data storage options; it’s hard

to predict exactly what will evolve next. We can be fairly certain, though, that

the pure domination of any particular strategy (relational or otherwise) is

unlikely. Instead, we’ll see increasingly specialized databases, each suited to

a particular (but certainly overlapping) set of ideal problem spaces. And just

as there are jobs today that call for expertise specifically in administrating

relational databases (DBAs), we are going to see the rise of their nonrelational

counterparts.

Databases, like programming languages and libraries, are another set of tools

that every developer should know. Every good carpenter must understand

what’s in their toolbelt. And like any good builder, you can never hope to be

a master without a familiarity of the many options at your disposal.

Consider this a crash course in the workshop. In this book, you’ll swing some

hammers, spin some power drills, play with some nail guns, and in the end

be able to build so much more than a birdhouse. So, without further ado,

let’s wield our first database: PostgreSQL.

Onward and Upward • 7

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 2

PostgreSQL

PostgreSQL is the hammer of the database world. It’s commonly understood,

is often readily available, is sturdy, and solves a surprising number of prob-

lems if you swing hard enough. No one can hope to be an expert builder

without understanding this most common of tools.

PostgreSQL is a relational database management system, which means it’s

a set-theory-based system, implemented as two-dimensional tables with data

rows and strictly enforced column types. Despite the growing interest in

newer database trends, the relational style remains the most popular and

probably will for quite some time.

The prevalence of relational databases comes not only from their vast toolkits

(triggers, stored procedures, advanced indexes), their data safety (via ACID

compliance), or their mind share (many programmers speak and think rela-

tionally) but also from their query pliancy. Unlike some other datastores, you

needn’t know how you plan to use the data. If a relational schema is normal-

ized, queries are flexible. PostgreSQL is the finest open source example of the

relational database management system (RDBMS) tradition.

2.1 That’s Post-greS-Q-L

PostgreSQL is by far the oldest and most battle-tested database in this book.

It has plug-ins for natural-language parsing, multidimensional indexing,

geographic queries, custom datatypes, and much more. It has sophisticated

transaction handling, has built-in stored procedures for a dozen languages,

and runs on a variety of platforms. PostgreSQL has built-in Unicode support,

sequences, table inheritance, and subselects, and it is one of the most ANSI

SQL–compliant relational databases on the market. It’s fast and reliable, can

handle terabytes of data, and has been proven to run in high-profile production

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

So, What’s with the Name?

PostgreSQL has existed in the current project incarnation since 1995, but its roots

are considerably older. The original project was written at Berkeley in the early 1970s

and called the Interactive Graphics and Retrieval System, or “Ingres” for short. In the

1980s, an improved version was launched post-Ingres—shortened to Postgres. The

project ended at Berkeley proper in 1993 but was picked up again by the open source

community as Postgres95. It was later renamed to PostgreSQL in 1996 to denote its

rather new SQL support and has remained so ever since.

projects such as Skype, France’s Caisse Nationale d’Allocations Familiales

(CNAF), and the United States’ Federal Aviation Administration (FAA).

You can install PostgreSQL in many ways, depending on your operating sys-

tem.1 Beyond the basic install, we’ll need to extend Postgres with the following

contributed packages: tablefunc, dict_xsyn, fuzzystrmatch, pg_trgm, and cube. You can

refer to the website for installation instructions.2

Once you have Postgres installed, create a schema called book using the fol-

lowing command:

$ createdb book

We’ll be using the book schema for the remainder of this chapter. Next, run

the following command to ensure your contrib packages have been installed

correctly:

$ psql book -c "SELECT '1'::cube;"

Seek out the online docs for more information if you receive an error message.

2.2 Day 1: Relations, CRUD, and Joins

While we won’t assume you’re a relational database expert, we do assume

you have confronted a database or two in the past. Odds are good that the

database was relational. We’ll start with creating our own schemas and pop-

ulating them. Then we’ll take a look at querying for values and finally what

makes relational databases so special: the table join.

Like most databases we’ll read about, Postgres provides a back-end server

that does all of the work and a command-line shell to connect to the running

1. http://www.postgresql.org/download/
2. http://www.postgresql.org/docs/9.0/static/contrib.html

10 • Chapter 2. PostgreSQL

http://www.postgresql.org/download/
http://www.postgresql.org/docs/9.0/static/contrib.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

server. The server communicates through port 5432 by default, which you

can connect to with the psql shell.

$ psql book

PostgreSQL prompts with the name of the database followed by a hash mark

if you run as an administrator and by dollar sign as a regular user. The shell

also comes equipped with the best built-in documentation you will find in

any console. Typing \h lists information about SQL commands, and \? helps

with psql-specific commands, namely, those that begin with a backslash. You

can find usage details about each SQL command in the following way:

book=# \h CREATE INDEX
Command: CREATE INDEX
Description: define a new index
Syntax:
CREATE [UNIQUE] INDEX [CONCURRENTLY] [name] ON table [USING method]

({ column | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | ...
[WITH (storage_parameter = value [, ...])]
[TABLESPACE tablespace]
[WHERE predicate]

Before we dig too deeply into Postgres, it would be good to familiarize yourself

with this useful tool. It’s worth looking over (or brushing up on) a few common

commands, like SELECT or CREATE TABLE.

Starting with SQL

PostgreSQL follows the SQL convention of calling relations TABLEs, attributes

COLUMNs, and tuples ROWs. For consistency we will use this terminology, though

you may encounter the mathematical terms relations, attributes, and tuples.

For more on these concepts, see Mathematical Relations, on page 12.

Working with Tables

PostgreSQL, being of the relational style, is a design-first datastore. First you

design the schema, and then you enter data that conforms to the definition

of that schema.

Creating a table consists of giving it a name and a list of columns with types

and (optional) constraint information. Each table should also nominate a

unique identifier column to pinpoint specific rows. That identifier is called a

PRIMARY KEY. The SQL to create a countries table looks like this:

CREATE TABLE countries (
country_code char(2) PRIMARY KEY,
country_name text UNIQUE

);

Day 1: Relations, CRUD, and Joins • 11

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Mathematical Relations

Relational databases are so named because they contain relations (i.e., tables), which

are sets of tuples (i.e., rows), which map attributes to atomic values (for example,

{name: 'Genghis Khan', p.died_at_age: 65}). The available attributes are defined by a header

tuple of attributes mapped to some domain or constraining type (i.e., columns; for

example, {name: string, age: int}). That’s the gist of the relational structure.

Implementations are much more practically minded than the names imply, despite

sounding so mathematical. So, why bring them up? We’re trying to make the point

that relational databases are relational based on mathematics. They aren’t relational

because tables “relate” to each other via foreign keys. Whether any such constraints

exist is beside the point.

Though much of the math is hidden from you, the power of the model is certainly in

the math. This magic allows users to express powerful queries and then lets the

system optimize based on predefined patterns. RDBMSs are built atop a set-theory

branch called relational algebra—a combination of selections (WHERE ...), projections

(SELECT ...), Cartesian products (JOIN ...), and more, as shown below:

 WHERESELECT x.name FROM People x.died_at_age IS NULLx

 (((People)))name died_at_age= x

rename

People to x
select where

died_at_age is nullreturn only

names

Imagining a relation as a physical table (an array of arrays, repeated in database

introduction classes ad infinitum) can cause pain in practice, such as writing code

that iterates over all rows. Relational queries are much more declarative than that,

springing from a branch of mathematics known as tuple relational calculus, which

can be converted to relational algebra. PostgreSQL and other RDBMSs optimize

queries by performing this conversion and simplifying the algebra. You can see that

the SQL in the diagram below is the same as the previous diagram.

{ t : {name} | x : {name, died_at_age} (x People x.died_at_age = t.name = x.name)}

free variable result

 WHERESELECT x.name FROM People x.died_at_age IS NULLx

with attributes name

and died_at_age tuple x is in

relation People
and died_at_age

is null and the tuples' attribute

name values are equal

there exists

a tuple x

for a free variable t

with an attribute name

12 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This new table will store a set of rows, where each is identified by a two-

character code and the name is unique. These columns both have constraints.

The PRIMARY KEY constrains the country_code column to disallow duplicate country

codes. Only one us and one gb may exist. We explicitly gave country_name a
similar unique constraint, although it is not a primary key. We can populate

the countries table by inserting a few rows.

INSERT INTO countries (country_code, country_name)
VALUES ('us','United States'), ('mx','Mexico'), ('au','Australia'),

('gb','United Kingdom'), ('de','Germany'), ('ll','Loompaland');

Let’s test our unique constraint. Attempting to add a duplicate country_name
will cause our unique constraint to fail, thus disallowing insertion. Constraints

are how relational databases like PostgreSQL ensure kosher data.

INSERT INTO countries
VALUES ('uk','United Kingdom');

ERROR: duplicate key value violates unique constraint "countries_country_name_key"
DETAIL: Key (country_name)=(United Kingdom) already exists.

We can validate that the proper rows were inserted by reading them using

the SELECT...FROM table command.

SELECT *
FROM countries;

country_code | country_name
--------------+---------------
us | United States
mx | Mexico
au | Australia
gb | United Kingdom
de | Germany
ll | Loompaland

(6 rows)

According to any respectable map, Loompaland isn’t a real place—let’s remove

it from the table. We specify which row to remove by the WHERE clause. The

row whose country_code equals ll will be removed.

DELETE FROM countries
WHERE country_code = 'll';

With only real countries left in the countries table, let’s add a cities table. To

ensure any inserted country_code also exists in our countries table, we add the

REFERENCES keyword. Since the country_code column references another table’s

key, it’s known as the foreign key constraint.

Day 1: Relations, CRUD, and Joins • 13

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

On CRUD

CRUD is a useful mnemonic for remembering the basic data management operations:

Create, Read, Update, and Delete. These generally correspond to inserting new records

(creating), modifying existing records (updating), and removing records you no longer

need (deleting). All of the other operations you use a database for (any crazy query

you can dream up) are read operations. If you can CRUD, you can do anything.

CREATE TABLE cities (
name text NOT NULL,
postal_code varchar(9) CHECK (postal_code <> ''),
country_code char(2) REFERENCES countries,
PRIMARY KEY (country_code, postal_code)

);

This time, we constrained the name in cities by disallowing NULL values. We

constrained postal_code by checking that no values are empty strings (<> means

not equal). Furthermore, since a PRIMARY KEY uniquely identifies a row, we cre-

ated a compound key: country_code + postal_code. Together, they uniquely define

a row.

Postgres also has a rich set of datatypes. You’ve just seen three different string

representations: text (a string of any length), varchar(9) (a string of variable

length up to nine characters), and char(2) (a string of exactly two characters).

With our schema in place, let’s insert Toronto, CA.

INSERT INTO cities
VALUES ('Toronto','M4C1B5','ca');

ERROR: insert or update on table "cities" violates foreign key constraint
"cities_country_code_fkey"

DETAIL: Key (country_code)=(ca) is not present in table "countries".

This failure is good! Since country_code REFERENCES countries, the country_code must

exist in the countries table. This is called maintaining referential integrity, as in

Figure 1, The REFERENCES keyword constrains fields to another table's pri-

mary key, on page 15, and ensures our data is always correct. It’s worth

noting that NULL is valid for cities.country_code, since NULL represents the lack of

a value. If you want to disallow a NULL country_code reference, you would define

the table cities column like this: country_code char(2) REFERENCES countries NOT NULL.

Now let’s try another insert, this time with a U.S. city.

INSERT INTO cities
VALUES ('Portland','87200','us');

INSERT 0 1

14 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

 country_code | country_name

--------------+---------------

 us | United States

 mx | Mexico

 au | Australia

 uk | United Kingdom

 de | Germany

 name | postal_code | country_code

----------+-------------+--------------

 Portland | 97205 | us

Figure 1—The REFERENCES keyword constrains fields to another table’s primary key.

This is a successful insert, to be sure. But we mistakenly entered the wrong

postal_code. The correct postal code for Portland is 97205. Rather than delete

and reinsert the value, we can update it inline.

UPDATE cities
SET postal_code = '97205'
WHERE name = 'Portland';

We have now Created, Read, Updated, and Deleted table rows.

Join Reads

All of the other databases we’ll read about in this book perform CRUD opera-

tions as well. What sets relational databases like PostgreSQL apart is their

ability to join tables together when reading them. Joining, in essence, is an

operation taking two separate tables and combining them in some way to

return a single table. It’s somewhat like shuffling up Scrabble pieces from

existing words to make new words.

The basic form of a join is the inner join. In the simplest form, you specify two

columns (one from each table) to match by, using the ON keyword.

SELECT cities.*, country_name
FROM cities INNER JOIN countries

ON cities.country_code = countries.country_code;

country_code | name | postal_code | country_name
--------------+----------+-------------+---------------
us | Portland | 97205 | United States

The join returns a single table, sharing all columns’ values of the cities table

plus the matching country_name value from the countries table.

We can also join a table like cities that has a compound primary key. To test

a compound join, let’s create a new table that stores a list of venues.

Day 1: Relations, CRUD, and Joins • 15

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

A venue exists in both a postal code and a specific country. The foreign key

must be two columns that reference both cities primary key columns. (MATCH
FULL is a constraint that ensures either both values exist or both are NULL.)

CREATE TABLE venues (
venue_id SERIAL PRIMARY KEY,
name varchar(255),
street_address text,
type char(7) CHECK (type in ('public','private')) DEFAULT 'public',
postal_code varchar(9),
country_code char(2),
FOREIGN KEY (country_code, postal_code)
REFERENCES cities (country_code, postal_code) MATCH FULL

);

This venue_id column is a common primary key setup: automatically increment-

ed integers (1, 2, 3, 4, and so on…). We make this identifier using the SERIAL
keyword (MySQL has a similar construct called AUTO_INCREMENT).

INSERT INTO venues (name, postal_code, country_code)
VALUES ('Crystal Ballroom', '97205', 'us');

Although we did not set a venue_id value, creating the row populated it.

Back to our compound join. Joining the venues table with the cities table requires

both foreign key columns. To save on typing, we can alias the table names by

following the real table name directly with an alias, with an optional AS between

(for example, venues v or venues AS v).

SELECT v.venue_id, v.name, c.name
FROM venues v INNER JOIN cities c
ON v.postal_code=c.postal_code AND v.country_code=c.country_code;

venue_id | name | name
----------+------------------+----------

1 | Crystal Ballroom | Portland

You can optionally request that PostgreSQL return columns after insertion

by ending the query with a RETURNING statement.

INSERT INTO venues (name, postal_code, country_code)
VALUES ('Voodoo Donuts', '97205', 'us') RETURNING venue_id;

id
- - - -
2

This provides the new venue_id without issuing another query.

16 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The Outer Limits

In addition to inner joins, PostgreSQL can also perform outer joins. Outer

joins are a way of merging two tables when the results of one table must

always be returned, whether or not any matching column values exist on the

other table.

It’s easiest to give an example, but to do that, we’ll create a new table named

events. This one is up to you. Your events table should have these columns: a

SERIAL integer event_id, a title, starts and ends (of type timestamp), and a venue_id
(foreign key that references venues). A schema definition diagram covering all

the tables we’ve made so far is shown in Figure 2, The crow’s-feet entity rela-

tionship diagram (ERD), on page 18.

After creating the events table, INSERT the following values (timestamps are

inserted as a string like 2012-02-15 17:30), two holidays, and a club we do

not talk about.

title | starts | ends | venue_id | event_id
----------------+---------------------+---------------------+----------+---------
LARP Club | 2012-02-15 17:30:00 | 2012-02-15 19:30:00 | 2 | 1
April Fools Day | 2012-04-01 00:00:00 | 2012-04-01 23:59:00 | | 2
Christmas Day | 2012-12-25 00:00:00 | 2012-12-25 23:59:00 | | 3

Let’s first craft a query that returns an event title and venue name as an inner

join (the word INNER from INNER JOIN is not required, so leave it off here).

SELECT e.title, v.name
FROM events e JOIN venues v

ON e.venue_id = v.venue_id;

title | name
--------------+------------------
LARP Club | Voodoo Donuts

INNER JOIN will return a row only if the column values match. Since we can’t

have NULL venues.venue_id, the two NULL events.venue_ids refer to nothing. Retrieving

all of the events, whether or not they have a venue, requires a LEFT OUTER JOIN
(shortened to LEFT JOIN).

SELECT e.title, v.name
FROM events e LEFT JOIN venues v
ON e.venue_id = v.venue_id;

title | name
-----------------+----------------
LARP Club | Voodoo Donuts
April Fools Day |
Christmas Day |

Day 1: Relations, CRUD, and Joins • 17

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

*country_code

country_name

countries
*postal_code

*country_code

name

cities

*venue_id

name

street_address

type

postal_code

country_code

venues

*event_id

title

starts

ends

venue_id

events

hosts

contains

has

Figure 2—The crow’s-feet entity relationship diagram (ERD)

If you require the inverse, all venues and only matching events, use a RIGHT
JOIN. Finally, there’s the FULL JOIN, which is the union of LEFT and RIGHT; you’re

guaranteed all values from each table, joined wherever columns match.

Fast Lookups with Indexing

The speed of PostgreSQL (and any other RDBMS) lies in its efficient manage-

ment of blocks of data, reducing disk reads, query optimization, and other

techniques. But those go only so far in fetching results fast. If we select the

title of Christmas Day from the events table, the algorithm must scan every

row for a match to return. Without an index, each row must be read from

disk to know whether a query should return it. See the following.

 LARP Club | 2 | 1

 April Fools Day | | 2

 Christmas Day | | 3

matches "Christmas Day"? No.

matches "Christmas Day"? No.

matches "Christmas Day"? Yes!

An index is a special data structure built to avoid a full table scan when

performing a query. When running CREATE TABLE commands, you may have

noticed a message like this:

CREATE TABLE / PRIMARY KEY will create implicit index "events_pkey" \
for table "events"

18 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

PostgreSQL automatically creates an index on the primary key, where the

key is the primary key value and where the value points to a row on disk, as

shown in the graphic below. Using the UNIQUE keyword is another way to force

an index on a table column.

 LARP Club | 2 | 1

 April Fools Day | | 2

 Christmas Day | | 3

1

2

3

"events" Table"events.id" hash Index

SELECT * FROM events WHERE event_id = 2;

You can explicitly add a hash index using the CREATE INDEX command, where

each value must be unique (like a hashtable or a map).

CREATE INDEX events_title
ON events USING hash (title);

For less-than/greater-than/equals-to matches, we want an index more flexible

than a simple hash, like a B-tree (see Figure 3, A B-tree index can match on

ranged queries, on page 20). Consider a query to find all events that are on

or after April 1.

SELECT *
FROM events
WHERE starts >= '2012-04-01';

For this, a tree is the perfect data structure. To index the starts column with

a B-tree, use this:

CREATE INDEX events_starts
ON events USING btree (starts);

Now our query over a range of dates will avoid a full table scan. It makes a

huge difference when scanning millions or billions of rows.

We can inspect our work with this command to list all indexes in the schema:

book=# \di

It’s worth noting that when you set a FOREIGN KEY constraint, PostgreSQL will

automatically create an index on the targeted column(s). Even if you don’t

like using database constraints (that’s right, we’re looking at you, Ruby on

Day 1: Relations, CRUD, and Joins • 19

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

1 137 701 1000 1907000... 3600

2 3 ... 136 138 139 ... 700140 141 ... 2108901

< < < < > < < >

...

Table

Index

 1 | April Fools Day | ... 2 | Book Signing | ... 3 | Christmas Day | 2108901 | Root Canal

1

2

4

1 2 3 2108901

Table Scan

Index Scan

 2108900 | Candy Fest!

2108900

3

2108900

SELECT * FROM some_table WHERE some_number >= 2108900;

Figure 3—A B-tree index can match on ranged queries.

Rails developers), you will often find yourself creating indexes on columns

you plan to join against in order to help speed up foreign key joins.

Day 1 Wrap-Up

We sped through a lot today and covered many terms. Here’s a recap:

DefinitionTerm

A domain of values of a certain type, sometimes called an

attribute

Column

An object comprised as a set of column values, sometimes called

a tuple

Row

A set of rows with the same columns, sometimes called a relationTable

The unique value that pinpoints a specific rowPrimary key

Create, Read, Update, DeleteCRUD

Structured Query Language, the lingua franca of a relational

database

SQL

Combining two tables into one by some matching columnsJoin

Combining two tables into one by some matching columns or

NULL if nothing matches the left table

Left join

20 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

DefinitionTerm

A data structure to optimize selection of a specific set of columnsIndex

A good standard index; values are stored as a balanced tree

data structure; very flexible

B-tree

Relational databases have been the de facto data management strategy for

forty years—many of us began our careers in the midst of their evolution. So,

we took a look at some of the core concepts of the relational model via basic

SQL queries. We will expound on these root concepts tomorrow.

Day 1 Homework

Find

1. Bookmark the online PostgreSQL FAQ and documents.

2. Acquaint yourself with the command-line \? and \h output.

3. In the addresses FOREIGN KEY, find in the docs what MATCH FULL means.

Do

1. Select all the tables we created (and only those) from pg_class.
2. Write a query that finds the country name of the LARP Club event.

3. Alter the venues table to contain a boolean column called active, with the

default value of TRUE.

2.3 Day 2: Advanced Queries, Code, and Rules

Yesterday we saw how to define schemas, populate them with data, update

and delete rows, and perform basic reads. Today we’ll dig even deeper into

the myriad ways that PostgreSQL can query data. We’ll see how to group

similar values, execute code on the server, and create custom interfaces using

views and rules. We’ll finish the day by using one of PostgreSQL’s contributed

packages to flip tables on their heads.

Aggregate Functions

An aggregate query groups results from several rows by some common criteria.

It can be as simple as counting the number of rows in a table or calculating

the average of some numerical column. They’re powerful SQL tools and also

a lot of fun.

Let’s try some aggregate functions, but first we’ll need some more data in our

database. Enter your own country into the countries table, your own city into

the cities table, and your own address as a venue (which we just named My

Place). Then add a few records to the events table.

Day 2: Advanced Queries, Code, and Rules • 21

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Here’s a quick SQL tip: rather than setting the venue_id explicitly, you can

sub-SELECT it using a more human-readable title. If Moby is playing at the

Crystal Ballroom, set the venue_id like this:

INSERT INTO events (title, starts, ends, venue_id)
VALUES ('Moby', '2012-02-06 21:00', '2012-02-06 23:00', (

SELECT venue_id
FROM venues
WHERE name = 'Crystal Ballroom'

)
);

Populate your events table with the following data (to enter Valentine’s Day

in PostgreSQL, you can escape the apostrophe with two, such as Heaven”s

Gate):

title | starts | ends | venue
-----------------+---------------------+---------------------+---------------
Wedding | 2012-02-26 21:00:00 | 2012-02-26 23:00:00 | Voodoo Donuts
Dinner with Mom | 2012-02-26 18:00:00 | 2012-02-26 20:30:00 | My Place
Valentine’s Day | 2012-02-14 00:00:00 | 2012-02-14 23:59:00 |

With our data set up, let’s try some aggregate queries. The simplest aggregate

function is count(), which is fairly self-explanatory. Counting all titles that

contain the word Day (note: % is a wildcard on LIKE searches), you should

receive a value of 3.

SELECT count(title)
FROM events
WHERE title LIKE '%Day%';

To get the first start time and last end time of all events at the Crystal Ball-

room, use min() (return the smallest value) and max() (return the largest value).

SELECT min(starts), max(ends)
FROM events INNER JOIN venues
ON events.venue_id = venues.venue_id

WHERE venues.name = 'Crystal Ballroom';

min | max
---------------------+---------------------
2012-02-06 21:00:00 | 2012-02-06 23:00:00

Aggregate functions are useful but limited on their own. If we wanted to count

all events at each venue, we could write the following for each venue ID:

SELECT count(*) FROM events WHERE venue_id = 1;
SELECT count(*) FROM events WHERE venue_id = 2;
SELECT count(*) FROM events WHERE venue_id = 3;
SELECT count(*) FROM events WHERE venue_id IS NULL;

22 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This would be tedious (intractable even) as the number of venues grows. Enter

the GROUP BY command.

Grouping

GROUP BY is a shortcut for running the previous queries all at once. With GROUP
BY, you tell Postgres to place the rows into groups and then perform some

aggregate function (such as count()) on those groups.

SELECT venue_id, count(*)
FROM events
GROUP BY venue_id;

venue_id | count
----------+-------

1 | 1
2 | 2
3 | 1

| 3

It’s a nice list, but can we filter by the count() function? Absolutely. The GROUP
BY condition has its own filter keyword: HAVING. HAVING is like the WHERE clause,

except it can filter by aggregate functions (whereas WHERE cannot).

The following query SELECTs the most popular venues, those with two or more

events:

SELECT venue_id
FROM events
GROUP BY venue_id
HAVING count(*) >= 2 AND venue_id IS NOT NULL;

venue_id | count
----------+-------

2 | 2

You can use GROUP BY without any aggregate functions. If you call SELECT...
FROM...GROUP BY on one column, you get all unique values.

SELECT venue_id FROM events GROUP BY venue_id;

This kind of grouping is so common that SQL has a shortcut in the DISTINCT
keyword.

SELECT DISTINCT venue_id FROM events;

The results of both queries will be identical.

Day 2: Advanced Queries, Code, and Rules • 23

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

GROUP BY in MySQL

If you tried to run a SELECT with columns not defined under a GROUP BY in MySQL, you

may be shocked to see that it works. This originally made us question the necessity

of window functions. But when we more closely inspected the data MySQL returns,

we found it will return only a random row of data along with the count, not all relevant

results. Generally, that’s not useful (and quite potentially dangerous).

Window Functions

If you’ve done any sort of production work with a relational database in the

past, you were likely familiar with aggregate queries. They are a common SQL

staple. Window functions, on the other hand, are not quite so common (Post-

greSQL is one of the few open source databases to implement them).

Window functions are similar to GROUP BY queries in that they allow you to

run aggregate functions across multiple rows. The difference is that they allow

you to use built-in aggregate functions without requiring every single field to

be grouped to a single row.

If we attempt to select the title column without grouping by it, we can expect

an error.

SELECT title, venue_id, count(*)
FROM events
GROUP BY venue_id;

ERROR: column "events.title" must appear in the GROUP BY clause or \
be used in an aggregate function

We are counting up the rows by venue_id, and in the case of LARP Club and

Wedding, we have two titles for a single venue_id. Postgres doesn’t know which

title to display.

Whereas a GROUP BY clause will return one record per matching group value,

a window function can return a separate record for each row. For a visual

representation, see Figure 4, Window function results do not collapse results

per group, on page 25. Let’s see an example of the sweet spot that window

functions attempt to hit.

Window functions return all matches and replicate the results of any aggregate

function.

SELECT title, count(*) OVER (PARTITION BY venue_id) FROM events;

We like to think of PARTITION BY as akin to GROUP BY, but rather than grouping

the results outside of the SELECT attribute list (and thus combining the results

24 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

 venue_id | count

----------+-------

 1 | 1

 2 | 2

 2 | 2

 3 | 1

 | 3

 | 3

 | 3

SELECT venue_id, count(*)

 OVER (PARTITION BY venue_id)

FROM events

ORDER BY venue_id;

SELECT venue_id, count(*)

FROM events

GROUP BY venue_id

ORDER BY venue_id;

venue_id | count

----------+-------

 1 | 1

 2 | 2

 3 | 1

 | 3

Figure 4—Window function results do not collapse results per group.

into fewer rows), it returns grouped values as any other field (calculating on

the grouped variable but otherwise just another attribute). Or in SQL parlance,

it returns the results of an aggregate function OVER a PARTITION of the result

set.

Transactions

Transactions are the bulwark of relational database consistency. All or nothing,

that’s the transaction motto. Transactions ensure that every command of a

set is executed. If anything fails along the way, all of the commands are rolled

back like they never happened.

PostgreSQL transactions follow ACID compliance, which stands for Atomic

(all ops succeed or none do), Consistent (the data will always be in a good

state—no inconsistent states), Isolated (transactions don’t interfere), and

Durable (a committed transaction is safe, even after a server crash). We should

note that consistency in ACID is different from consistency in CAP (covered

in Appendix 2, The CAP Theorem, on page 317).

We can wrap any transaction within a BEGIN TRANSACTION block. To verify

atomicity, we’ll kill the transaction with the ROLLBACK command.

Day 2: Advanced Queries, Code, and Rules • 25

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Unavoidable Transactions

Up until now, every command we’ve executed in psql has been implicitly wrapped in

a transaction. If you executed a command, such as DELETE FROM account WHERE total < 20;,
and the database crashed halfway through the delete, you wouldn’t be stuck with

half a table. When you restart the database server, that command will be rolled back.

BEGIN TRANSACTION;
DELETE FROM events;

ROLLBACK;
SELECT * FROM events;

The events all remain. Transactions are useful when you’re modifying two

tables that you don’t want out of sync. The classic example is a debit/credit

system for a bank, where money is moved from one account to another:

BEGIN TRANSACTION;
UPDATE account SET total=total+5000.0 WHERE account_id=1337;
UPDATE account SET total=total-5000.0 WHERE account_id=45887;

END;

If something happened between the two updates, this bank just lost five

grand. But when wrapped in a transaction block, the initial update is rolled

back, even if the server explodes.

Stored Procedures

Every command we’ve seen until now has been declarative, but sometimes

we need to run some code. At this point, you must make a decision: execute

code on the client side or execute code on the database side.

Stored procedures can offer huge performance advantages for huge architec-

tural costs. You may avoid streaming thousands of rows to a client application,

but you have also bound your application code to this database. The decision

to use stored procedures should not be arrived at lightly.

Warnings aside, let’s create a procedure (or FUNCTION) that simplifies INSERTing

a new event at a venue without needing the venue_id. If the venue doesn’t exist,

create it first and reference it in the new event. Also, we’ll return a boolean

indicating whether a new venue was added, as a nicety to our users.

postgres/add_event.sql

CREATE OR REPLACE FUNCTION add_event(title text, starts timestamp,
ends timestamp, venue text, postal varchar(9), country char(2))

RETURNS boolean AS $$
DECLARE
did_insert boolean := false;

26 • Chapter 2. PostgreSQL

http://media.pragprog.com/titles/rwdata/code/postgres/add_event.sql
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

What About Vendor Lock?

When relational databases hit their heyday, they were the Swiss Army knife of tech-

nologies. You could store nearly anything—even programming entire projects in them

(for example, Microsoft Access). The few companies that provided this software pro-

moted use of proprietary differences and then took advantage of this corporate reliance

by charging enormous license and consulting fees. This was the dreaded vendor lock

that newer programming methodologies tried to mitigate in the 1990s and early 2000s.

However, in their zeal to neuter the vendors, maxims arose such as no logic in the

database. This is a shame because relational databases are capable of so many varied

data management options. Vendor lock has not disappeared. Many actions we

investigate in this book are highly implementation specific. However, it’s worth

knowing how to use databases to their fullest extent before deciding to skip tools like

stored procedures a priori.

found_count integer;
the_venue_id integer;

BEGIN
SELECT venue_id INTO the_venue_id
FROM venues v
WHERE v.postal_code=postal AND v.country_code=country AND v.name ILIKE venue
LIMIT 1;

IF the_venue_id IS NULL THEN
INSERT INTO venues (name, postal_code, country_code)
VALUES (venue, postal, country)
RETURNING venue_id INTO the_venue_id;

did_insert := true;
END IF;

-- Note: not an “error”, as in some programming languages
RAISE NOTICE 'Venue found %', the_venue_id;

INSERT INTO events (title, starts, ends, venue_id)
VALUES (title, starts, ends, the_venue_id);

RETURN did_insert;
END;
$$ LANGUAGE plpgsql;

You can import this external file into the current schema by the following

command-line argument (if you don’t feel like typing all that code).

book=# \i add_event.sql

Day 2: Advanced Queries, Code, and Rules • 27

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Running it should return t (true), since this is the first use of the venue Run’s

House. This saves a client two round-trip SQL commands to the database (a

select and then an insert) and instead does only one.

SELECT add_event('House Party', '2012-05-03 23:00',
'2012-05-04 02:00', 'Run''s House', '97205', 'us');

The language we used in the procedure we wrote is PL/pgSQL (which stands

for Procedural Language/PostgreSQL). Covering the details of an entire pro-

gramming language is beyond our scope, but you can read much more about

it in the online PostgreSQL documentation.3

In addition to PL/pgSQL, Postgres supports three more core languages for

writing procedures: Tcl, Perl, and Python. People have written extensions for

a dozen more including Ruby, Java, PHP, Scheme, and others listed in the

public documentation. Try this shell command:

$ createlang book --list

It will list the languages installed in your database. The createlang command

is also used to add new languages, which you can find online.4

Pull the Triggers

Triggers automatically fire stored procedures when some event happens, like

an insert or update. They allow the database to enforce some required

behavior in response to changing data.

Let’s create a new PL/pgSQL function that logs whenever an event is updated

(we want to be sure no one changes an event and tries to deny it later). First,

create a logs table to store event changes. A primary key isn’t necessary here,

since it’s just a log.

CREATE TABLE logs (
event_id integer,
old_title varchar(255),
old_starts timestamp,
old_ends timestamp,
logged_at timestamp DEFAULT current_timestamp

);

Next, we build a function to insert old data into the log. The OLD variable

represents the row about to be changed (NEW represents an incoming row,

which we’ll see in action soon enough). Output a notice to the console with

the event_id before returning.

3. http://www.postgresql.org/docs/9.0/static/plpgsql.html
4. http://www.postgresql.org/docs/9.0/static/app-createlang.html

28 • Chapter 2. PostgreSQL

http://www.postgresql.org/docs/9.0/static/plpgsql.html
http://www.postgresql.org/docs/9.0/static/app-createlang.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Choosing to Execute Database Code

This is the first of a number of places you’ll see this theme in this book: does the code

belong in your application or in the database? It is a difficult decision—one that you’ll

have to answer uniquely for every application.

The benefit is you’ll often improve performance by as much as an order of magnitude.

For example, you might have a complex application-specific calculation that requires

custom code. If the calculation involves many rows, a stored procedure will save you

from moving thousands of rows instead of a single result. The cost is splitting your

application, your code, and your tests, across two different programming paradigms.

postgres/log_event.sql

CREATE OR REPLACE FUNCTION log_event() RETURNS trigger AS $$
DECLARE
BEGIN

INSERT INTO logs (event_id, old_title, old_starts, old_ends)
VALUES (OLD.event_id, OLD.title, OLD.starts, OLD.ends);
RAISE NOTICE 'Someone just changed event #%', OLD.event_id;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

Finally, we create our trigger to log changes after any row is updated.

CREATE TRIGGER log_events
AFTER UPDATE ON events
FOR EACH ROW EXECUTE PROCEDURE log_event();

So, it turns out our party at Run’s House has to end earlier than we hoped.

Let’s change the event.

UPDATE events
SET ends='2012-05-04 01:00:00'
WHERE title='House Party';

NOTICE: Someone just changed event #9

And the old end time was logged.

SELECT event_id, old_title, old_ends, logged_at
FROM logs;

event_id | old_title | old_ends | logged_at
---------+-------------+---------------------+------------------------

9 | House Party | 2012-05-04 02:00:00 | 2011-02-26 15:50:31.939

Triggers can also be created before updates and before or after inserts.5

5. http://www.postgresql.org/docs/9.0/static/triggers.html

Day 2: Advanced Queries, Code, and Rules • 29

http://media.pragprog.com/titles/rwdata/code/postgres/log_event.sql
http://www.postgresql.org/docs/9.0/static/triggers.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Viewing the World

Wouldn’t it be great if you could use the results of a complex query just like

any other table? Well, that’s exactly what VIEWs are for. Unlike stored proce-

dures, these aren’t functions being executed but rather aliased queries.

In our database, all holidays contain the word Day and have no venue.

postgres/holiday_view_1.sql

CREATE VIEW holidays AS
SELECT event_id AS holiday_id, title AS name, starts AS date
FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

So, creating a view is as simple as writing a query and prefixing it with CREATE
VIEW some_view_name AS. Now you can query holidays like any other table. Under

the covers it’s the plain old events table. As proof, add Valentine’s Day on 2012-

02-14 to events and query the holidays view.

SELECT name, to_char(date, 'Month DD, YYYY') AS date
FROM holidays
WHERE date <= '2012-04-01';

name | date
-----------------+--------------------
April Fools Day | April 01, 2012
Valentine’s Day | February 14, 2012

Views are powerful tools for opening up complex queried data in a simple

way. The query may be a roiling sea of complexity underneath, but all you

see is a table.

If you want to add a new column to the view, it will have to come from the

underlying table. Let’s alter the events table to have an array of associated

colors.

ALTER TABLE events
ADD colors text ARRAY;

Since holidays are to have colors associated with them, let’s update the VIEW
query to contain the colors array.

CREATE OR REPLACE VIEW holidays AS
SELECT event_id AS holiday_id, title AS name, starts AS date, colors
FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

Now it’s a matter of setting an array or color strings to the holiday of choice.

Unfortunately, we cannot update a view directly.

30 • Chapter 2. PostgreSQL

http://media.pragprog.com/titles/rwdata/code/postgres/holiday_view_1.sql
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

UPDATE holidays SET colors = '{"red","green"}' where name = 'Christmas Day';

ERROR: cannot update a view
HINT: You need an unconditional ON UPDATE DO INSTEAD rule.

Looks like we need a RULE.

What RULEs the School?

A RULE is a description of how to alter the parsed query tree. Every time

Postgres runs an SQL statement, it parses the statement into a query tree

(generally called an abstract syntax tree).

Operators and values become branches and leaves in the tree, and the tree

is walked, pruned, and in other ways edited before execution. This tree is

optionally rewritten by Postgres rules, before being sent on to the query

planner (which also rewrites the tree in a way to run optimally), and sends

this final command to be executed. See Figure 5, How SQL gets executed in

PostgreSQL, on page 32. What’s more is that a VIEW such as holidays is a RULE.

We can prove this by taking a look at the execution plan of the holidays view

using the EXPLAIN command (notice Filter is the WHERE clause, and Output is

the column list).

EXPLAIN VERBOSE
SELECT *
FROM holidays;

QUERY PLAN

Seq Scan on public.events (cost=0.00..1.04 rows=1 width=57)
Output: events.event_id, events.title, events.starts, events.colors
Filter: ((events.venue_id IS NULL) AND ((events.title)::text ~~ '%Day%'::text))

Compare that to running EXPLAIN VERBOSE on the query we built the holidays
VIEW from. They’re functionally identical.

EXPLAIN VERBOSE
SELECT event_id AS holiday_id,
title AS name, starts AS date, colors

FROM events
WHERE title LIKE '%Day%' AND venue_id IS NULL;

QUERY PLAN

Seq Scan on public.events (cost=0.00..1.04 rows=1 width=57)
Output: event_id, title, starts, colors
Filter: ((events.venue_id IS NULL) AND ((events.title)::text ~~ '%Day%'::text))

Day 2: Advanced Queries, Code, and Rules • 31

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

postgres server

Parser Rewrite Planner

Rules

Views

Query Trees

Query

Tree

Where the query
is optimized before

execution

Converts an SQL
string into a
Query Tree

Modi�es the
Query Tree based

on Rules

(New)

Query

Tree

User De�ned

psql client

SQL

String

Results

Execution

Figure 5—How SQL gets executed in PostgreSQL

So, to allow updates against our holidays view, we need to craft a RULE that tells

Postgres what to do with an UPDATE. Our rule will capture updates to the holidays
view and instead run the update on events, pulling values from the pseudore-

lations NEW and OLD. NEW functionally acts as the relation containing the values

we’re setting, while OLD contains the values we query by.

postgres/create_rule.sql

CREATE RULE update_holidays AS ON UPDATE TO holidays DO INSTEAD
UPDATE events
SET title = NEW.name,

starts = NEW.date,
colors = NEW.colors

WHERE title = OLD.name;

With this rule in place, now we can update holidays directly.

UPDATE holidays SET colors = '{"red","green"}' where name = 'Christmas Day';

Next let’s insert New Years Day on 2013-01-01 into holidays. As expected, we

need a rule for that too. No problem.

CREATE RULE insert_holidays AS ON INSERT TO holidays DO INSTEAD
INSERT INTO ...

32 • Chapter 2. PostgreSQL

http://media.pragprog.com/titles/rwdata/code/postgres/create_rule.sql
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We’re going to move on from here, but if you’d like to play more with RULEs,

try to add a DELETE RULE.

I’ll Meet You at the Crosstab

For our last exercise of the day, we’re going to build a monthly calendar of

events, where each month in the calendar year counts the number of events

in that month. This kind of operation is commonly done by a pivot table. These

constructs “pivot” grouped data around some other output, in our case, a list

of months. We’ll build our pivot table using the crosstab() function.

Start by crafting a query to count the number of events per month, each year.

PostgreSQL provides an extract() function that returns some subfield from a

date or timestamp, which aids in our grouping.

SELECT extract(year from starts) as year,
extract(month from starts) as month, count(*)

FROM events
GROUP BY year, month;

To use crosstab(), the query must return three columns: rowid, category, and value.
We’ll be using the year as an ID, which means the other fields are category

(the month) and value (the count).

The crosstab() function needs another set of values to represent months. This

is how the function knows how many columns we need. These are the values

that become the columns (the table to pivot against). So, let’s create a table

to store a temporary list of numbers.

CREATE TEMPORARY TABLE month_count(month INT);
INSERT INTO month_count VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12);

Now we’re ready to call crosstab() with our two queries.

SELECT * FROM crosstab(
'SELECT extract(year from starts) as year,

extract(month from starts) as month, count(*)
FROM events
GROUP BY year, month',
'SELECT * FROM month_count'

);

ERROR: a column definition list is required for functions returning "record"

Oops. An error occurred.

It may feel cryptic, but it’s saying the function is returning a set of records

(rows), but it doesn’t know how to label them. In fact, it doesn’t even know

what datatypes they are.

Day 2: Advanced Queries, Code, and Rules • 33

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Remember, the pivot table is using our months as categories, but those

months are just integers. So, we define them like this:

SELECT * FROM crosstab(
'SELECT extract(year from starts) as year,

extract(month from starts) as month, count(*)
FROM events
GROUP BY year, month',

'SELECT * FROM month_count'
) AS (
year int,
jan int, feb int, mar int, apr int, may int, jun int,
jul int, aug int, sep int, oct int, nov int, dec int

) ORDER BY YEAR;

We have one column year (which is the row ID) and twelve more columns

representing the months.

year | jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
2012 | | 5 | | 1 | 1 | | | | | | | 1

Go ahead and add a couple more events on another year just to see next

year’s event counts. Run the crosstab function again, and enjoy the calendar.

Day 2 Wrap-Up

Today finalized the basics of PostgreSQL. What we’re starting to see is that

Postgres is more than just a server for storing vanilla datatypes and querying

them; it is a data management engine that can reformat output data, store

weird datatypes like arrays, execute logic, and provide enough power to rewrite

incoming queries.

Day 2 Homework

Find

1. Find the list of aggregate functions in the PostgreSQL docs.

2. Find a GUI program to interact with PostgreSQL, such as Navicat.

Do

1. Create a rule that captures DELETEs on venues and instead sets the active

flag (created in the Day 1 homework) to FALSE.

2. A temporary table was not the best way to implement our event calendar

pivot table. The generate_series(a, b) function returns a set of records, from

a to b. Replace the month_count table SELECT with this.

34 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

3. Build a pivot table that displays every day in a single month, where each

week of the month is a row and each day name forms a column across

the top (seven days, starting with Sunday and ending with Saturday) like a

standard month calendar. Each day should contain a count of the number

of events for that date or should remain blank if no event occurs.

2.4 Day 3: Full-Text and Multidimensions

We’ll spend Day 3 investigating the many tools at our disposal to build a

movie query system. We’ll begin with the many ways that PostgreSQL can

search actor/movie names using fuzzy string matching. Then we’ll discover

the cube package by creating a movie suggestion system based on similar

genres of movies we already like. Since these are all contributed packages,

the implementations are special to PostgreSQL and not part of the SQL

standard.

Commonly, when designing a relational database schema, you’ll start with

an entity diagram. We’ll be writing a personal movie suggestion system that

keeps track of movies, their genres, and their actors, as modeled in Figure 6,

Our movie suggestion system, on page 36.

As a reminder, on Day 1 we installed several contributed packages. Today

we’ll need them all. Again, the list we’ll need installed is as follows: tablefunc,
dict_xsyn, fuzzystrmatch, pg_trgm, and cube.

Let’s first build the database. It’s often good practice to create indexes on

foreign keys to speed up reverse lookups (such as what movies this actor is

involved in). You should also set a UNIQUE constraint on join tables like

movies_actors to avoid duplicate join values.

postgres/create_movies.sql

CREATE TABLE genres (
name text UNIQUE,
position integer

);
CREATE TABLE movies (

movie_id SERIAL PRIMARY KEY,
title text,
genre cube

);
CREATE TABLE actors (

actor_id SERIAL PRIMARY KEY,
name text

);

Day 3: Full-Text and Multidimensions • 35

http://media.pragprog.com/titles/rwdata/code/postgres/create_movies.sql
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

*movie_id

title

genres[]

movies

name

position

genres

*actor_id

name

actors

has

and belongs

to many

Figure 6—Our movie suggestion system

CREATE TABLE movies_actors (
movie_id integer REFERENCES movies NOT NULL,
actor_id integer REFERENCES actors NOT NULL,
UNIQUE (movie_id, actor_id)

);
CREATE INDEX movies_actors_movie_id ON movies_actors (movie_id);
CREATE INDEX movies_actors_actor_id ON movies_actors (actor_id);
CREATE INDEX movies_genres_cube ON movies USING gist (genre);

You can download the movies_data.sql file as a file alongside the book and pop-

ulate the tables by piping the file into the database. Any questions you may

have about the genre cube will be covered later today.

Fuzzy Searching

Opening up a system to text searches means opening your system to inaccu-

rate inputs. You have to expect typos like “Brid of Frankstein.” Sometimes,

users can’t remember the full name of “J. Roberts.” In other cases, we just

plain don’t know how to spell “Benn Aflek.” We’ll look into a few PostgreSQL

packages that make text searching easy. It’s worth noting that as we progress,

this kind of string matching blurs the lines between relational queries and

searching frameworks like Lucene.6 Although some may feel features like full-

text search belong with the application code, there can be performance and

administrative benefits of pushing these packages to the database, where the

data lives.

6. http://lucene.apache.org/

36 • Chapter 2. PostgreSQL

http://lucene.apache.org/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

SQL Standard String Matches

PostgreSQL has many ways of performing text matches, but the two big default

methods are LIKE and regular expressions.

I Like LIKE and ILIKE

LIKE and ILIKE (case-insensitive LIKE) are the simplest forms of text search. They

are fairly universal in relational databases. LIKE compares column values

against a given pattern string. The % and _ characters are wildcards. %

matches any number of any characters, and _ matches exactly one character.

SELECT title FROM movies WHERE title ILIKE 'stardust%';

title

Stardust
Stardust Memories

If we want to be sure the substring stardust is not at the end of the string,

we can use the underscore (_) character as a little trick.

SELECT title FROM movies WHERE title ILIKE 'stardust_%';

title

Stardust Memories

This is useful in basic cases, but LIKE is limited to simple wildcards.

Regex

A more powerful string-matching syntax is a regular expression (regex).

Regexes appear often throughout this book, because many databases support

them. There are entire books dedicated to writing powerful expressions—the

topic is far too wide and complex to cover in depth. Postgres conforms

(mostly) to the POSIX style.

In Postgres, a regular expression match is led by the ~ operator, with the

optional ! (meaning, not matching) and * (meaning case insensitive). So, to

count all movies that do not begin with the, the following case-insensitive

query will work. The characters inside the string are the regular expression.

SELECT COUNT(*) FROM movies WHERE title !~* '^the.*';

You can index strings for pattern matching the previous queries by creating

a text_pattern_ops operator class index, as long as the values are indexed in

lowercase.

CREATE INDEX movies_title_pattern ON movies (lower(title) text_pattern_ops);

Day 3: Full-Text and Multidimensions • 37

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We used the text_pattern_ops because the title is of type text. If you need to index

varchars, chars, or names, use the related ops: varchar_pattern_ops, bpchar_pat-
tern_ops, and name_pattern_ops.

Bride of Levenshtein

Levenshtein is a string comparison algorithm that compares how similar two

strings are by how many steps are required to change one string into another.

Each replaced, missing, or added character counts as a step. The distance

is the total number of steps away. In PostgreSQL, the levenshtein() function is

provided by the fuzzystrmatch contrib package. Say we have the string bat and

the string fads.

SELECT levenshtein('bat', 'fads');

The Levenshtein distance is 3 because—compared to the string bat—we

replaced two letters (b=>f, t=>d), and we added a letter (+s). Each change

increments the distance. We can watch the distance close as we step closer

(so to speak). The total goes down until we get zero (the two strings are equal).

SELECT levenshtein('bat', 'fad') fad,
levenshtein('bat', 'fat') fat,
levenshtein('bat', 'bat') bat;

fad | fat | bat
-----+-----+-----

2 | 1 | 0

Changes in case cost a point too, so you may find it best to convert all strings

to the same case when querying.

SELECT movie_id, title FROM movies
WHERE levenshtein(lower(title), lower('a hard day nght')) <= 3;

movie_id | title
----------+--------------------

245 | A Hard Day’s Night

This ensures minor differences won’t over-inflate the distance.

Try a Trigram

A trigram is a group of three consecutive characters taken from a string. The

pg_trgm contrib module breaks a string into as many trigrams as it can.

SELECT show_trgm('Avatar');

show_trgm

{" a"," av","ar ",ata,ava,tar,vat}

38 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Finding a matching string is as simple as counting the number of matching

trigrams. The strings with the most matches are the most similar. It’s useful

for doing a search where you’re OK with either slight misspellings or even

minor words missing. The longer the string, the more trigrams and the more

likely a match—they’re great for something like movie titles, since they have

relatively similar lengths.

We’ll create a trigram index against movie names to start (we use Generalized

Index Search Tree [GIST], a generic index API made available by the PostgreSQL

engine).

CREATE INDEX movies_title_trigram ON movies
USING gist (title gist_trgm_ops);

Now you can query with a few misspellings and still get decent results.

SELECT *
FROM movies
WHERE title % 'Avatre';

title

Avatar

Trigrams are an excellent choice for accepting user input, without weighing

them down with wildcard complexity.

Full-Text Fun

Next, we want to allow users to perform full-text searches based on matching

words, even if they’re pluralized. If a user wants to search for certain words

in a movie title but can remember only some of them, Postgres supports

simple natural-language processing.

TSVector and TSQuery

Let’s look for a movie that contains the words night and day. This is a perfect

job for text search using the @@ full-text query operator.

SELECT title
FROM movies
WHERE title @@ 'night & day';

title

A Hard Day’s Night
Six Days Seven Nights
Long Day’s Journey Into Night

Day 3: Full-Text and Multidimensions • 39

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The query returns titles like A Hard Day’s Night, despite the word Day being

in possessive form, and the two words are out of order in the query. The @@

operator converts the name field into a tsvector and converts the query into a

tsquery.

A tsvector is a datatype that splits a string into an array (or a vector) of tokens,

which are searched against the given query, while the tsquery represents a

query in some language, like English or French. The language corresponds

to a dictionary (which we’ll see more of in a few paragraphs). The previous

query is equivalent to the following (if your system language is set to English):

SELECT title
FROM movies
WHERE to_tsvector(title) @@ to_tsquery('english', 'night & day');

You can take a look at how the vector and the query break apart the values

by running the conversion functions on the strings outright.

SELECT to_tsvector('A Hard Day''s Night'), to_tsquery('english', 'night & day');

to_tsvector | to_tsquery
----------------------------+-----------------
'day':3 'hard':2 'night':5 | 'night' & 'day'

The tokens on a tsvector are called lexemes and are coupled with their positions

in the given phrase.

You may have noticed the tsvector for A Hard Day’s Night did not contain the

lexeme a. Moreover, simple English words like a are missing if you try to

query by them.

SELECT *
FROM movies
WHERE title @@ to_tsquery('english', 'a');

NOTICE: text-search query contains only stop words or doesn’t \
contain lexemes, ignored

Common words like a are called stop words and are generally not useful for

performing queries. The English dictionary was used by the parser to normalize

our string into useful English components. In your console, you can view the

output of the stop words under the English tsearch_data directory.

cat `pg_config --sharedir`/tsearch_data/english.stop

We could remove a from the list, or we could use another dictionary like simple
that just breaks up strings by nonword characters and makes them lowercase.

Compare these two vectors:

40 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

SELECT to_tsvector('english', 'A Hard Day''s Night');

to_tsvector

'day':3 'hard':2 'night':5

SELECT to_tsvector('simple', 'A Hard Day''s Night');

to_tsvector
--
'a':1 'day':3 'hard':2 'night':5 's':4

With simple, you can retrieve any movie containing the lexeme a.

Other Languages

Since Postgres is doing some natural-language processing here, it only makes

sense that different configurations would be used for different languages. All

of the installed configurations can be viewed with this command:

book=# \dF

Dictionaries are part of what Postgres uses to generate tsvector lexemes (along

with stop words and other tokenizing rules we haven’t covered called parsers

and templates). You can view your system’s list here:

book=# \dFd

You can test any dictionary outright by calling the ts_lexize() function. Here we

find the English stem word of the string Day’s.

SELECT ts_lexize('english_stem', 'Day''s');

ts_lexize

{day}

Finally, the previous full-text commands work for other languages too. If you

have German installed, try this:

SELECT to_tsvector('german', 'was machst du gerade?');

to_tsvector

'gerad':4 'mach':2

Since was (what) and du (you) are common, they are marked as stop words

in the German dictionary, while machst (doing) and gerade (now) are stemmed.

Day 3: Full-Text and Multidimensions • 41

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Indexing Lexemes

Full-text search is powerful. But if we don’t index our tables, it’s also slow.

The EXPLAIN command is a powerful tool for digging into how queries are

internally planned.

EXPLAIN
SELECT *
FROM movies
WHERE title @@ 'night & day';

QUERY PLAN

Seq Scan on movies (cost=10000000000.00..10000000001.12 rows=1 width=68)

Filter: (title @@ 'night & day'::text)

Note the line Seq Scan on movies. That’s rarely a good sign in a query, because

it means a whole table scan is taking place; each row will be read. So, we

need the right index.

We’ll use Generalized Inverted iNdex (GIN)—like GIST, it’s an index API—to

create an index of lexeme values we can query against. The term inverted

index may sound familiar to you if you’ve ever used a search engine like

Lucene or Sphinx. It’s a common data structure to index full-text searches.

CREATE INDEX movies_title_searchable ON movies
USING gin(to_tsvector('english', title));

With our index in place, let’s try to search again.

EXPLAIN
SELECT *
FROM movies
WHERE title @@ 'night & day';

QUERY PLAN

Seq Scan on movies (cost=10000000000.00..10000000001.12 rows=1 width=68)

Filter: (title @@ 'night & day'::text)

What happened? Nothing. The index is there, but Postgres isn’t using it. It’s

because our GIN index specifically uses the english configuration for building

its tsvectors, but we aren’t specifying that vector. We need to specify it in the

WHERE clause of the query.

EXPLAIN
SELECT *
FROM movies
WHERE to_tsvector('english',title) @@ 'night & day';

42 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

QUERY PLAN
--
Bitmap Heap Scan on movies (cost=4.26..8.28 rows=1 width=68)
Recheck Cond: (to_tsvector('english'::regconfig, title) @@ '''day'''::tsquery)
-> Bitmap Index Scan on movies_title_searchable (cost=0.00..4.26 rows=1 width=0)

Index Cond: (to_tsvector('english'::regconfig, title) @@ '''day'''::tsquery)

EXPLAIN is important to ensure indexes are used as you expect them. Otherwise,

the index is just wasted overhead.

Metaphones

We’ve inched toward matching less-specific inputs. LIKE and regular expressions

require crafting patterns that can match strings precisely according to their

format. Levenshtein distance allows finding matches that contain minor

misspellings but must ultimately be very close to the same string. Trigrams

are a good choice for finding reasonable misspelled matches. Finally, full-text

searching allows natural-language flexibility, in that it can ignore minor words

like a and the and can deal with pluralization. Sometimes we just don’t know

how to spell words correctly but we know how they sound.

We love Bruce Willis and would love to see what movies he’s in. Unfortunately,

we can’t remember exactly how to spell his name, so we sound it out as best

we can.

SELECT *
FROM actors
WHERE name = 'Broos Wlis';

Even a trigram is no good here (using % rather than =).

SELECT *
FROM actors
WHERE name % 'Broos Wlis';

Enter the metaphones, which are algorithms for creating a string representa-

tion of word sounds. You can define how many characters are in the output

string. For example, the seven-character metaphone of the name Aaron Eck-

hart is ARNKHRT.

To find all films acted by someone sounding like Broos Wils, we can query

against the metaphone output. Note that NATURAL JOIN is an INNER JOIN that

automatically joins ON matching column names (for example, movies.actor_id=
movies_actors.actor_id).

SELECT title
FROM movies NATURAL JOIN movies_actors NATURAL JOIN actors
WHERE metaphone(name, 6) = metaphone('Broos Wils', 6);

Day 3: Full-Text and Multidimensions • 43

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

title

The Fifth Element
Twelve Monkeys
Armageddon
Die Hard
Pulp Fiction
The Sixth Sense
:

If you peek at the online documentation, you’d see the fuzzystrmatch module

contains other functions: dmetaphone() (double metaphone), dmetaphone_alt() (for

alternative name pronunciations), and soundex() (a really old algorithm from

the 1880s made by the U.S. Census to compare common American surnames).

You can dissect the functions’ representations by selecting their output.

SELECT name, dmetaphone(name), dmetaphone_alt(name),
metaphone(name, 8), soundex(name)

FROM actors;

name | dmetaphone | dmetaphone_alt | metaphone | soundex
----------------+------------+----------------+-----------+--------
50 Cent | SNT | SNT | SNT | C530
Aaron Eckhart | ARNK | ARNK | ARNKHRT | A652
Agatha Hurle | AK0R | AKTR | AK0HRL | A236
:

There is no single best function to choose, and the optimal choice depends

on your dataset.

Combining String Matches

With all of our string searching ducks in a row, we’re ready to start combining

them in interesting ways.

One of the most flexible aspects of metaphones is that their outputs are just

strings. This allows you to mix and match with other string matchers.

For example, we could use the trigram operator against metaphone() outputs

and then order the results by the lowest Levenshtein distance. This means

“Get me names that sound the most like Robin Williams, in order.”

SELECT * FROM actors
WHERE metaphone(name,8) % metaphone('Robin Williams',8)
ORDER BY levenshtein(lower('Robin Williams'), lower(name));

actor_id | name
----------+-----------------

2442 | John Williams
4090 | Robin Shou

44 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

4093 | Robin Williams
4479 | Steven Williams

Note it isn’t perfect. Robin Williams ranked at #3. Unbridled exploitation of

this flexibility can yield other funny results, so be careful.

SELECT * FROM actors WHERE dmetaphone(name) % dmetaphone('Ron');

actor_id | name
----------+-------------

3911 | Renji Ishibashi
3913 | Renée Zellweger

:

The combinations are vast, limited only by your experimentations.

Genres as a Multidimensional Hypercube

The last contributed package we investigate is cube. We’ll use the cube datatype

to map a movie’s genres as a multidimensional vector. We will then use

methods to efficiently query for the closest points within the boundary of a

hypercube to give us a list of similar movies.

As you may have noticed in the beginning of Day 3, we created a column

named genres of type cube. Each value is a point in 18-dimensional space with

each dimension representing a genre. Why represent movie genres as points

in n-dimensional space? Movie categorization is not an exact science, and

many movies are not 100 percent comedy or 100 percent tragedy—they are

something in between.

In our system, each genre is scored from (the totally arbitrary numbers) 0 to

10 based on how strong the movie is within that genre—with 0 being nonex-

istent and 10 being the strongest.

Star Wars has a genre vector of (0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0). The genres table

describes the position of each dimension in the vector. We can decrypt its genre

values by extracting the cube_ur_coord(vector,dimension) using each genres.position.
For clarity, we filter out genres with scores of 0.

SELECT name,
cube_ur_coord('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)', position) as score

FROM genres g
WHERE cube_ur_coord('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)', position) > 0;

name | score
-----------+-------
Adventure | 7
Fantasy | 7
SciFi | 10

Day 3: Full-Text and Multidimensions • 45

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We will find similar movies by finding the nearest points. To understand why

this works, we can envision two movies on a two-dimensional genre graph,

like the graph shown below.. If your favorite movie is Animal House, you’ll

probably want to see The 40 Year Old Virgin more than Oedipus—a story

distinctly lacking in comedy. In our two-dimensional universe, it’s a simple

nearest-neighbor search to find likely matches.

T
ra

g
e

d
y

Comedy

Oedipus

The 40 Year

Old Virgin

Gone with

the Wind

Animal

House

We can extrapolate this into more dimensions with more genres, be it 2, 3,

or 18. The principle is the same: a nearest-neighbor match to the nearest

points in genre space will yield the closest genre matches.

The nearest matches to the genre vector can be discovered by the cube_dis-
tance(point1, point2). Here we can find the distance of all movies to the Star Wars

genre vector, nearest first.

SELECT *,
cube_distance(genre, '(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)') dist

FROM movies
ORDER BY dist;

We created the movies_genres_cube cube index earlier when we created the tables.

However, even with an index, this query is still relatively slow, since it requires

a full-table scan. It computes the distance on every row and then sorts them.

Rather than compute the distance of every point, we can instead focus on

likely points by way of a bounding cube. Just like finding the closest five towns

on a map will be faster on a state map than a world map, bounding reduces

the points we need to look at.

We use cube_enlarge(cube,radius,dimensions) to build an 18-dimensional cube that

is some length (radius) wider than a point.

46 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Let’s view a simpler example. If we built a two-dimensional square one unit

around a point (1,1), the lower-left point of the square would be at (0,0), and

the upper-right point would be (2,2).

SELECT cube_enlarge('(1,1)',1,2);

cube_enlarge

(0, 0),(2, 2)

The same principle applies in any number of dimensions. With our bounding

hypercube, we can use a special cube operator, @>, which means contains.

This query finds the distance of all points contained within a five-unit cube

of the Star Wars genre point.

SELECT title, cube_distance(genre, '(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)') dist
FROM movies
WHERE cube_enlarge('(0,7,0,0,0,0,0,0,0,7,0,0,0,0,10,0,0,0)'::cube, 5, 18) @> genre
ORDER BY dist;

title | dist
--+------------------
Star Wars | 0
Star Wars: Episode V - The Empire Strikes Back | 2
Avatar | 5
Explorers | 5.74456264653803
Krull | 6.48074069840786
E.T. The Extra-Terrestrial | 7.61577310586391

Using a subselect, we can get the genre by movie name and perform our cal-

culations against that genre using a table alias.

SELECT m.movie_id, m.title
FROM movies m, (SELECT genre, title FROM movies WHERE title = 'Mad Max') s
WHERE cube_enlarge(s.genre, 5, 18) @> m.genre AND s.title <> m.title
ORDER BY cube_distance(m.genre, s.genre)
LIMIT 10;

movie_id | title
----------+----------------------------

1405 | Cyborg
1391 | Escape from L.A.
1192 | Mad Max Beyond Thunderdome
1189 | Universal Soldier
1222 | Soldier
1362 | Johnny Mnemonic
946 | Alive
418 | Escape from New York
1877 | The Last Starfighter
1445 | The Rocketeer

Day 3: Full-Text and Multidimensions • 47

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This method of movie suggestion is not perfect, but it’s an excellent start. We

will see more dimensional queries in later chapters, such as two-dimensional

geographic searches in MongoDB (see GeoSpatial Queries, on page 171).

Day 3 Wrap-Up

Today we jumped headlong into PostgreSQL’s flexibility at string searches

and used the cube package for multidimensional searching. Most importantly,

we caught a glimpse of the nonstandard extensions that puts PostgreSQL at

the top of the open source RDBMS field. There are dozens (if not hundreds)

of more extensions at your disposal, from geographic storage to cryptographic

functions, custom datatypes, and language extensions. Beyond the core

power of SQL, contrib packages are what makes PostgreSQL shine.

Day 3 Homework

Find

1. Find online documentation of all contributed packages bundled into

Postgres.

2. Find online POSIX regex documentation (it will also be handy for future

chapters).

Do

1. Create a stored procedure where you can input a movie title or actor’s

name you like, and it will return the top five suggestions based on either

movies the actor has starred in or films with similar genres.

2. Expand the movies database to track user comments and extract keywords

(minus English stopwords). Cross-reference these keywords with actors’

last names, and try to find the most talked about actors.

2.5 Wrap-Up

If you haven’t spent much time with relational databases, we highly recom-

mend digging deeper into PostgreSQL, or another relational database, before

deciding to scrap it for a newer variety. Relational databases have been the

focus of intense academic research and industrial improvements for more

than forty years, and PostgreSQL is one of the top open source relational

databases to benefit from these advancements.

48 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

PostgreSQL’s Strengths

PostgreSQL’s strengths are as numerous as any relational model: years of

research and production use across nearly every field of computing, flexible

queryability, and very consistent and durable data. Most programming lan-

guages have battle-tested driver support for Postgres, and many programming

models, like object-relational mapping (ORM), assume an underlying relational

database. The crux of the matter is the flexibility of the join. You needn’t know

how you plan to actually query your model, since you can always perform

some joins, filters, views, and indexes—odds are good you will always have

the ability to extract the data you want.

PostgreSQL is fantastic for what we call “Stepford data” (named for The

Stepford Wives, a story about a neighborhood where nearly everyone was

consistent in style and substance), which is data that is fairly homogeneous

and conforms well to a structured schema.

Furthermore, PostgreSQL goes beyond the normal open source RDBMS

offerings, such as powerful schema constraint mechanisms. You can write

your own language extensions, customize indexes, create custom datatypes,

and even overwrite the parsing of incoming queries. And where other open

source databases may have complex licensing agreements, PostgreSQL is

open source in its purest form. No one owns the code. Anyone can do pretty

much anything they want with the project (other than hold authors liable).

The development and distribution are completely community supported. If

you are a fan of free(dom) software or have a long bushy beard, you have to

respect their general resistance to cashing in on an amazing product.

PostgreSQL’s Weaknesses

Although relational databases are undeniably the most successful style of

database over the years, there are cases where it may not be a great fit.

Wrap-Up • 49

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Partitioning is not one of the strong suits of relational databases like Post-

greSQL. If you need to scale out rather than up (multiple parallel datastores

rather than a single beefy machine or cluster), you may be better served

looking elsewhere. If your data requirements are too flexible to easily fit into

the rigid schema requirements of a relational database or you don’t need the

overhead of a full database, require very high-volume reads and writes as key

values, or need to store only large blobs of data, then one of the other data-

stores might be a better fit.

Parting Thoughts

A relational database is an excellent choice for query flexibility. While Post-

greSQL requires you to design your data up front, it makes no assumptions

on how you use that data. As long as your schema is designed in a fairly

normalized way, without duplication or storage of computable values, you

should generally be all set for any queries you might need to create. And if

you include the correct modules, tune your engine, and index well, it will

perform amazingly well for multiple terabytes of data with very small resource

consumption. Finally, to those for whom data safety is paramount, Post-

greSQL’s ACID-compliant transactions ensure your commits are completely

atomic, consistent, isolated, and durable.

50 • Chapter 2. PostgreSQL

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 3

Riak

Anyone who has worked construction knows that rebar is a steel beam used

to reinforce concrete. Just like Riak (“Ree-ahck”), you never use only one, but

the multiple parts working together make the overall system durable. Each

component is cheap and expendable, but when used right, it’s hard to find

a simpler or stronger structure upon which to build a foundation.

Riak is a distributed key-value database where values can be anything—from

plain text, JSON, or XML to images or video clips—all accessible through a

simple HTTP interface. Whatever data you have, Riak can store it.

Riak is also fault-tolerant. Servers can go up or down at any moment with

no single point of failure. Your cluster continues humming along as servers

are added, removed, or (ideally not) crash. Riak won’t keep you up nights

worrying about your cluster—a failed node is not an emergency, and you can

wait to deal with it in the morning. As core developer Justin Sheehy once

noted, “[The Riak team] focused so hard on things like write availability…to

go back to sleep.”

But this flexibility has some trade-offs. Riak lacks robust support for ad hoc

queries, and key-value stores, by design, have trouble linking values together

(in other words, they have no foreign keys). Riak attacks these problems on

several fronts, which we’ll discover in the next few days.

3.1 Riak Loves the Web

Riak speaks web better than any other database we’ll see in this book (though

CouchDB is a close second). You query via URLs, headers, and verbs, and

Riak returns assets and standard HTTP response codes.

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Riak and cURL

Since the goal of this book is to investigate seven databases and their concepts, and

not teach new programming languages, we try to avoid introducing new languages

where possible. Riak supplies an HTTP REST interface, so we’re going to interact with

it via the URL tool cURL. In production, you’ll almost always use a driver in your

language of choice. Using cURL allows us to peek at the underlying API without

resorting to a particular driver or programming language.

Riak is a great choice for datacenters like Amazon that must serve many

requests with low latency. If every millisecond spent waiting is a potential

customer loss, Riak is hard to beat. It’s easy to manage, easy to set up, and

can grow with your needs. If you’ve ever used Amazon Web Services, like

SimpleDB or S3, you may notice some similarities in form and function. This

is no coincidence. Riak is inspired by Amazon’s Dynamo paper.1

In this chapter, we’ll investigate how Riak stores and retrieves values and

how to tie data together using Links. Then we’ll explore a data-retrieval concept

used heavily throughout this book: mapreduce. We’ll see how Riak clusters

its servers and handles requests, even in the face of server failure. Finally,

we’ll look at how Riak resolves conflict that arises from writing to distributed

servers, and we’ll look at some extensions to the basic server.

3.2 Day 1: CRUD, Links, and MIMEs

You can download and install a build of Riak provided by Basho2 (the company

that funds its development), but we actually prefer to build this one since

you get some preconfigured examples. If you really don’t want to build it, just

install a prebuilt version, and then grab the source code and extract the

example dev servers. Erlang3 is also required to run Riak (R14B03 or greater).

Building Riak from source requires three things: Erlang, the source code, and

general Unix build tools like Make. Installing Erlang is easy enough (you’ll

also need Erlang for CouchDB in Chapter 6, CouchDB, on page 177), though

it can take a while. We get the Riak source from its repository (link available

via the Basho website—if you don’t have Git or Mercurial installed, you can

download a zipped package). All of the examples in this chapter were run on

version 1.0.2.

1. http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
2. http://www.basho.com/
3. http://www.erlang.org/

52 • Chapter 3. Riak

http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.basho.com/
http://www.erlang.org/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The Riak creators played Santa Claus for us new users, slipping a cool toy

into our stockings. In the same directory you built Riak, run this command:

$ make devrel

When complete, we find three example servers. Just fire them up:

$ dev/dev1/bin/riak start
$ dev/dev2/bin/riak start
$ dev/dev3/bin/riak start

If you have a server fail to start because a port is in use, don’t panic. You can

change the dev1, dev2, or dev3 port by opening the offending server’s

etc/app.config file and altering the line that looks like this to use another port:

{http, [{"127.0.0.1", 8091 }]}

We should now have three Erlang processes running named beam.smp, repre-

senting individual Riak nodes (server instances), unaware of each other’s

presence. To create a cluster, we need to join the nodes using each server’s

riak-admin command named join and point them to any other cluster node.

$ dev/dev2/bin/riak-admin join dev1@127.0.0.1

It doesn’t really matter which servers we point them at—in Riak, all nodes

are equal. Now that dev1 and dev2 are in a cluster, we can point dev3 at

either one.

$ dev/dev3/bin/riak-admin join dev2@127.0.0.1

Verify your servers are healthy by checking their stats in a web browser:

http://localhost:8091/stats. It may prompt you to download the file, which contains

lots of information about the cluster. It should look something like this

(edited for readability):

{
"vnode_gets":0,
"vnode_puts":0,
"vnode_index_reads":0,
...
"connected_nodes":[

"dev2@127.0.0.1",
"dev3@127.0.0.1"

],
...
"ring_members":[

"dev1@127.0.0.1",
"dev2@127.0.0.1",
"dev3@127.0.0.1"

],

Day 1: CRUD, Links, and MIMEs • 53

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

"ring_num_partitions":64,
"ring_ownership":

"[{'dev3@127.0.0.1',21},{'dev2@127.0.0.1',21},{'dev1@127.0.0.1',22}]",
...

}

We can see that all servers are equal participants in the ring by pinging the

other servers for stats on ports 8092 (dev2) and 8093 (dev3). For now, we’ll

stick with the stats from dev1.

Look for the ring_members property—it should contain all our node names

and will be the same for each server. Next, find the value for connected_nodes.

This should be a list of the other servers in the ring.

We can change the values reported by connected_nodes by stopping a node…

$ dev/dev2/bin/riak stop

…and reloading the /stats. Notice that dev2@127.0.0.1 is now gone from the con-

nected_nodes list. Start dev2, and it will rejoin itself to the Riak ring (we’ll

discuss the ring on Day 2).

REST Is Best (or Doing cURLs)

REST stands for REpresentational State Transfer. It sounds like a mouthful

of jargon, but it has become the de facto architecture of web applications, so

it’s worth knowing. REST is a guideline for mapping resources to URLs and

interacting with them using CRUD verbs: POST (Create), GET (Read), PUT (Update),

and DELETE (Delete).

If you don’t already have it installed, install the HTTP client program cURL.

We use it as our REST interface, because it’s easy to specify verbs (like GET
and PUT) and HTTP header information (like Content-Type). With the curl command,

we speak directly to the Riak server’s HTTP REST interface without the need

for an interactive console or, say, a Ruby driver.

You can validate the curl command works with Riak by pinging a node.

$ curl http://localhost:8091/ping
OK

Let’s issue a bad query. -I tells cURL that we want only the header response.

$ curl -I http://localhost:8091/riak/no_bucket/no_key
HTTP/1.1 404 Object Not Found
Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)
Date: Thu, 04 Aug 2011 01:25:49 GMT
Content-Type: text/plain
Content-Length: 10

54 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Since Riak leverages HTTP URLs and actions, it uses HTTP headers and error

codes. The 404 response means the same as a 404 when you encounter a

missing web page: nothing to see here. So, let’s PUT something in Riak.

The -X PUT parameter tells cURL that we want to perform an HTTP PUT action

to store and retrieve on an explicit key. The -H attribute sets the following text

as HTTP header information. In this case, we set the MIME content type to

HTML. Everything passed to -d (also known as the body data) is what Riak

will add as a new value.

$ curl -v -X PUT http://localhost:8091/riak/favs/db \
-H "Content-Type: text/html" \
-d "<html><body><h1>My new favorite DB is RIAK</h1></body></html>"

If you navigate to http://localhost:8091/riak/favs/db in a browser, you’ll get a nice

message from yourself.

PUT the Value in the Bucket

Riak is a key-value store, so it expects you to pass in a key to retrieve a value.

Riak breaks up classes of keys into buckets to avoid key collisions—for

example, a key for java the language will not collide with java the drink.

We’re going to create a system to keep track of animals in a dog hotel. We’ll

start by creating a bucket of animals that contain each furry guest’s details.

The URL follows this pattern:

http://SERVER:PORT/riak/BUCKET/KEY

A straightforward way of populating a Riak bucket is to know your key in

advance. We’ll first add Ace, The Wonder Dog and give him the key ace with

the value {"nickname" : "The Wonder Dog", "breed" : "German Shepherd"}. You don’t need

to explicitly create a bucket—putting a first value into a bucket name will

create that bucket.

$ curl -v -X PUT http://localhost:8091/riak/animals/ace \
-H "Content-Type: application/json" \
-d '{"nickname" : "The Wonder Dog", "breed" : "German Shepherd"}'

Putting a new value returns a 204 code. The -v (verbose) attribute in the curl
command outputs this header line.

< HTTP/1.1 204 No Content

We can view our list of buckets that have been created.

$ curl -X GET http://localhost:8091/riak?buckets=true
{"buckets":["favs","animals"]}

Day 1: CRUD, Links, and MIMEs • 55

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Optionally, you can return the set results with the ?returnbody=true parameter,

which we’ll test by adding another animal, Polly:

$ curl -v -X PUT http://localhost:8091/riak/animals/polly?returnbody=true \
-H "Content-Type: application/json" \
-d '{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}'

This time you’ll see a 200 code.

< HTTP/1.1 200 OK

If we aren’t picky about our key name, Riak will generate one when using

POST.

$ curl -i -X POST http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"nickname" : "Sergeant Stubby", "breed" : "Terrier"}'

The generated key will be in the header under Location—also note the 201

success code in the header.

HTTP/1.1 201 Created
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)
Location: /riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3PO
Date: Tue, 05 Apr 2011 07:45:33 GMT
Content-Type: application/json
Content-Length: 0

A GET request (cURL’s default if left unspecified) to that location will retrieve

the value.

$ curl http://localhost:8091/riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3PO

DELETE will remove it.

$ curl -i -X DELETE http://localhost:8091/riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3PO
HTTP/1.1 204 No Content
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)
Date: Mon, 11 Apr 2011 05:08:39 GMT
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

DELETE won’t return any body, but the HTTP code will be 204 if successful.

Otherwise, as you’d expect, it returns a 404.

If we’ve forgotten any of our keys in a bucket, we can get them all with keys=true.

$ curl http://localhost:8091/riak/animals?keys=true

56 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

You can also get them as a stream with keys=stream, which can be a safer

choice for huge datasets—it just keeps sending chunks of keys array objects

and ends with an empty array.

Links

Links are metadata that associate one key to other keys. The basic structure

is this:

Link: </riak/bucket/key>; riaktag=\"whatever\"

The key to where this value links is in pointy brackets (<…>), followed by a

semicolon and then a tag describing how the link relates to this value (it can

be whatever string we like).

Link Walking

Our little dog hotel has quite a few (large, comfortable, and humane) cages.

To keep track of which animal is in what cage, we’ll use a link. Cage 1 contains
Polly by linking to her key (this also creates a new bucket named cages). The

cage is installed in room 101, so we set that value as JSON data.

$ curl -X PUT http://localhost:8091/riak/cages/1 \
-H "Content-Type: application/json" \
-H "Link: </riak/animals/polly>; riaktag=\"contains\"" \
-d '{"room" : 101}'

Note that this link relationship is one-directional. In effect, the cage we’ve

just created knows that Polly is inside it, but no changes have been made to

Polly. We can confirm this by pulling up Polly’s data and checking that there

have been no changes to the Link headers.

$ curl -i http://localhost:8091/riak/animals/polly

HTTP/1.1 200 OK
X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Vary: Accept-Encoding
Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
Link: </riak/animals>; rel="up"
Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT
ETag: "VD0ZAfOTsIHsgG5PM3YZW"
Date: Tue, 13 Dec 2011 17:54:51 GMT
Content-Type: application/json
Content-Length: 59

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}

Day 1: CRUD, Links, and MIMEs • 57

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

You can have as many metadata Links as necessary, separated by commas.

We’ll put Ace in cage 2 and also point to cage 1 tagged with next_to so we

know that it’s nearby.

$ curl -X PUT http://localhost:8091/riak/cages/2 \
-H "Content-Type: application/json" \
-H "Link:</riak/animals/ace>;riaktag=\"contains\",
</riak/cages/1>;riaktag=\"next_to\"" \

-d '{"room" : 101}'

What makes Links special in Riak is link walking (and a more powerful variant,

linked mapreduce queries, which we investigate tomorrow). Getting the linked

data is achieved by appending a link spec to the URL that is structured like

this: /_,_,_. The underscores (_) in the URL represent wildcards to each of the

link criteria: bucket, tag, keep. We’ll explain those terms shortly. First let’s

retrieve all links from cage 1.

$ curl http://localhost:8091/riak/cages/1/_,_,_

--4PYi9DW8iJK5aCvQQrrP7mh7jZs
Content-Type: multipart/mixed; boundary=Av1fawIA4WjypRlz5gHJtrRqklD

--Av1fawIA4WjypRlz5gHJtrRqklD
X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly
Content-Type: application/json
Link: </riak/animals>; rel="up"
Etag: VD0ZAfOTsIHsgG5PM3YZW
Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}
--Av1fawIA4WjypRlz5gHJtrRqklD--

--4PYi9DW8iJK5aCvQQrrP7mh7jZs--

It returns a multipart/mixed dump of headers plus bodies of all linked keys/val-

ues. It’s also a headache to look at. Tomorrow we’ll find a more powerful way

to get link-walked data that also happens to return nicer values—but today

we’ll dig a bit more into this syntax.

If you’re not familiar with reading the multipart/mixed MIME type, the Content-Type
definition describes a boundary string, which denotes the beginning and end

of some HTTP header and body data.

--BcOdSWMLuhkisryp0GidDLqeA64
some HTTP header and body data
--BcOdSWMLuhkisryp0GidDLqeA64--

58 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

In our case, the data is what cage 1 links to: Polly Purebred. You may have

noticed that the headers returned don’t actually display the link information.

This is OK; that data is still stored under the linked-to key.

When link walking, we can replace the underscores in the link spec to filter

only values we want. Cage 2 has two links, so performing a link spec request

will return both the animal Ace contained in the cage and the cage 1 next_to
it. To specify only following the animals bucket, replace the first underscore

with the bucket name.

$ curl http://localhost:8091/riak/cages/2/animals,_,_

Or follow the cages next to this one by populating the tag criteria.

$ curl http://localhost:8091/riak/cages/2/_,next_to,_

The final underscore—keep—accepts a 1 or 0. keep is useful when following

second-order links, or links following other links, which you can do by just

appending another link spec. Let’s follow the keys next_to cage 2, which will

return cage 1. Next, we walk to the animals linked to cage 1. Since we set

keep to 0, Riak will not return the intermediate step (the cage 1 data). It will

return only Polly’s information, who is next to Ace’s cage.

$ curl http://localhost:8091/riak/cages/2/_,next_to,0/animals,_,_

--6mBdsboQ8kTT6MlUHg0rgvbLhzd
Content-Type: multipart/mixed; boundary=EZYdVz9Ox4xzR4jx1I2ugUFFiZh

--EZYdVz9Ox4xzR4jx1I2ugUFFiZh
X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly
Content-Type: application/json
Link: </riak/animals>; rel="up"
Etag: VD0ZAfOTsIHsgG5PM3YZW
Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}
--EZYdVz9Ox4xzR4jx1I2ugUFFiZh--

--6mBdsboQ8kTT6MlUHg0rgvbLhzd--

If we want Polly’s information and cage 1, set keep to 1.

$ curl http://localhost:8091/riak/cages/2/_,next_to,1/_,_,_

--PDVOEl7Rh1AP90jGln1mhz7x8r9
Content-Type: multipart/mixed; boundary=YliPQ9LPNEoAnDeAMiRkAjCbmed

--YliPQ9LPNEoAnDeAMiRkAjCbmed
X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRKY+VIYo35gRfFgA=

Day 1: CRUD, Links, and MIMEs • 59

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Location: /riak/cages/1
Content-Type: application/json
Link: </riak/animals/polly>; riaktag="contains", </riak/cages>; rel="up"
Etag: 6LYhRnMRrGIqsTmpE55PaU
Last-Modified: Tue, 13 Dec 2011 17:54:34 GMT

{"room" : 101}
--YliPQ9LPNEoAnDeAMiRkAjCbmed--

--PDVOEl7Rh1AP90jGln1mhz7x8r9
Content-Type: multipart/mixed; boundary=GS9J6KQLsI8zzMxJluDITfwiUKA

--GS9J6KQLsI8zzMxJluDITfwiUKA
X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly
Content-Type: application/json
Link: </riak/animals>; rel="up"
Etag: VD0ZAfOTsIHsgG5PM3YZW
Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}
--GS9J6KQLsI8zzMxJluDITfwiUKA--

--PDVOEl7Rh1AP90jGln1mhz7x8r9--

This returns the objects in the path to the final result. In other words, keep

the step.

Beyond Links

Along with Links, you can store arbitrary metadata by using the X-Riak-Meta-
header prefix. If we wanted to keep track of the color of a cage but it wasn’t

necessarily important in the day-to-day cage-managing tasks at hand, we

could mark cage 1 as having the color pink. Getting the URL’s header (the -I

flag) will return your metadata name and value.

$ curl -X PUT http://localhost:8091/riak/cages/1 \
-H "Content-Type: application/json" \
-H "X-Riak-Meta-Color: Pink" \
-H "Link: </riak/animals/polly>; riaktag=\"contains\"" \
-d '{"room" : 101}'

MIME Types in Riak

Riak stores everything as a binary-encoded value, just like normal HTTP. The

MIME type gives the binary data context—we’ve been dealing only with plain

text up until now. MIME types are stored on the Riak server but are really

just a flag to the client so that when it downloads the binary data, it knows

how to render it.

60 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We’d like our dog hotel to keep images of our guests. We need only use the

data-binary flag on the curl command to upload an image to the server and

specify the MIME type as image/jpeg. We’ll add a link back to the /animals/polly
key so we know who we are looking at.

First, create an image called polly_image.jpg and place it in the same directory

you’ve been using to issue the curl commands.

$ curl -X PUT http://localhost:8091/riak/photos/polly.jpg \
-H "Content-type: image/jpeg" \
-H "Link: </riak/animals/polly>; riaktag=\"photo\"" \
--data-binary @polly_image.jpg

Now visit the URL in a web browser, which will be delivered and rendered

exactly as you’d expect any web client-server request to function.

http://localhost:8091/riak/photos/polly.jpg

Since we pointed the image to /animals/polly, we could link walk from the image

key to Polly but not vice versa. Unlike a relational database, there is no “has

a” or “is a” rule concerning links. You link the direction you need to walk. If

we believe our use case will require accessing image data from the animals
bucket, a link should exist on that object instead (or in addition).

Day 1 Wrap-Up

We hope you’re seeing a glimmer of Riak’s potential as a flexible storage option.

So far, we’ve covered only standard key-value practice with some links thrown

in. When designing a Riak schema, think somewhere in between a caching

system and PostgreSQL. You will break up your data into different logical

classifications (buckets), and values can tacitly relate to each other. But you

will not go so far as to normalize into fine components like you would in a

relational database, since Riak performs no sense of relational joins to

recompose values.

Day 1 Homework

Find

1. Bookmark the online Riak project documentation and discover the REST

API documentation.

2. Find a good list of browser-supported MIME types.

3. Read the example Riak config dev/dev1/etc/app.config, and compare it to the

other dev configurations.

Day 1: CRUD, Links, and MIMEs • 61

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Do

1. Using PUT, update animals/polly to have a Link pointing to photos/polly.jpg.

2. POST a file of a MIME type we haven’t tried (such as application/pdf), find the

generated key, and hit that URL from a web browser.

3. Create a new bucket type called medicines, PUT a JPEG image value (with

the proper MIME type) keyed as antibiotics, and link to the animal Ace

(poor, sick puppy).

3.3 Day 2: Mapreduce and Server Clusters

Today we’ll dive into the mapreduce framework to perform more powerful

queries than the standard key-value paradigm can normally provide. We’ll

then expand on this power by including link walking with mapreduce. Finally,

we will investigate the server architecture of Riak and how it uses a novel

server layout to provide flexibility in consistency or availability, even in the

face of network partitions.

Population Script

We’ll need a bit more data in this section. To achieve that, we’ll switch to an

example using a different kind of hotel, one for people and not pets. A quick

populator script in Ruby will create data for a gigantic 10,000-room hotel.

If you are not familiar with Ruby, it is a popular general-purpose programming

language. It’s quite useful for writing quick scripts in a straightforward and

readable manner. You can learn more about Ruby in Programming Ruby: The

Pragmatic Programmer’s Guide [TH01] by Dave Thomas and Andy Hunt, as

well as online.4

You’ll also need Ruby’s package manager called RubyGems.5 With Ruby and

RubyGems installed, next install the Riak driver.6 You may also require the

json driver and can run both to make sure.

$ gem install riak-client json

Each room in our hotel will have a random capacity from one to eight people

and be of a random style such as a single room or a suite.

4. http://ruby-lang.org
5. http://rubygems.org
6. http://rubygems.org/gems/riak-client

62 • Chapter 3. Riak

http://ruby-lang.org
http://rubygems.org
http://rubygems.org/gems/riak-client
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

riak/hotel.rb

generate loads and loads of rooms with random styles and capacities
require 'rubygems'
require 'riak'
STYLES = %w{single double queen king suite}

client = Riak::Client.new(:http_port => 8091)
bucket = client.bucket('rooms')
Create 100 floors to the building
for floor in 1..100

current_rooms_block = floor * 100
puts "Making rooms #{current_rooms_block} - #{current_rooms_block + 100}"
Put 100 rooms on each floor (huge hotel!)
for room in 1...100

Create a unique room number as the key
ro = Riak::RObject.new(bucket, (current_rooms_block + room))
Randomly grab a room style, and make up a capacity
style = STYLES[rand(STYLES.length)]
capacity = rand(8) + 1
Store the room information as a JSON value
ro.content_type = "application/json"
ro.data = {'style' => style, 'capacity' => capacity}
ro.store

end
end

$ ruby hotel.rb

We’ve now populated a human hotel we’ll mapreduce against.

Introducing Mapreduce

One of Google’s greatest lasting contributions to computer science is the

popularization of mapreduce as an algorithmic framework for executing jobs

in parallel over several nodes. It is described in Google’s seminal paper7 on

the topic and has become a valuable tool for executing custom queries in the

class of partition-tolerant datastores.

Mapreduce breaks down problems into two parts. Part 1 is to convert a list

of data into another type of list by way of a map() function. Part 2 is to convert

this second list to one or more scalar values by way of a reduce() function.

Following this pattern allows a system to divide tasks into smaller components

and run them across a massive cluster of servers in parallel. We could count

up all Riak values containing {country : 'CA'} by mapping each matching docu-

ment to {count : 1} and reducing the sum of all of these counts.

7. http://research.google.com/archive/mapreduce.html

Day 2: Mapreduce and Server Clusters • 63

http://media.pragprog.com/titles/rwdata/code/riak/hotel.rb
http://research.google.com/archive/mapreduce.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

If there were 5,012 Canadian values in our dataset, the reduce result would

be {count : 5012}.

map = function(v) {
var parsedData = JSON.parse(v.values[0].data);
if(parsedData.country === 'CA')

return [{count : 1}];
else

return [{count : 0}];
}

reduce = function(mappedVals) {
var sums = {count : 0};
for (var i in mappedVals) {
sums[count] += mappedVals[i][count];

}
return [sums];

}

In one way, mapreduce is the opposite of how we normally run queries. A

Ruby on Rails system might grab data like this (via its ActiveRecord interface):

Construct a Hash to store room capacity count keyed by room style
capacity_by_style = {}
rooms = Room.all
for room in rooms
total_count = capacity_by_style[room.style]
capacity_by_style[room.style] = total_count.to_i + room.capacity

end

Room.all runs an SQL query against the backing database similar to this:

SELECT * FROM rooms;

The database sends all of the results to the app server, and the app server

code performs some action on that data. In this case, we’re looping through

each room in the hotel and then counting the total capacity for each room

style (for example, the capacity of all the suites in the hotel may be 448 guests).

This is acceptable for small datasets. But as room count grows, the system

slows as the database continues to stream each room’s data to the application.

Mapreduce runs in an inverse manner. Rather than grabbing data from the

database and running it on a client (or app server), mapreduce is a pattern

to pass an algorithm to all of the database nodes, which are then each

responsible for returning a result. Each object on the server is “mapped” to

some common key that groups the data together, and then all matching keys

are “reduced” into some single value.

64 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Node CNode BNode A

Map

3
3

3
-1

2
1

2
 =

>

$
3

5
3

3
3

-1
2

1
3

 =
>

$

1
8

3
3

3
-1

2
1

4
 =

>

$
1

0
1

4
4

4
-1

2
1

2
 =

>

$
0

4
4

4
-1

2
1

3
 =

>

$
3

2
4

4
4

-1
2

1
4

 =
>

$

1
2

5
5

5
-1

2
1

2
 =

>

$
1

2
5

5
5

-1
2

1
3

 =
>

$

9
8

5
5

5
-1

2
1

4
 =

>

$
1

9

Map Map Map Map Map Map Map Map

Reduce Reduce Reduce

Reduce

35
18

101 0
32

12 12
98

19

$154 $44 $129

$327

The map function outputs feed into the reduce outputs and then to other

reducers.

Figure 7—The map function outputs

For Riak, that means the database servers are responsible for mapping and

reducing the values on each node. Those reduced values are passed around,

where some other server (usually the requesting server) reduces those values

further, until a final result is passed to the requesting client (or Rails applica-

tion server, as the case may be).

This simple reversal is a powerful way to allow complex algorithms to run

locally on each server and return a very small result to the calling client. It’s

faster to send the algorithm to the data and then send the data to the algorithm.

In Figure 7, The map function outputs, on page 65, we can see how a bucket

of phone bills keyed by phone number may calculate the total charged against

all numbers across three servers, where each server contains all numbers

with a similar prefix.

Day 2: Mapreduce and Server Clusters • 65

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The results of map functions will populate reduce functions; however, a

combination of the results of map and previous reduce function calls populate

successive reduce functions. We’ll revisit this idea in later chapters because

it’s an important yet subtle component to the art of writing effective mapreduce

queries.

Mapreduce in Riak

Let’s create mapreduce functions for our Riak dataset that work like the

previous hotel capacity counter. A neat feature of Riak’s mapreduce is that

you can run the map() function alone and see what all the results are mid-run

(assuming you even want to run a reduce). Let’s take it slow and look at the

results for rooms 101, 102, and 103 only.

The map setting needs the language we’re using and the source code; only

then do we actually write the JavaScript map function (the function is just a

string, so we always need to escape any characters accordingly).

Using the @- command in cURL keeps the console’s standard input open

until receiving CTRL+D. This data will populate the HTTP body sent to the URL,

which we post to the /mapred command (look carefully—the URL is /mapred, not

/riak/mapred).

$ curl -X POST -H "content-type:application/json" \
http://localhost:8091/mapred --data @-
{
"inputs":[

["rooms","101"],["rooms","102"],["rooms","103"]
],
"query":[

{"map":{
"language":"javascript",
"source":
"function(v) {

/* From the Riak object, pull data and parse it as JSON */
var parsed_data = JSON.parse(v.values[0].data);
var data = {};
/* Key capacity number by room style string */
data[parsed_data.style] = parsed_data.capacity;
return [data];

}"
}}

]
}

CTRL-D

66 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The /mapred command expects valid JSON, and here we specified the form of

our mapreduce commands. We choose the three rooms we want by setting

the “inputs” value to be an array containing [bucket, key] pairs. But the real

meat of the settings is under the query value, which accepts an array of JSON

objects containing objects, keyed by map, reduce, and/or links (more on links

later).

All this does is dig down into the data (v.values[0].data), parse the value as a

JSON object (JSON.parse(...)), and return the capacity (parsed_data.capacity) keyed

by room style (parsed_data.style). You’ll get a result like this:

[{"suite":6},{"single":1},{"double":1}]

It’s just the three objects’ JSON data from rooms 101, 102, and 103.

We didn’t need to simply output the data as JSON. We could have converted

the value of each key value into anything we wanted. We dug into the body

data only but could have retrieved metadata, link information, the key, or

data. Anything is possible after that—we are mapping each key value into

some other value.

If you feel up to it, you can return the maps of all 10,000 rooms by replacing

the input-specific [bucket, key] arrays with the rooms bucket name, like this:

"inputs":"rooms"

Fair warning: it will dump a lot of data. Finally, it’s worth mentioning that

since Riak version 1.0, mapreduce functions are handled by a subsystem

called Riak Pipe. Any older systems will use the legacy mapred_system. This

should not affect you much as an end user, but it’s certainly a boost in speed

and stability.

Stored Functions

Another option Riak provides us with is to store the map function in a bucket

value. This is another example of moving the algorithm to the database. This

is a stored procedure or, more specifically, a user-defined function—of similar

philosophy to those used in relational databases for years.

$ curl -X PUT -H "content-type:application/json" \
http://localhost:8091/riak/my_functions/map_capacity --data @-
function(v) {

var parsed_data = JSON.parse(v.values[0].data);
var data = {};
data[parsed_data.style] = parsed_data.capacity;
return [data];

}

Day 2: Mapreduce and Server Clusters • 67

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

With your function safely stored, we’ll run the function by pointing to the new

bucket and key containing the function.

$ curl -X POST -H "content-type:application/json" \
http://localhost:8091/mapred --data @-
{
"inputs":[

["rooms","101"],["rooms","102"],["rooms","103"]
],
"query":[

{"map":{
"language":"javascript",
"bucket":"my_functions",
"key":"map_capacity"

}}
]

}

You should receive the same results you received by putting the JavaScript

source inline.

Built-in Functions

You can use some of Riak’s built-in functions attached to the JavaScript

object Riak. If you run the following code, your room objects will map the values

into JSON and return them. The Riak.mapValuesJson function returns values as

JSON.

curl -X POST http://localhost:8091/mapred \
-H "content-type:application/json" --data @-
{
"inputs":[

["rooms","101"],["rooms","102"],["rooms","103"]
],
"query":[

{"map":{
"language":"javascript",
"name":"Riak.mapValuesJson"

}}
]

}

Riak provides more of these in a file named mapred_builtins.js, which you can

find online (or, deep in the code). You can also use this syntax to call your

own built-in functions, which is something we’ll investigate tomorrow.

Reducing

Mapping is useful, but you’re limited to converting individual values into

other individual values. Performing some sort of analysis over that set of data,

68 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

even something as simple as counting the records, requires another step.

This is where reduce comes into play.

The SQL/Ruby example that we looked at earlier (in Introducing Mapreduce,

on page 63) showed how each value could be iterated over and how capacity

was totaled for each style of room. We will perform this in our reduce function

in JavaScript.

Most of the command we pass to /mapred will be the same. This time, we add

the reduce function.

$ curl -X POST -H "content-type:application/json" \
http://localhost:8091/mapred --data @-
{

"inputs":"rooms",
"query":[

{"map":{
"language":"javascript",
"bucket":"my_functions",
"key":"map_capacity"

}},
{"reduce":{
"language":"javascript",
"source":

"function(v) {
var totals = {};
for (var i in v) {
for(var style in v[i]) {

if(totals[style]) totals[style] += v[i][style];
else totals[style] = v[i][style];

}
}
return [totals];

}"
}}

]
}

Running this on all rooms should return total counts of capacity, keyed by

room style.

[{"single":7025,"queen":7123,"double":6855,"king":6733,"suite":7332}]

Your totals won’t match the previous exactly, since we randomly generated

room data.

Key Filters

A rather recent addition to Riak is the concept of key filters. A key filter is a

collection of commands that process each key before executing mapreduce

Day 2: Mapreduce and Server Clusters • 69

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Reducer Patterns

It’s easier to write a reduce function if it follows the same pattern as your map function.

Meaning, if you map a single value as...

[{name:'Eric', count:1}]

...then the result of reduce should be like this:

[{name:'Eric', count:105}, {name:'Jim', count:215}, …]

This certainly isn’t a requirement; it’s just practical. Since reducers can feed into

other reducers, you don’t know whether the values you receive on any particular

reduce function call will be populated by map output, reduce output, or a combination

of both. However, if they follow the same object pattern, you don’t need to care; they’re

all the same! Otherwise, your reduce function must always check for the type of data

it’s receiving and make a decision accordingly.

on it. This shortcut saves the operation the pain of loading unwanted values.

In the following example, we’ll convert each room number key into an integer

and check that it’s less than 1,000 (one of the first ten floors; any room over

the tenth floor will be ignored).

In our mapreduce to return room capacity, replace “inputs”:”rooms”, with the

following block (it must end with a comma):

"inputs":{
"bucket":"rooms",
"key_filters":[["string_to_int"], ["less_than", 1000]]

},

You should notice two things: the query ran much faster (since we processed

only the values we needed), and the totals were fewer (since we added only

the first ten floors).

Mapreduce is a powerful tool for bundling data and performing some overar-

ching analysis on it. It’s a concept we’ll revisit often in this book, but the core

concept is the same. Riak has one slight tweak to the basic mapreduce form,

and that’s the addition of links.

Link Walking with Mapreduce

Yesterday we introduced link walking. Today we’ll look at how to do the same

thing using mapreduce. The query section has one more value option along

with map and reduce. It’s link.

Let’s return to our cages bucket from yesterday’s dog hotel example and write

a mapper that returns only cage 2 (remember, the one housing Ace the dog).

70 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl -X POST -H "content-type:application/json" \
http://localhost:8091/mapred --data @-
{

"inputs":{
"bucket":"cages",
"key_filters":[["eq", "2"]]

},
"query":[

{"link":{
"bucket":"animals",
"keep":false

}},
{"map":{
"language":"javascript",
"source":

"function(v) { return [v]; }"
}}

]
}

Although we ran the mapreduce query against the cages bucket, this will

return Ace the dog’s information, because he was linked to cage 2.

[{
"bucket":"animals",
"key":"ace",
"vclock":"a85hYGBgzmDKBVIsrDJPfTKYEhnzWBn6LfiP80GFWVZay0KF5yGE2ZqTGPmCLiJLZAEA",
"values":[{

"metadata":{
"Links":[],
"X-Riak-VTag":"4JVlDcEYRIKuyUhw8OUYJS",
"content-type":"application/json",
"X-Riak-Last-Modified":"Tue, 05 Apr 2011 06:54:22 GMT",
"X-Riak-Meta":[]},

"data":"{\"nickname\" : \"The Wonder Dog\", \"breed\" : \"German Shepherd\"}"
}]

}]

Both data and metadata (which would normally be returned in the HTTP

header) appear under a values array.

Put map, reduce, link walking, and key filters together, and you can execute

arbitrary queries on a wide array of Riak keys. It’s considerably more efficient

than scanning all data from a client. Since these queries are generally run

across several servers simultaneously, you should never have to wait long.

But if you really cannot wait, a query has one more option: timeout. Set timeout
to a value in milliseconds (the default is "timeout": 60000, or 60 seconds), and

if the query does not complete in the allotted time, it will abort.

Day 2: Mapreduce and Server Clusters • 71

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Of Consistency and Durability

Riak server architecture removes single points of failure (all nodes are peers)

and allows you to grow or shrink the cluster at will. This is important when

dealing with large-scale deployments, since it allows your database to remain

available even if several nodes fail or are otherwise unresponsive.

Distributing data across several servers is saddled with an inherent problem.

If you want your database to continue running when a network partition

occurs (meaning, some messages were lost), it means you must make a trade-

off. Either you can remain available to server requests or you can refuse

requests and ensure the consistency of your data. It is not possible to create

a distributed database that is fully consistent, available, and partition tolerant.

You can have only two (partition tolerant and consistent, partition tolerant

and available, or consistent and available but not distributed). This is known

as the CAP theorem (Consistency, Availability, Partition tolerance). See

Appendix 2, The CAP Theorem, on page 317 for more details, but suffice to say

it is a problem in system design.

But the theorem has a loophole. The reality is that at any moment in time you

cannot be consistent, available, and partition tolerant. Riak takes advantage

of this fact by allowing you to trade availability for consistency on a per-request

basis. We’ll first look at how Riak clusters its servers and then how to tune

reads and writes to interact with the cluster.

The Riak Ring

Riak divides its server configuration into partitions denoted by a 160-bit

number (that’s 2^160). The Riak team likes to represent this massive integer

as a circle, which they call the ring. When a key is hashed to a partition, the

ring helps direct which Riak servers store the value.

One of the first decisions you’ll make when setting up a Riak cluster is how

many partitions you’d like. Let’s consider the case where you have 64 parti-

tions (Riak’s default). If you divide those sixty-four partitions across three

nodes (or, servers), then Riak will give each node twenty-one or twenty-two

partitions (64 / 3). Each partition is called a virtual node, or vnode. Each

Riak service counts around the ring on boot, claiming partitions in turn until

all vnodes are claimed, as shown in Figure 8, “The Riak ring” of sixty-four

vnodes, assigned across three physical nodes, on page 73.

Node A manages vnodes 1, 4, 7, 10...63. These vnodes are mapped to partitions

of the 160-bit ring. If you view the status of your three development servers

72 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Node
A

Node
A

Node
B

Node
B

2
0

2
160 2

1
numbersincreasing

2
80

Node
C

N=3

Q=64

vnode

1

vnode
2

vnode3 vnode4

v
n
o
d
e

5

vn
ode

64

..
.

...

vnode

32...

Node
B

Node
B

Figure 8—“The Riak ring” of sixty-four vnodes, assigned across three physical nodes

(remember curl -H "Accept: text/plain" http://localhost:8091/stats from yesterday), you

can see a line like this:

"ring_ownership": \
"[{'dev3@127.0.0.1',21},{'dev2@127.0.0.1',21},{'dev1@127.0.0.1',22}]"

The second number of each object is the number of vnodes each node owns.

They will total sixty-four (21 + 21 + 22).

Day 2: Mapreduce and Server Clusters • 73

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Each vnode represents a range of hashed keys. When we insert the room data

for key 101, it may get hashed into the vnode 2 range, so then the key-value

object gets stored onto Node B. The benefit is that if we need to find which

server the key lives on, Riak just hashes the key to find the corresponding

vnode. Specifically, Riak will convert the hash into a list of potential vnodes

and use the first value.

Nodes/Writes/Reads

Riak allows us to control reads and writes into the cluster by altering three

values: N, W, and R. N is the number of nodes a write ultimately replicates

to, in other words, the number of copies in the cluster. W is the number of

nodes that must be successfully written to before a successful response. If

W is less than N, a write will be considered successful even while Riak is still

copying the value. Finally, R is the number of nodes required to read a value

successfully. If R is greater than the number of copies available, the request

will fail.

Let’s investigate each of these in more detail.

When we write an object in Riak, we have the choice to replicate that value

across multiple nodes. The benefit here is that if one server goes down, then

a copy is available on another. The n_val bucket property stores the number

of nodes to replicate a value to (the N value); it’s 3 by default. We can alter a

bucket’s properties by putting a new value in the props object. Here we set

animals to have an n_val of 4:

$ curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"n_val":4}}'

N is simply the total number of nodes that will eventually contain the correct

value. This doesn’t mean we must wait for the value to replicate to all of those

nodes in order to return. Sometimes we just want our client to return imme-

diately and let Riak replicate in the background. Or sometimes we want to

wait until Riak has replicated to all N nodes (just to be safe) before returning.

We can set the W value to the number of successful writes that must occur

before our operation is considered a success. Although we’re writing to four

nodes eventually, if we set W to 2, a write operation will return after only two

copies are made. The remaining two will replicate in the background.

curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"w":2}}'

74 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Finally, we can use the R value. R is the number of nodes that must be read

in order to be considered a successful read. You can set a default R like we

did earlier with n_val and w.

curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"r":3}}'

But Riak provides a more flexible solution. We may choose the number of

nodes we want to read by setting an r parameter in the URL per request.

curl http://localhost:8091/riak/animals/ace?r=3

You may be asking yourself why we would ever need to read from more than

one node. After all, values we write will eventually be replicated to N nodes,

and we can read from any of them. We find the idea is easier to visualize.

Let’s say we set our NRW values to {"n_val":3, "r":2, "w":1}, like Figure 9, Eventual

consistency: W+R <= N, on page 76. This makes our system more responsive

on writes, since only one node needs to be written before returning. But there

is a chance that another operation could perform a read before the nodes had

a chance to synchronize. Even if we read from two nodes, it’s possible we

could receive an old value.

One way to be certain we have the most current value is to set W=N and R=1

like this: {"n_val":3, "r":1, "w":3} (see Figure 10, Consistency by writes: W=N, R=1,

on page 76). In essence, this is what relational databases do; they enforce

consistency by ensuring a write is complete before returning. We can certainly

read faster, since we need to access only one node. But this can really slow

down writes.

Or you could just write to a single node but read from all of them. This would

be setting W=1 and R=N like this: {"n_val":3, "r":3, "w":1} (see Figure 11, Consis-

tency by reads: W=1, R=N, on page 76). Although you may read a few old

values, you are guaranteed to retrieve the most recent value, too. You’ll just

have to resolve which one that is (using a vector clock, which we’ll cover

tomorrow). Of course, this has the opposite problem as shown earlier and

slows down reads.

Or you could set W=2 and R=2 as {"n_val":3, "r":2, "w":2} (see Figure 12, Consis-

tency by quorum: W+R > N, on page 77). This way, you need only write to more

than half of the nodes and read from more than half, but you still get the

benefits of consistency while sharing the time delays between reads and

writes. This is called a quorum and is the minimum amount to keep consistent

data.

Day 2: Mapreduce and Server Clusters • 75

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

version: B version: A version: A

R=2W=1

N=3

version: B version: A

Figure 9—Eventual consistency: W+R <= N

version: B version: B version: B

R=1W=N

N=3

version: B version: B

Figure 10—Consistency by writes: W=N, R=1

version: B version: A version: A

R=NW=1

N=3

version: B version: [B, A]

Figure 11—Consistency by reads: W=1, R=N

76 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

version: B version: B version: A

R=2W=2

N=3

version: B version: [B, A]

Figure 12—Consistency by quorum: W+R > N

You are free to set your R or W to any values between 1 and N but will gener-

ally want to stick with one, all, or a quorum. These are such common values

that R and W can accept string values representing them, defined in the fol-

lowing table:

DefinitionTerm

This is just the value 1. Setting W or R means only one node need

respond for the request to succeed.

One

This is the same value as N. Setting W or R to this means all repli-

cated nodes must respond.

All

This equals setting the value to N/2+1. Setting W or R means most

nodes must respond to succeed.

Quorum

Whatever the W or R value is set for the bucket. Generally defaults

to 3.

Default

In addition to the previous values as valid bucket properties, you can also

use them as query parameter values.

curl http://localhost:8091/riak/animals/ace?r=all

The danger with requiring reading from all nodes is that if one goes down,

Riak may be unable to fulfill your request. As an experiment, let’s shut down

dev server 3.

$ dev/dev3/bin/riak stop

Now if we attempt to read from all nodes, there’s a good chance our request

will fail (if it doesn’t, try shutting down dev2 as well, or possibly shut down

dev1 and read from port 8092 or 8093; we cannot control what vnodes Riak

writes to).

Day 2: Mapreduce and Server Clusters • 77

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl -i http://localhost:8091/riak/animals/ace?r=all
HTTP/1.1 404 Object Not Found
Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)
Date: Thu, 02 Jun 2011 17:18:18 GMT
Content-Type: text/plain
Content-Length: 10

not found

If your request cannot be fulfilled, you’ll get a 404 code (Object Not Found),

which makes sense in the scope of the request. That object cannot be found,

because there aren’t enough copies to fulfill the URL request. This isn’t a good

thing, of course, so this kicks Riak to do a read repair: to request N replications

of the key across the servers still available. If you attempt to access the same

URL again, you’ll get the key’s value rather than another 404. The online Riak

docs have an excellent example8 using Erlang.

But a safer play is to require a quorum (data from most, but not all, vnodes).

curl http://localhost:8091/riak/animals/polly?r=quorum

As long as you write to a quorum, which you can force on a per-write basis,

your reads should be consistent. Another value you can set on-the-fly is W.

If you don’t want to wait for Riak to write to any nodes, you can set W to 0

(zero), which means “I trust you’ll write it, Riak; just return.”

curl -X PUT http://localhost:8091/riak/animals/jean?w=0 \
-H "Content-Type: application/json"
-d '{"nickname" : "Jean", "breed" : "Border Collie"}' \

All this power aside, much of the time you’ll want to stick with the default

values unless you have a good reason. Logs are great for setting W=0, and

you can set W=N and R=1 for seldom written data for extra-fast reads.

Writes and Durable Writes

We’ve been keeping a secret from you. Writes in Riak aren’t necessarily

durable, meaning they aren’t immediately written to disk. Although a node

write may be considered successful, it’s still possible that a failure could

occur where a node loses data; even if W=N, servers may fail and lose data.

A write is buffered in memory for a moment before being stored on disk, and

that split millisecond is a danger zone.

That’s the bad news. The good news is Riak has provided us with a separate

setting named DW for durable write. This is slower but further reduces risk,

8. http://wiki.basho.com/Replication.html

78 • Chapter 3. Riak

http://wiki.basho.com/Replication.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

since Riak will not return a success until after the object is written to disk

on the given number of nodes. Just like we did with writes, you can set this

property on the bucket. Here we’re setting dw to be one to be certain at least

one node has stored our data.

$ curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"dw":"one"}}'

Or, if you like, you can override this on a per-write basis using the dw query

parameter in the URL.

A Note on Hinted Handoff

Attempting to write to nodes that aren’t available still succeeds with a “204

No Content.” This is because Riak will write the value to a nearby node that

holds that data until such a time that it can hand it to the unavailable node.

This is a fantastic safety net in the short-term, since if a server goes down,

another Riak node will take over. Of course, if all of server A’s requests get

routed to server B, then server B is now dealing with double the load. There

is a danger this will cause B to fail, which might spread to C and D, and so

on. This is known as a cascading failure, and it’s rare but possible. Consider

this a fair warning not to tax every Riak server at full capacity, since you

never know when one will have to pick up the slack.

Day 2 Wrap-Up

Today you saw two of the biggest topics in Riak: the powerful mapreduce

method and its flexible server clustering ability. Mapreduce is used by many

of the other databases in this book, so if you still have any questions about

it, we recommend rereading the first part of Day 2 and checking out the Riak

online documentation9 and Wikipedia10 articles.

Day 2 Homework

Find

1. Read the online Riak mapreduce documentation.

2. Find the Riak contrib functions repository, with lots of prebuilt mapreduce

functions.

3. Find the online documentation for a complete list of key filters, which

range from converting strings to_upper to finding numerical values between

9. http://wiki.basho.com/MapReduce.html
10. http://en.wikipedia.org/wiki/MapReduce

Day 2: Mapreduce and Server Clusters • 79

http://wiki.basho.com/MapReduce.html
http://en.wikipedia.org/wiki/MapReduce
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

some range to even some simple Levenshtein distance string matches and

logical and/or/not operations.

Do

1. Write map and reduce functions against the rooms bucket to find the total

guest capacity per floor.

2. Extend the previous function with a filter to find the capacities only for

rooms on floors 42 and 43.

3.4 Day 3: Resolving Conflicts and Extending Riak

Today we delve into some of the edges of Riak. We’ve seen how Riak is a

simple key-value database across a cluster of servers. When dealing with

multiple nodes, data conflicts can occur, and sometimes we have to resolve

them. Riak provides a mechanism to sort out which writes happened most

recently by way of vector clocks and sibling resolution.

We’ll also see how we can validate incoming data by way of pre- and post-

commit hooks. We’ll extend Riak into our own personal search engine with

Riak search (with the SOLR interface) and faster queries with secondary

indexing.

Resolving Conflicts with Vector Clocks

A vector clock11 is a token that distributed systems like Riak use to keep the

order of conflicting key-value updates intact. It’s important to keep track of

which updates happen in what order, since several clients may connect to

different servers, and while one client updates one server, another client

updates another server (you can’t control which server you write to).

You may think “just timestamp the values and let the last value win,” but in

a server cluster this works only if all server clocks are perfectly synchronous.

Riak makes no such requirement, since keeping clocks synchronized is at

best difficult and in many cases an impossible requirement. Using a centralized

clock system would be anathema to the Riak philosophy, since it presents a

single point of failure.

Vector clocks help by tagging each key-value event (create, update, or delete)

with which client made the change, in which order. This way, the clients, or

application developer, can decide who wins in the case of conflict. If you are

11. http://en.wikipedia.org/wiki/Vector_clock

80 • Chapter 3. Riak

http://en.wikipedia.org/wiki/Vector_clock
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

familiar with version control systems like Git or Subversion, this is not dis-

similar to resolving version conflicts when two people change the same file.

Vector Clocks in Theory

Let’s say that your dog hotel is doing well so you must start being more

selective of the clientele. To help make the best decision, you’ve gathered a

panel of three animal experts to help decide which new dogs are a good fit.

They give each dog a score from 1 (not a good fit) to 4 (a perfect candidate).

All of these panelists—named Bob, Jane, and Rakshith—must reach a

unanimous decision.

Each panelist has their own client connecting to a database server, and each

client stamps a unique client ID onto each request. This client ID is used to

build the vector clock, as well as keep track of the last updating client in the

object header. Let’s look at a simple pseudocode example and later try the

example in Riak.

Bob creates the object first, with a respectable score of 3 for a new puppy

named Bruiser. The vector clock encodes his name and the version 1.

vclock: bob[1]
value: {score : 3}

Jane pulls this record and gives Bruiser a score of 2. The vclock created for

her update succeeded Bob’s, so her version 1 is added to the end of the vector.

vclock: bob[1], jane[1]
value: {score : 2}

Simultaneously, Rakshith pulled the version that Bob created but not Jane’s.

He loved Bruiser and set a score of 4. Just like Jane’s, his client name is

appended to the end of the vector clock as version 1.

vclock: bob[1], rakshith[1]
value: {score : 4}

Later that day, Jane (as the panel chair) rechecks the scores. Since Rakshith’s

update vector did not occur after Jane’s but rather alongside hers, the updates

are in conflict and need to be resolved. She receives both values, and it’s up

to her to resolve them.

vclock: bob[1], jane[1]
value: {score : 2}

vclock: bob[1], rakshith[1]
value: {score : 4}

She chooses a middle value so updates the score to 3.

Day 3: Resolving Conflicts and Extending Riak • 81

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

vclock: bob[1], rakshith[1], jane[2]
value: {score : 3}

Having been resolved, anyone who pulls a request after this point will get this

most recent value.

Vector Clocks in Practice

Let’s run through the previous example scenario using Riak.

For this example we want to see all conflicting versions so we can resolve

them manually. Let’s keep multiple versions by setting the allow_mult property

on the animals bucket. Any key with multiple values are called sibling values.

$ curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"allow_mult":true}}'

Here, Bob puts Bruiser in the system with his chosen score of 3 and a client

ID of bob.

$ curl -i -X PUT http://localhost:8091/riak/animals/bruiser \
-H "X-Riak-ClientId: bob" \
-H "Content-Type: application/json" \
-d '{"score" : 3}'

Jane and Rakshith both pull Bruiser’s data that Bob created (you’ll have

much more header information; we’re just showing the vector clock here).

Note that Riak encoded Bob’s vclock, but under the covers it’s a client and a

version (and timestamp, so yours will be different from the one shown).

$ curl -i http://localhost:8091/riak/animals/bruiser?return_body=true
X-Riak-Vclock: a85hYGBgzGDKBVIs7NtEXmUwJTLmsTI8FMs5zpcFAA==

{"score" : 3}

Jane makes her update to score 2 and includes the most recent vector clock

she received from Bob’s version. This is a signal to Riak that her value is an

update of Bob’s version.

$ curl -i -X PUT http://localhost:8091/riak/animals/bruiser \
-H "X-Riak-ClientId: jane" \
-H "X-Riak-Vclock: a85hYGBgzGDKBVIs7NtEXmUwJTLmsTI8FMs5zpcFAA==" \
-H "Content-Type: application/json" \
-d '{"score" : 2}'

Since Jane and Rakshith pulled Bob’s data at the same time, he also submits

an update (of score 4) using Bob’s vector clock.

82 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl -i -X PUT http://localhost:8091/riak/animals/bruiser \
-H "X-Riak-ClientId: rakshith" \
-H "X-Riak-Vclock: a85hYGBgzGDKBVIs7NtEXmUwJTLmsTI8FMs5zpcFAA==" \
-H "Content-Type: application/json" \
-d '{"score" : 4}'

When Jane rechecks the score, she sees not a value, as expected, but rather

an HTTP code for multiple choices and a body containing two “sibling” values.

$ curl http://localhost:8091/riak/animals/bruiser?return_body=true
Siblings:
637aZSiky628lx1YrstzH5
7F85FBAIW8eiD9ubsBAeVk

Riak stored these versions in a multipart format, so she can retrieve the entire

object by accepting that MIME type.

$ curl -i http://localhost:8091/riak/animals/bruiser?return_body=true \
-H "Accept: multipart/mixed"

HTTP/1.1 300 Multiple Choices
X-Riak-Vclock: a85hYGBgyWDKBVHs20Re...OYn9XY4sskQUA
Content-Type: multipart/mixed; boundary=1QwWn1ntX3gZmYQVBG6mAZRVXlu
Content-Length: 409

--1QwWn1ntX3gZmYQVBG6mAZRVXlu
Content-Type: application/json
Etag: 637aZSiky628lx1YrstzH5

{"score" : 4}
--1QwWn1ntX3gZmYQVBG6mAZRVXlu
Content-Type: application/json
Etag: 7F85FBAIW8eiD9ubsBAeVk

{"score" : 2}
--1QwWn1ntX3gZmYQVBG6mAZRVXlu--

Notice that the “siblings” shown earlier are HTTP etags (which Riak called

vtags) to specific values. As a side note, you can use the vtag parameter in

the URL to retrieve only that version: curl http://localhost:8091/riak/animals/bruis-
er?vtag=7F85FBAIW8eiD9ubsBAeVk will return {"score" : 2}. Jane’s job now is to use

this information to make a reasonable update. She decides to average the

two scores and update to 3, using the vector clock given to resolve the conflict.

$ curl -i -X PUT http://localhost:8091/riak/animals/bruiser?return_body=true \
-H "X-Riak-ClientId: jane" \
-H "X-Riak-Vclock: a85hYGBgyWDKBVHs20Re...OYn9XY4sskQUA" \
-H "Content-Type: application/json" \
-d '{"score" : 3}'

Day 3: Resolving Conflicts and Extending Riak • 83

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Now when Bob and Rakshith retrieve bruiser’s information, they’ll get the

resolved score.

$ curl -i http://localhost:8091/riak/animals/bruiser?return_body=true
HTTP/1.1 200 OK
X-Riak-Vclock: a85hYGBgyWDKBVHs20Re...CpQmAkonCcHFM4CAA==

{"score" : 3}

Any future requests will receive score 3.

Time Keeps on Growing

You may have noticed that the vector clock keeps growing as more clients

update values. This is a fundamental problem with vector clocks, which the

Riak developers understood. They extended vector clocks to be “pruned” over

time, thus keeping their size small. The rate at which Riak prunes old vector

clock values are bucket properties, which can be viewed (along with all other

properties) by reading the bucket.

$ curl http://localhost:8091/riak/animals

You’ll see some of the following properties, which dictate how Riak will prune

the clock before it gets too large.

"small_vclock":10,"big_vclock":50,"young_vclock":20,"old_vclock":86400

small_vclock and big_vclock determine the minimum and maximum length

of the vector, while young_vclock and old_vclock describe the minimum and

maximum age of a vclock before pruning happens.

You can read more about vector clocks and pruning online.12

Pre/Post-commit Hooks

Riak can transform data before or after saving an object, by way of hooks.

Pre- and post-commit hooks are simply JavaScript (or Erlang) functions that

get executed before or after a commit occurs. Pre-commit functions can

modify the incoming object in some way (and even cause it to fail), while post-

commits can respond to a successful commit (such as writing to a log or

sending an email to something).

Each server has an app.config file, which needs to reference the location of any

custom JavaScript code. First open your file for server dev1, under

dev/dev1/etc/app.config, and find the line containing js_source_dir. Replace it with

any directory path you want (note that the line may be commented out with

12. http://wiki.basho.com/Vector-Clocks.html

84 • Chapter 3. Riak

http://wiki.basho.com/Vector-Clocks.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

a % character, so uncomment it first by removing the character). Our line

looks like this:

{js_source_dir, "~/riak/js_source"},

You’ll need to make this change in triplicate, once for each dev server.

Let’s create a validator that runs pre-commit to parse incoming data, ensures

that a score exists, and ensures that the score is between 1 and 4. If any of

those criteria fail, an error will be thrown, and our validator will return the

JSON object containing only {"fail" : message}, where message is whatever we

want to relay to the user. If the data is as expected, you need return only the

object, and Riak will store the value.

riak/my_validators.js

function good_score(object) {
try {

/* from the Riak object, pull data and parse it as JSON */
var data = JSON.parse(object.values[0].data);
/* if score is not found, fail here */
if(!data.score || data.score === '') {

throw('Score is required');
}
/* if score is not within range, fail here */
if(data.score < 1 || data.score > 4) {

throw('Score must be from 1 to 4');
}

} catch(message) {
/* Riak expects the following JSON if a failure occurs */
return { "fail" : message };

}
/* No problems found, so continue */
return object;

}

Store this file in the js_source_dir directory you set. Since we’re making core

server changes, we need to restart all of the development servers using the

restart argument.

$ dev/dev1/bin/riak restart
$ dev/dev2/bin/riak restart
$ dev/dev3/bin/riak restart

Riak will scan for any files ending in .js and load those into memory. You can

now set a bucket’s precommit property to use the JavaScript function name (not

the filename).

curl -X PUT http://localhost:8091/riak/animals \
-H "content-type:application/json" \
-d '{"props":{"precommit":[{"name" : "good_score"}]}}'

Day 3: Resolving Conflicts and Extending Riak • 85

http://media.pragprog.com/titles/rwdata/code/riak/my_validators.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Let’s test our new hook by setting a score greater than 4. Our pre-commit

hook enforces that a score must be from 1 to 4, so the following will fail:

curl -i -X PUT http://localhost:8091/riak/animals/bruiser \
-H "Content-Type: application/json" -d '{"score" : 5}'
HTTP/1.1 403 Forbidden
Content-Type: text/plain
Content-Length: 25

Score must be 1 to 4

You’ll get a 403 Forbidden code, as well as a plain-text error message that

was returned under the “fail” field. If you GET the bruiser value, its score remains

3. Try setting the score to 2, and you’ll have more success.

Post-commit is similar to pre-commit but happens after the commit is suc-

cessful. We’re skipping it here, since you can write postcommit hooks only

in Erlang. If you’re an Erlang developer, the online docs can help guide you

through installing your own modules. In fact, you can write Erlang mapreduce

functions, too. But our Riak journey continues to other prebuilt modules and

extensions.

Extending Riak

Riak ships with several extensions that are turned off by default yet add new

behaviors you may find useful.

Searching Riak

Riak search scans data inside your Riak cluster and builds an inverted index

against it. You may recall the term inverted index from the PostgreSQL

chapter (the GIN index stands for Generalized Inverted Index). Just like GIN,

the Riak index exists to make many varieties of string searching fast and

efficient but in a distributed manner.

Using Riak search requires enabling it in your app.config files and setting the

Riak search config to enabled, true.

%% Riak Search Config
{riak_search, [
%% To enable Search functionality set this 'true'.
{enabled, true}

]},

If you’re familiar with search engine solutions such as Lucene, this part should

be a cakewalk. If not, it’s easy to get the hang of it.

86 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We need to let the search know when we change values in the database by

way of a pre-commit hook. You can install riak_search_kv_hook, Erlang module’s

precommit function, in a new animals bucket with the following command:

$ curl -X PUT http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"props":{"precommit":
[{"mod": "riak_search_kv_hook","fun":"precommit"}]}}'

Calling curl http://localhost:8091/riak/animals will show that the hook has been added

to the animals bucket’s precommit property. Now, when you put data that is

encoded as JSON or XML into the animals bucket, Riak search will index the

field names and values. Let’s upload a few animals.

$ curl -X PUT http://localhost:8091/riak/animals/dragon \
-H "Content-Type: application/json" \
-d '{"nickname" : "Dragon", "breed" : "Briard", "score" : 1 }'
$ curl -X PUT http://localhost:8091/riak/animals/ace \
-H "Content-Type: application/json" \
-d '{"nickname" : "The Wonder Dog", "breed" : "German Shepherd", "score" : 3 }'
$ curl -X PUT http://localhost:8091/riak/animals/rtt \
-H "Content-Type: application/json" \
-d '{"nickname" : "Rin Tin Tin", "breed" : "German Shepherd", "score" : 4 }'

There are several options for querying this data, but let’s use Riak’s HTTP

Solr interface (which implements the Apache Solr13 search interface). To search

/animals, we access /solr, followed by the bucket name /animals and the /select
command. The parameters specify the search terms. Here we select any breed

that contains the word Shepherd.

$ curl http://localhost:8091/solr/animals/select?q=breed:Shepherd
<?xml version="1.0" encoding="UTF-8"?>
<response>

<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">1</int>
<lst name="params">
<str name="indent">on</str>
<str name="start">0</str>
<str name="q">breed:Shepherd</str>
<str name="q.op">or</str>
<str name="df">value</str>
<str name="wt">standard</str>
<str name="version">1.1</str>
<str name="rows">2</str>

</lst>
</lst>

13. http://lucene.apache.org/solr/

Day 3: Resolving Conflicts and Extending Riak • 87

http://lucene.apache.org/solr/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

<result name="response" numFound="2" start="0" maxScore="0.500000">
<doc>

<str name="id">ace</str>
<str name="breed">German Shepherd</str>
<str name="nickname">The Wonder Dog</str>
<str name="score">3</str>

</doc>
<doc>

<str name="id">rtt</str>
<str name="breed">German Shepherd</str>
<str name="nickname">Rin Tin Tin</str>
<str name="score">4</str>

</doc>
</result>

</response>

If you prefer that the query returns JSON, add the parameter wt=json. You can

combine multiple parameters in the query by separating them with a space

(or %20 in URL-encoded form) and setting the q.op parameter with the value

and. To find a breed with a nickname containing the word rin and a breed of

shepherd, perform the following:

$ curl http://localhost:8091/solr/animals/select\
?wt=json&q=nickname:rin%20breed:shepherd&q.op=and

Riak search allows for more colorful query syntaxes, such as wildcards (using

* to match multiple characters and using ? to match one character), though

only at the end of the term. The query nickname:Drag* would match Dragon, but

nickname:*ragon would not match. Range searches are also nice options:

nickname:[dog TO drag]

More-complex queries based on boolean operators, grouping, and proximity

searches are available. Beyond that, you can specify custom data encodings,

create custom indexes, and even choose between them when you search. You

can find other URL parameters in the following table:

DefaultDescriptionParam

The given query stringq

orQuery terms are either and or orq.op

noneField name to sort bysort

0The first object in the matching list to returnstart

20The max number of results to returnrows

xmlOutput either xml or jsonwt

Specifies the index to useindex

88 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

There is plenty more to learn about the Riak search extension, far more than

we can reasonably cover here. Ideally you’ve gotten a feel for its power. It’s a

clear choice if you plan to provide search functionality for a large web appli-

cation, but it also deserves a second look if you need a lot of simple ad hoc

querying.

Indexing Riak

As of version 1.0, Riak supports secondary indexes. These are similar to the

indexes we saw in PostgreSQL but with a slight twist. Rather than indexing

on a specific column or columns of data, Riak allows you to index on metadata

attached to the header of the object.

Once again, we must make a change to the app.config file. Switch the storage

back end from bitcask to eLevelDB, as shown here, and then restart the

servers:

{riak_kv, [
%% Storage_backend specifies the Erlang module defining the
%% storage mechanism that will be used on this node.
{storage_backend, riak_kv_eleveldb_backend},

eLevelDB is an Erlang implementation of the Google key-value store called

LevelDB.14 This new back-end implementation allowed for secondary indexing

in Riak to take place.

With our system ready to go, we can index any object with any number of

header tags known as an index entries that define how an object is indexed.

The field names begin with x-riak-index- and end with either _int or _bin for integer

or binary (anything not an integer) values, respectively.

To add Blue II, the Butler Bulldogs mascot, we’d like to index by the univer-

sity name that this dog is a mascot for (butler), as well as the version number

(Blue 2 is the second bulldog mascot).

$ curl -X PUT http://localhost:8098/riak/animals/blue
-H "x-riak-index-mascot_bin: butler"
-H "x-riak-index-version_int: 2"
-d '{"nickname" : "Blue II", "breed" : "English Bulldog"}'

You may have noticed that the indexes have nothing to do with the value

stored in the key. This is actually a powerful feature, since it allows us to

index data orthogonal to any data we may store. If you want to store a video

as a value, you may still index it.

14. http://code.google.com/p/leveldb/

Day 3: Resolving Conflicts and Extending Riak • 89

http://code.google.com/p/leveldb/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Getting the value by the index is fairly straightforward.

$ curl http://localhost:8098/riak/animals/index/mascot_bin/butler

Though secondary indexing in Riak is a big step in the right direction, it still

has a way to go. If you want to index dates, for example, you must store a

string that can be sorted in order—such as "YYYYMMDD". Storing any floating

digits requires to you first multiply the float by some significant precision

multiple of 10 and then store it as an integer—such as 1.45 * 100 == 145.

Your client is responsible for doing this conversion. But between mapreduce,

Riak search, and now secondary indexing, Riak is providing many tools to

loosen up the classic constraints of the key-value store design by other means

of value access beyond simple keys.

Day 3 Wrap-Up

We finished Riak with some of its more advanced concepts: how to deal with

version conflicts by using vector clocks and how to ensure or modify incoming

data with commit hooks. We also dug into using a couple Riak extensions:

activating Riak search and indexing data to allow for a little more query flex-

ibility.

Using these concepts along with mapreduce from Day 2 and Links from Day

1, you can create a flexible combination of tools far beyond your standard

key-value store.

Day 3 Homework

Find

1. Find the Riak function contrib list repository (hint: it’s in GitHub).

2. Read more about vector clocks.

3. Learn to create your own index configuration.

Do

1. Create your own index that defines the animals schema. Specifically, set

the score field to integer type, and query it as a range.

2. Start up a small cluster of three servers (such as three laptops or EC215

instances), and install Riak on each. Set up the servers as a cluster. Install

the Google stock dataset, located on the Basho website.16

15. http://aws.amazon.com/ec2/
16. http://wiki.basho.com/Loading-Data-and-Running-MapReduce-Queries.html

90 • Chapter 3. Riak

http://aws.amazon.com/ec2/
http://wiki.basho.com/Loading-Data-and-Running-MapReduce-Queries.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

3.5 Wrap-Up

Riak is the first NoSQL style database we’ve covered. It is a distributed, data-

replicating, enhanced key-value store without a single point of failure.

If your experience with databases until now has been only relational, Riak

may seem like an alien beast. There are no transactions, no SQL, no schema.

There are keys, but linking between buckets is not at all like a table join, and

mapreduce can be a daunting methodology to grok.

The trade-offs, however, are worth it for a certain class of problems. Riak’s

ability to scale out with more servers (rather than scale up with larger single

servers) and its ease of use are excellent attempts at solving the unique

scalability problems of the Web. And rather than reinventing the wheel, Riak

piggybacks on the HTTP structure, allowing maximum flexibility for any

framework or web-enabled system.

Riak’s Strengths

If you want to design a large-scale ordering system a la Amazon, or in any

situation where high availability is your paramount concern, you should

consider Riak. Hands down, one of Riak’s strengths lies in its focus on remov-

ing single points of failure in an attempt to support maximum uptime and

grow (or shrink) to meet changing demands. If you do not have complex data,

Riak keeps things simple but still allows for some pretty sophisticated data

diving should you need it. There is currently support for about a dozen lan-

guages (which you can find on the Riak website) but is extendable to its core

if you like to write in Erlang. And if you require more speed than HTTP can

handle, you can also try your hand at communicating via Protobuf,17 which

is a more efficient binary encoding and transport protocol.

Riak’s Weaknesses

If you require simple queryability, complex data structures, or a rigid schema

or if you have no need to scale horizontally with your servers, Riak is probably

not your best choice. One of our major gripes about Riak is it still lags in

terms of an easy and robust ad hoc querying framework, although it is

certainly on the right track. Mapreduce provides fantastic and powerful

functionality, but we’d like to see more built-in URL-based or other PUT query

actions. The addition of indexing was a major step in the right direction and

a concept we’d love to see expanded upon. Finally, if you don’t want to write

17. http://code.google.com/p/protobuf/

Wrap-Up • 91

http://code.google.com/p/protobuf/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Erlang, you may see a few limitations using JavaScript, such as the unavail-

ability of post-commit or slower mapreduce execution. However, the Riak

team is working on these relatively minor hiccups.

Riak on CAP

Riak provides a clever way of circumventing the constraints that CAP places

on all distributed databases. How it dances around the problem is astounding,

compared to a system like PostgreSQL that can (largely) only support strong

write consistency. Riak leverages the Amazon Dynamo paper’s insight that

CAP can be changed on a per-bucket, or per-request, basis. It’s a big step

forward for robust and flexible open source database systems. As you read

about other databases in this book, keep Riak in mind, and you’ll continue

to be impressed by its flexibility.

Parting Thoughts

If you need to store a huge catalog of data, you could do worse than Riak.

Though relational databases have been researched and tweaked for more

than forty years, not every problem needs ACID compliance or the ability to

enforce a schema. If you want to embed a database into a device or handle

financial transactions, you should avoid Riak. If you want to scale out or

serve up loads of data on the Web, take a look.

92 • Chapter 3. Riak

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 4

HBase

Apache HBase is made for big jobs, like a nail gun. You would never use

HBase to catalog your corporate sales list, just like you’d never use a nail

gun to build a dollhouse. If your data is not measured by many gigabytes,

you probably need a smaller tool.

HBase, at first glance, looks a lot like a relational database—so much so that

if you didn’t know any better, you might think that it is one. The most chal-

lenging part of learning HBase isn’t the technology; it’s that many of the words

used in HBase are coaxingly, deceptively familiar. For example, HBase stores

data in buckets it calls tables, which contain cells that appear at the intersec-

tion of rows and columns. So far so good, right?

Wrong! In HBase, tables don’t behave like relations, rows don’t act like records,

and columns are completely variable (not enforced by a schema description).

Schema design is still important, since it informs the performance character-

istics of the system, but it won’t keep your house in order. HBase is the evil

twin, the bizarro, if you will, of RDBMS.

So, why would you use this database? Aside from scalability, there are a few

reasons. First, HBase has some built-in features that other databases lack,

such as versioning, compression, garbage collection (for expired data), and

in-memory tables. Having these features available right out of the box means

less code that you have to write when your requirements demand them. HBase

also makes strong consistency guarantees, making it easier to transition from

relational databases.

For all of these reasons, HBase really shines as the cornerstone of an online

analytics processing system. While individual operations may be slower than

equivalent operations in other databases, scanning through enormous datasets

is something HBase takes to with relish. So, for genuinely big queries, HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

often outpaces other databases. This also explains why HBase is often

employed at big companies to back logging and search systems.

4.1 Introducing HBase

HBase is a column-oriented database that prides itself on consistency and

scaling out. It is based on BigTable, a high-performance, proprietary database

developed by Google and described in the 2006 white paper “Bigtable: A

Distributed Storage System for Structured Data.”1 Initially created for natural-

language processing, HBase started life as a contrib package for Apache

Hadoop. Since then, it has become a top-level Apache project.

On the architecture front, HBase is designed to be fault tolerant. Hardware

failures may be uncommon for individual machines, but in a large cluster,

node failure is the norm. By using write-ahead logging and distributed config-

uration, HBase can quickly recover from individual server failures.

Additionally, HBase lives in an ecosystem that has its own complementary

benefits. HBase is built on Hadoop—a sturdy, scalable computing platform

that provides a distributed file system and mapreduce capabilities. Wherever

you find HBase, you’ll find Hadoop and other infrastructural components

that you can lever in your own applications.

It is actively used and developed by a number of high-profile companies for

their “Big Data” problems. Notably, Facebook chose HBase as a principal

component of its new messaging infrastructure announced in November 2010.

Stumbleupon has been using HBase for real-time data storage and analytics

for several years, serving various site features directly from HBase. Twitter

uses HBase extensively, ranging from data generation (for applications such

as people search) to storing monitoring/performance data. The parade of

companies using HBase also includes the likes of eBay, Meetup, Ning, Yahoo!,

and many others.

With all of this activity, new versions of HBase are coming out at a fairly rapid

clip. At the time of this writing, the current stable version is 0.90.3, so that’s

what we’ll be using. Go ahead and download HBase, and we’ll get started.

4.2 Day 1: CRUD and Table Administration

Today’s goal is to learn the nuts and bolts of working with HBase. We’ll get

a local instance of HBase running in stand-alone mode, and then we’ll use

1. http://research.google.com/archive/bigtable.html

94 • Chapter 4. HBase

http://research.google.com/archive/bigtable.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

the HBase shell to create and alter tables and to insert and modify data using

basic commands. After that, we’ll explore how to perform some of those

operations programmatically by using the HBase Java API in JRuby. Along

the way, we’ll uncover some HBase architectural concepts, such as the rela-

tionship between rows, column families, columns, and values in a table.

A fully operational, production-quality HBase cluster should really consist of

no fewer than five nodes, or so goes the conventional wisdom. Such a setup

would be overkill for our needs. Fortunately, HBase supports three running

modes:

• Stand-alone mode is a single machine acting alone.

• Pseudodistributed mode is a single node pretending to be a cluster.

• Fully distributed mode is a cluster of nodes working together.

For most of this chapter, we’ll be running HBase in stand-alone mode. Even

that can be a bit of a challenge, so although we won’t cover every aspect of

installation and administration, we’ll give some relevant troubleshooting tips

where appropriate.

Configuring HBase

Before using HBase, it has to be configured. Configuration settings for HBase

are kept in a file called hbase-site.xml, which can be found in the ${HBASE_HOME}/
conf/ directory. Note that HBASE_HOME is an environment variable pointing to

the directory where HBase has been installed.

Initially, this file contains just an empty <configuration> tag. You can add any

number of property definitions to your configuration using this format:

<property>
<name>some.property.name</name>
<value>A property value</value>

</property>

A full list of available properties, along with default values and descriptions,

is available in hbase-default.xml under ${HBASE_HOME}/src/main/resources.

By default, HBase uses a temporary directory to store its data files. This

means you’ll lose all your data whenever the operating system decides to

reclaim the disk space.

To keep your data around, you should specify an involatile storage location.

Set the hbase.rootdir property to an appropriate path like so:

Day 1: CRUD and Table Administration • 95

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

<property>
<name>hbase.rootdir</name>
<value>file:///path/to/hbase</value>

</property>

To start HBase, open a terminal (command prompt) and run this command:

${HBASE_HOME}/bin/start-hbase.sh

To shut down HBase, use the stop-hbase.sh command in the same directory.

If anything goes wrong, take a look at the most recently modified files in the

${HBASE_HOME}/logs directory. On *nix-based systems, the following command

will pipe the latest log data to the console as it’s written:

cd ${HBASE_HOME}
find ./logs -name "hbase-*.log" -exec tail -f {} \;

The HBase Shell

The HBase shell is a JRuby-based command-line program you can use to

interact with HBase. In the shell, you can add and remove tables, alter table

schema, add or delete data, and do a bunch of other tasks. Later we’ll explore

other means of connecting to HBase, but for now the shell will be our home.

With HBase running, open a terminal and fire up the HBase shell:

${HBASE_HOME}/bin/hbase shell

To confirm that it’s working properly, try asking it for version information.

hbase> version
0.90.3, r1100350, Sat May 7 13:31:12 PDT 2011

You can enter help at any time to see a list of available commands or to get

usage information about a particular command.

Next, execute the status command to see how your HBase server is holding up.

hbase> status
1 servers, 0 dead, 2.0000 average load

If an error occurs for any of these commands or if the shell hangs, it could

be a connection problem. HBase does its best to automatically configure its

services based on your network setup, but sometimes it gets it wrong. If you’re

seeing these symptoms, check out HBase Network Settings, on page 97.

Creating a Table

A map is a key-value pair, like a hash in Ruby or a hashmap in Java. A table

in HBase is basically a big map. Well, more accurately, it’s a map of maps.

96 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

HBase Network Settings

By default, HBase tries to make its services available to external clients, but in our

case, we simply need to connect from the same machine. So, it might help to add

some or all of the following properties to your hbase-site.xml file (your mileage may vary).

Note that the values in the following table will help only if you plan to connect locally

and not remotely:

valueproperty name

lohbase.master.dns.interface

127.0.0.1hbase.master.info.bindAddress

127.0.0.1hbase.regionserver.info.bindAddress

lohbase.regionserver.dns.interface

lohbase.zookeeper.dns.interface

The properties tell HBase how to establish connections for the master server and

region servers (both of which we’ll discuss later) and the zookeeper configuration

service. The properties with the value “lo” refer to the so-called loopback interface.

On *nix systems, the loopback interface is not a real network interface (like your

Ethernet or wireless cards) but rather a software-only interface for the computer to

use to connect to itself. The bindAddress properties tell HBase what IP address to try to

listen on.

In an HBase table, keys are arbitrary strings that each map to a row of data.

A row is itself a map, in which keys are called columns and values are unin-

terpreted arrays of bytes. Columns are grouped into column families, so a

column’s full name consists of two parts: the column family name and the

column qualifier. Often these are concatenated together using a colon (for

example, 'family:qualifier').

To illustrate these concepts, take a look at Figure 13, HBase tables consist

of rows, keys, column families, columns, and values, on page 98.

In this figure, we have a hypothetical table with two column families: color and

shape. The table has two rows—denoted by dashed boxes—identified by their

row keys: first and second. Looking at just the first row, we see that it has three

columns in the color column family (with qualifiers red, blue, and yellow) and one

column in the shape column family (square). The combination of row key and

column name (including both family and qualifier) creates an address for

locating data. In this example, the tuple first/color:red points us to the value

'#F00'.

Now let’s take what we’ve learned about table structure and use it to do

something fun—we’re going to make a wiki!

Day 1: CRUD and Table Administration • 97

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

row keys column family column family

"first"
"red": "#F00"
"blue": "#00F"
"yellow": "#FF0"

"square": "4"

"second" "triangle": "3"
"square": "4"

row

row

"color" "shape"

Figure 13—HBase tables consist of rows, keys, column families, columns, and values.

There are lots of juicy info bits we might want to associate with a wiki, but

we’ll start with the bare minimum. A wiki contains pages, each of which has

a unique title string and contains some article text.

Use the create command to make our wiki table:

hbase> create 'wiki', 'text'
0 row(s) in 1.2160 seconds

Here, we’re creating a table called wiki with a single column family called text.
The table is currently empty; it has no rows and thus no columns. Unlike a

relational database, in HBase a column is specific to the row that contains

it. When we start adding rows, we’ll add columns to store data at the same

time.

Visualizing our table architecture, we arrive at something like Figure 14, The

wiki table has one column family, on page 99. By our own convention, we

expect each row to have exactly one column within the text family, qualified

by the empty string (''). So, the full column name containing the text of a page

will be 'text:'.

Of course, for our wiki table to be useful, it’s going to need content. Let’s add

some!

98 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

row keys column family

"first page's title" "": "Text of first page"

"second page's title"

row

"text"(wiki page titles)

(page)

row

(page) "": "Text of second page"

Figure 14—The wiki table has one column family.

Inserting, Updating, and Retrieving Data

Our wiki needs a Home page, so we’ll start with that. To add data to an HBase

table, use the put command:

hbase> put 'wiki', 'Home', 'text:', 'Welcome to the wiki!'

This command inserts a new row into the wiki table with the key 'Home', adding

'Welcome to the wiki!' to the column called 'text:'.

We can query the data for the 'Home' row using get, which requires two

parameters: the table name and the row key. You can optionally specify a list

of columns to return.

hbase> get 'wiki', 'Home', 'text:'
COLUMN CELL
text: timestamp=1295774833226, value=Welcome to the wiki!

1 row(s) in 0.0590 seconds

Notice the timestamp field in the output. HBase stores an integer timestamp

for all data values, representing time in milliseconds since the epoch (00:00:00

UTC on January 1, 1970). When a new value is written to the same cell, the

old value hangs around, indexed by its timestamp. This is a pretty awesome

feature. Most databases require you to specifically handle historical data

yourself, but in HBase, versioning is baked right in!

Day 1: CRUD and Table Administration • 99

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Case Study: Facebook’s Messaging Index Table

Facebook uses HBase as a principal component of its messaging infrastructure, both

for storing message data and for maintaining an inverted index for search.

In its index table schema:

• The row keys are user IDs.

• Column qualifiers are words that appear in that user’s messages.

• Timestamps are message IDs of messages that contain that word.

Since messages between users are immutable, the index entries for a message are

static as well. The concept of versioned values doesn’t make sense.

For Facebook, manipulating the timestamp to match message IDs gives them

another dimension for storing data.

Put and Get

The put and get commands allow you to specify a timestamp explicitly. If using

milliseconds since the epoch doesn’t strike your fancy, you can specify

another integer value of your choice. This gives you an extra dimension to

work with if you need it. If you don’t specify a timestamp, HBase will use the

current time when inserting, and it will return the most recent version when

reading.

For an example of how one company chose to overload the timestamp field,

see Case Study: Facebook's Messaging Index Table, on page 100. In the rest of

this chapter, we’ll continue to use the default timestamp interpretation.

Altering Tables

So far, our wiki schema has pages with titles, text, and an integrated version

history but nothing else. Let’s expand our requirements to include the follow-

ing:

• In our wiki, a page is uniquely identified by its title.

• A page can have unlimited revisions.

• A revision is identified by its timestamp.

• A revision contains text and optionally a commit comment.

• A revision was made by an author, identified by name.

Visually, our requirements can be sketched, like in Figure 15, Requirements

for a wiki page (including time dimension), on page 102. In this abstract repre-

sentation of our requirements for a page, we see that each revision has an

author, a commit comment, some article text, and a timestamp. The title of

100 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

a page is not part of a revision, because it’s the identifier we use to denote

revisions belonging to the same page.

Mapping our vision to an HBase table takes a somewhat different form, as

illustrated in Figure 16, Updated wiki table architecture (time dimension not

shown), on page 102. Our wiki table uses the title as the row key and will group

other page data into two column families called text and revision. The text column

family is the same as before; we expect each row to have exactly one column,

qualified by the empty string (''), to hold the article contents. The job of the

revision column family is to hold other revision-specific data, such as the author

and commit comment.

Defaults

We created the wiki table with no special options, so all the HBase default

values were used. One such default value is to keep only three VERSIONS of

column values, so let’s increase that. To make schema changes, first we have

to take the table offline with the disable command.

hbase> disable 'wiki'
0 row(s) in 1.0930 seconds

Now we can modify column family characteristics using the alter command.

hbase> alter 'wiki', { NAME => 'text', VERSIONS =>
hbase* org.apache.hadoop.hbase.HConstants::ALL_VERSIONS }
0 row(s) in 0.0430 seconds

Here, we’re instructing HBase to alter the text column family’s VERSIONS
attribute. There are a number of other attributes we could have set, some of

which we’ll discuss in Day 2. The hbase* line means that it’s a continuation

of the previous line.

Altering a Table

Operations that alter column family characteristics can be very expensive

because HBase has to create a new column family with the chosen specifica-

tions and then copy all the data over. In a production system, this may incur

significant downtime. For this reason, settling on column family options up

front is a good thing.

With the wiki table still disabled, let’s add the revision column family, again

using the alter command:

hbase> alter 'wiki', { NAME => 'revision', VERSIONS =>
hbase* org.apache.hadoop.hbase.HConstants::ALL_VERSIONS }
0 row(s) in 0.0660 seconds

Day 1: CRUD and Table Administration • 101

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

title

revision

textauthor

comment

timestamp

Figure 15—Requirements for a wiki page (including time dimension)

keys family

"first page" "": "..."

"second page"

row

"text"(title)

(page)

row

(page) "": "..."

family

"author": "..."

"revision"

"comment": "..."

"author": "..."
"comment": "..."

Figure 16—Updated wiki table architecture (time dimension not shown)

Just as before, with the text family, we’re only adding a revision column family

to the table schema, not individual columns. Though we expect each row to

eventually contain a revision:author and revision:comment, it’s up to the client to

honor this expectation; it’s not written into any formal schema. If someone

wants to add a revision:foo for a page, HBase won’t stop them.

102 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Moving On

With these additions in place, let’s reenable our wiki:

hbase> enable 'wiki'
0 row(s) in 0.0550 seconds

Now that our wiki table has been modified to support our growing require-

ments list, we can start adding data to columns in the revision column family.

Adding Data Programmatically

As we’ve seen, the HBase shell is great for tasks such as manipulating tables.

Sadly, the shell’s data insertion support isn’t the best. The put command only

allows setting one column value at a time, and in our newly updated schema,

we need to add multiple column values simultaneously so they all share the

same timestamp. We’re going to need to start scripting.

The following script can be executed directly in the HBase shell, since the

shell is also a JRuby interpreter. When run, it adds a new version of the text

for the Home page, setting the author and comment fields at the same time.

JRuby runs on the Java virtual machine (JVM), giving it access to the HBase

Java code. These examples will not work with non-JVM Ruby.

hbase/put_multiple_columns.rb

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'

def jbytes(*args)
args.map { |arg| arg.to_s.to_java_bytes }

end

table = HTable.new(@hbase.configuration, "wiki")

p = Put.new(*jbytes("Home"))

p.add(*jbytes("text", "", "Hello world"))
p.add(*jbytes("revision", "author", "jimbo"))
p.add(*jbytes("revision", "comment", "my first edit"))

table.put(p)

The import lines bring references to useful HBase classes into the shell. This

saves us from having to write out the full namespace later. Next, the jbytes()
function takes any number of arguments and returns an array converted to

Java byte arrays, as the HBase API methods demand.

After that, we create a local variable (table) pointing to our wiki table, using

the @hbase administration object for configuration information.

Day 1: CRUD and Table Administration • 103

http://media.pragprog.com/titles/rwdata/code/hbase/put_multiple_columns.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Next we stage a commit operation by creating and preparing a new instance

of Put, which takes the row to be modified. In this case, we’re sticking with

the Home page we’ve been working with thus far. Finally, we add() properties

to our Put instance and then call on the table object to execute the put operation

we’ve prepared. The add() method has several forms; in our case, we used the

three-argument version: add(column_family, column_qualifier, value).

Why Column Families?

You may be tempted to build your whole structure without column families;

why not store all of a row’s data in a single column family? That solution

would be simpler to implement. But there are downsides to avoiding column

families, namely, missing out on fine-grained performance tuning. Each col-

umn family’s performance options are configured independently. These settings

affect things such as read and write speed and disk space consumption.

All operations in HBase are atomic at the row level. No matter how many

columns are affected, the operation will have a consistent view of the partic-

ular row being accessed or modified. This design decision helps clients reason

intelligently about the data.

Our put operation affects several columns and doesn’t specify a timestamp,

so all column values will have the same timestamp (the current time in mil-

liseconds). Let’s verify by invoking get.

hbase> get 'wiki', 'Home'
COLUMN CELL
revision:author timestamp=1296462042029, value=jimbo
revision:comment timestamp=1296462042029, value=my first edit
text: timestamp=1296462042029, value=Hello world
3 row(s) in 0.0300 seconds

As you can see, each column value listed previously has the same timestamp.

Day 1 Wrap-Up

Today, we got a firsthand look at a running HBase server. We learned how to

configure it and monitor log files for troubleshooting. Using the HBase shell,

we performed basic administration and data manipulation tasks.

In modeling a wiki system, we explored schema design in HBase. We learned

how to create tables and manipulate column families. Designing an HBase

schema means making choices about column family options and, just as

important, our semantic interpretation of features like timestamps and row

keys.

104 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We also started poking around in the HBase Java API by executing JRuby

code in the shell. In Day 2, we’ll take this a step further, using the shell to

run custom scripts for big jobs like data import.

Ideally you’ve begun to shrug off some of the relational concepts that burden

terms such as table, row, and column. The difference between how HBase

uses these terms and what they mean in other systems will become even

starker as we explore deeper into HBase’s features.

Day 1 Homework

HBase documentation online generally comes in two flavors: extremely tech-

nical and nonexistent. This is slowly changing as “getting started” guides

start to appear, but be prepared to spend some time trolling through Javadoc

or source code to find answers.

Find

1. Figure out how to use the shell to do the following:

• Delete individual column values in a row

• Delete an entire row

2. Bookmark the HBase API documentation for the version of HBase you’re

using.

Do

1. Create a function called put_many() that creates a Put instance, adds any

number of column-value pairs to it, and commits it to a table. The signa-

ture should look like this:

def put_many(table_name, row, column_values)
your code here

end

2. Define your put_many() function by pasting it in the HBase shell, and then

call it like so:

hbase> put_many 'wiki', 'Some title', {
hbase* "text:" => "Some article text",
hbase* "revision:author" => "jschmoe",
hbase* "revision:comment" => "no comment" }

Day 1: CRUD and Table Administration • 105

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

4.3 Day 2: Working with Big Data

With Day 1’s table creation and manipulation under our belts, it’s time to

start adding some serious data to our wiki table. Today, we’ll script against

the HBase APIs, ultimately streaming Wikipedia content right into our wiki!

Along the way, we’ll pick up some performance tricks for making faster import

jobs. Finally, we’ll poke around in HBase’s internals to see how it partitions

data into regions, achieving both performance and disaster recovery goals.

Importing Data, Invoking Scripts

One common problem people face when trying a new database system is how

to migrate data into it. Handcrafting Put operations with static strings, like

we did in Day 1, is all well and good, but we can do better.

Fortunately, pasting commands into the shell is not the only way to execute

them. When you start the HBase shell from the command line, you can

specify the name of a JRuby script to run. HBase will execute that script as

though it were entered directly into the shell. The syntax looks like this:

${HBASE_HOME}/bin/hbase shell <your_script> [<optional_arguments> ...]

Since we’re interested specifically in “Big Data,” let’s create a script for import-

ing Wikipedia articles into our wiki table. The WikiMedia Foundation—which

oversees Wikipedia, Wictionary, and other projects—periodically publishes

data dumps we can use. These dumps are in the form of enormous XML files.

Here’s an example record from the English Wikipedia:

<page>
<title>Anarchism</title>
<id>12</id>
<revision>

<id>408067712</id>
<timestamp>2011-01-15T19:28:25Z</timestamp>
<contributor>

<username>RepublicanJacobite</username>
<id>5223685</id>

</contributor>
<comment>Undid revision 408057615 by [[Special:Contributions...</comment>
<text xml:space="preserve">{{Redirect|Anarchist|the fictional character|

...
[[bat-smg:Anarkėzmos]]

</text>
</revision>

</page>

106 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Because we were so smart, this contains all the information we’ve already

accounted for in our schema: title (row key), text, timestamp, and author. So,

we ought to be able to write a script to import revisions without too much

trouble.

Streaming XML

First things first. We’ll need to parse the huge XML files in a streaming (SAX)

fashion, so let’s start with that. The basic outline for parsing an XML file in

JRuby, record by record, looks like this:

hbase/basic_xml_parsing.rb

import 'javax.xml.stream.XMLStreamConstants'

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

while reader.has_next

type = reader.next

if type == XMLStreamConstants::START_ELEMENT
tag = reader.local_name
do something with tag

elsif type == XMLStreamConstants::CHARACTERS
text = reader.text
do something with text

elsif type == XMLStreamConstants::END_ELEMENT
same as START_ELEMENT

end

end

Breaking this down, there are a few parts worth mentioning. First, we produce

an XMLStreamReader and wire it up to java.lang.System.in, which means it’ll be

reading from standard input.

Next, we set up a while loop, which will continuously pull out tokens from the

XML stream until there are none left. Inside the while loop, we process the

current token. What to do depends on whether the token is the start of an

XML tag, the end of a tag, or the text in between.

Streaming Wikipedia

Now we can combine this basic XML processing framework with our previous

exploration of the HTable and Put interfaces. Here’s the resultant script. Most

of it should look familiar, and we’ll discuss a few novel parts.

Day 2: Working with Big Data • 107

http://media.pragprog.com/titles/rwdata/code/hbase/basic_xml_parsing.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

hbase/import_from_wikipedia.rb

require 'time'

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'javax.xml.stream.XMLStreamConstants'

def jbytes(*args)
args.map { |arg| arg.to_s.to_java_bytes }

end

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

document = nil①

buffer = nil
count = 0

table = HTable.new(@hbase.configuration, 'wiki')
table.setAutoFlush(false)②

while reader.has_next
type = reader.next

if type == XMLStreamConstants::START_ELEMENT③

case reader.local_name
when 'page' then document = {}
when /title|timestamp|username|comment|text/ then buffer = []
end

elsif type == XMLStreamConstants::CHARACTERS④

buffer << reader.text unless buffer.nil?

elsif type == XMLStreamConstants::END_ELEMENT⑤

case reader.local_name
when /title|timestamp|username|comment|text/

document[reader.local_name] = buffer.join
when 'revision'

key = document['title'].to_java_bytes
ts = (Time.parse document['timestamp']).to_i

p = Put.new(key, ts)
p.add(*jbytes("text", "", document['text']))
p.add(*jbytes("revision", "author", document['username']))
p.add(*jbytes("revision", "comment", document['comment']))
table.put(p)

108 • Chapter 4. HBase

http://media.pragprog.com/titles/rwdata/code/hbase/import_from_wikipedia.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

count += 1
table.flushCommits() if count % 10 == 0
if count % 500 == 0
puts "#{count} records inserted (#{document['title']})"

end
end

end
end

table.flushCommits()
exit

① The first difference of note is the introduction of a few variables:

• document: Holds the current article and revision data

• buffer: Holds character data for the current field within the document

(text, title, author, and so on)

• count: Keeps track of how many articles we’ve imported so far

② Pay special attention to the use of table.setAutoFlush(false). In HBase, data is

automatically flushed to disk periodically. This is preferred in most

applications. By disabling autoflush in our script, any put operations we

execute will be buffered until we call table.flushCommits(). This allows us to

batch up writes and execute them when it’s convenient for us.

③ Next, let’s look at what happens in parsing. If the start tag is a <page>,

then reset document to an empty hash. Otherwise, if it’s another tag we

care about, reset buffer for storing its text.

④ We handle character data by appending it to the buffer.

⑤ For most closing tags, we just stash the buffered contents into the document.
If the closing tag is a </revision>, however, we create a new Put instance, fill

it with the document’s fields, and submit it to the table. After that, we use

flushCommits() if we haven’t done so in a while and report progress to stan-

dard out (puts).

Compression and Bloom Filters

We’re almost ready to run the script; we just have one more bit of houseclean-

ing to do first. The text column family is going to contain big blobs of text

content; it would benefit from some compression. Let’s enable compression

and fast lookups:

hbase> alter 'wiki', {NAME=>'text', COMPRESSION=>'GZ', BLOOMFILTER=>'ROW'}
0 row(s) in 0.0510 seconds

Day 2: Working with Big Data • 109

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

HBase supports two compression algorithms: Gzip (GZ) and Lempel-Ziv-

Oberhumer (LZO). The HBase community highly recommends using LZO over

Gzip, pretty much unilaterally, but here we’re using GZ.

The problem with LZO is the implementation’s license. While open source,

it’s not compatible with Apache’s licensing philosophy, so LZO can’t be bundled

with HBase. Detailed instructions are available online for installing and con-

figuring LZO support. If you want high-performance compression, get LZO.

A Bloom filter is a really cool data structure that efficiently answers the

question, “Have I ever seen this thing before?” Originally developed by Burton

Howard Bloom in 1970 for use in spell-checking applications, Bloom filters

have become popular in data storage applications for determining quickly

whether a key exists. If you’re unfamiliar with Bloom filters, they’re explained

briefly in How Do Bloom Filters Work?, on page 111.

HBase supports using Bloom filters to determine whether a particular column

exists for a given row key (BLOOMFILTER=>'ROWCOL') or just whether a given row

key exists at all (BLOOMFILTER=>'ROW'). The number of columns within a column

family and the number of rows are both potentially unbounded. Bloom filters

offer a fast way of determining whether data exists before incurring an

expensive disk read.

Engage!

Now we’re ready to kick off the script. Remember that these files are enormous,

so downloading and unzipping them is pretty much out of the question. So,

what are we going to do?

Fortunately, through the magic of *nix pipes, we can download, extract, and

feed the XML into the script all at once. The command looks like this:

curl <dump_url> | bzcat | \
${HBASE_HOME}/bin/hbase shell import_from_wikipedia.rb

Note that you should replace <dump_url> with the URL of a WikiMedia Founda-

tion dump file of some kind.2 You should use [project]-latest-pages-articles.xml.bz2
for either the English Wikipedia (~6GB)3 or the English Wiktionary (~185MB).4

These files contain all the most recent revisions of pages in the Main namespace.

That is, they omit user pages, discussion pages, and so on.

Plug in the URL and run it! You should see output like this (eventually):

2. http://dumps.wikimedia.org
3. http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
4. http://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2

110 • Chapter 4. HBase

http://dumps.wikimedia.org
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

How Do Bloom Filters Work?

Without going too deep into implementation details, a Bloom filter manages a stati-

cally sized array of bits initially set to 0. Each time a new blob of data is presented

to the filter, some of the bits are flipped to 1. Determining which bits to flip depends

on generating a hash from the data and turning that hash into a set of bit positions.

Later, to test whether the filter has been presented with a particular blob in the past,

the filter figures out which bits would have to be 1 and checks them. If any are 0,

then the filter can unequivocally say “no.” If all of the bits are 1, then it reports “yes”;

chances are it has been presented with that blob before, but false positives are

increasingly likely as more blobs are entered.

This is the trade-off of using a Bloom filter as opposed to a simple hash. A hash will

never produce a false positive, but the space needed to store that data is unbounded.

Bloom filters use a constant amount of space but will occasionally produce false

positives at a predictable rate based on saturation.

500 records inserted (Ashmore and Cartier Islands)
1000 records inserted (Annealing)
1500 records inserted (Ajanta Caves)

It’ll happily chug along as long as you let it or until it encounters an error,

but you’ll probably want to shut it off after a while. When you’re ready to kill

the script, press CTRL+C. For now, though, let’s leave it running so we can take

a peek under the hood and learn about how HBase achieves its horizontal

scalability.

Introduction to Regions and Monitoring Disk Usage

In HBase, rows are kept in order, sorted by the row key. A region is a chunk

of rows, identified by the starting key (inclusive) and ending key (exclusive).

Regions never overlap, and each is assigned to a specific region server in the

cluster. In our simplistic stand-alone server, there is only one region server,

which will always be responsible for all regions. A fully distributed cluster

would consist of many region servers.

So, let’s take a look at your HBase server’s disk usage, which will give us

insight into how the data is laid out. You can inspect HBase’s disk usage by

opening a command prompt to the hbase.rootdir location you specified earlier

and executing the du command. du is a standard *nix command-line utility

that tells you how much space is used by a directory and its children, recur-

sively. The -h option tells du to report numbers in human-readable form.

Here’s what ours looked like after about 12,000 pages had been inserted and

the import was still running:

Day 2: Working with Big Data • 111

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ du -h
231M ./.logs/localhost.localdomain,38556,1300092965081
231M ./.logs
4.0K ./.META./1028785192/info
12K ./.META./1028785192/.oldlogs
28K ./.META./1028785192
32K ./.META.
12K ./-ROOT-/70236052/info
12K ./-ROOT-/70236052/.oldlogs
36K ./-ROOT-/70236052
40K ./-ROOT-
72M ./wiki/517496fecabb7d16af7573fc37257905/text
1.7M ./wiki/517496fecabb7d16af7573fc37257905/revision
61M ./wiki/517496fecabb7d16af7573fc37257905/.tmp
12K ./wiki/517496fecabb7d16af7573fc37257905/.oldlogs
134M ./wiki/517496fecabb7d16af7573fc37257905
134M ./wiki
4.0K ./.oldlogs
365M .

This output tells us a lot about how much space HBase is using and how it’s

allocated. The lines starting with /wiki describe the space usage for the wiki
table. The long-named subdirectory 517496fecabb7d16af7573fc37257905 represents

an individual region (the only region so far). Under that, the directories /text
and /revision correspond to the text and revision column families, respectively.

Finally, the last line sums up all these values, telling us that HBase is using

365MB of disk space.

One more thing. The first two lines at the top of output, starting with /.logs,
show us the space used by the write-ahead log (WAL) files. HBase uses write-

ahead logging to provide protection against node failures. This is a fairly

typical disaster recovery technique. For instance, write-ahead logging in file

systems is called journaling. In HBase, logs are appended to the WAL before

any edit operations (put and increment) are persisted to disk.

For performance reasons, edits are not necessarily written to disk immediately.

The system does much better when I/O is buffered and written to disk in

chunks. If the region server responsible for the affected region were to crash

during this limbo period, HBase would use the WAL to determine which

operations were successful and take corrective action.

Writing to the WAL is optional and enabled by default. Edit classes like Put
and Increment have a setter method called setWriteToWAL() that can be used to

exclude the operation from being written to the WAL. Generally you’ll want

to keep the default option, but in some instances it might make sense to

change it. For example, if you’re running an import job that you can rerun

112 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

any time, like our Wikipedia import script, you might want to take the perfor-

mance benefit of disabling WAL writes over the disaster recovery protection.

Regional Interrogation

If you let the script run long enough, you’ll see HBase split the table into

multiple regions. Here’s our du output again, after about 150,000 pages have

been added:

$ du -h
40K ./.logs/localhost.localdomain,55922,1300094776865
44K ./.logs
24K ./.META./1028785192/info
4.0K ./.META./1028785192/recovered.edits
4.0K ./.META./1028785192/.tmp
12K ./.META./1028785192/.oldlogs
56K ./.META./1028785192
60K ./.META.
4.0K ./.corrupt
12K ./-ROOT-/70236052/info
4.0K ./-ROOT-/70236052/recovered.edits
4.0K ./-ROOT-/70236052/.tmp
12K ./-ROOT-/70236052/.oldlogs
44K ./-ROOT-/70236052
48K ./-ROOT-
138M ./wiki/0a25ac7e5d0be211b9e890e83e24e458/text
5.8M ./wiki/0a25ac7e5d0be211b9e890e83e24e458/revision
4.0K ./wiki/0a25ac7e5d0be211b9e890e83e24e458/.tmp
144M ./wiki/0a25ac7e5d0be211b9e890e83e24e458
149M ./wiki/15be59b7dfd6e71af9b828fed280ce8a/text
6.5M ./wiki/15be59b7dfd6e71af9b828fed280ce8a/revision
4.0K ./wiki/15be59b7dfd6e71af9b828fed280ce8a/.tmp
155M ./wiki/15be59b7dfd6e71af9b828fed280ce8a
145M ./wiki/0ef3903982fd9478e09d8f17b7a5f987/text
6.3M ./wiki/0ef3903982fd9478e09d8f17b7a5f987/revision
4.0K ./wiki/0ef3903982fd9478e09d8f17b7a5f987/.tmp
151M ./wiki/0ef3903982fd9478e09d8f17b7a5f987
135M ./wiki/a79c0f6896c005711cf6a4448775a33b/text
6.0M ./wiki/a79c0f6896c005711cf6a4448775a33b/revision
4.0K ./wiki/a79c0f6896c005711cf6a4448775a33b/.tmp
141M ./wiki/a79c0f6896c005711cf6a4448775a33b
591M ./wiki
4.0K ./.oldlogs
591M .

The biggest change is that the old region (517496fecabb7d16af7573fc37257905) is
now gone, replaced by four new ones. In our stand-alone server, all the regions

are served by our singular server, but in a distributed environment, these

would be parceled out to the various region servers.

Day 2: Working with Big Data • 113

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This raises a few questions, such as “How do the region servers know which

regions they’re responsible for serving?” and “How can you find which region

(and, by extension, which region server) is serving a given row?”

If we drop back into the HBase shell, we can query the .META. table to find out

more about the current regions. .META. is a special table whose sole purpose

is to keep track of all the user tables and which region servers are responsible

for serving the regions of those tables.

hbase> scan '.META.', { COLUMNS => ['info:server', 'info:regioninfo'] }

Even for a small number of regions, you should get a lot of output. Here’s a

fragment of ours, formatted and truncated for readability:

ROW
wiki,,1300099733696.a79c0f6896c005711cf6a4448775a33b.

COLUMN+CELL
column=info:server, timestamp=1300333136393, value=localhost.localdomain:3555
column=info:regioninfo, timestamp=1300099734090, value=REGION => {
NAME => 'wiki,,1300099733696.a79c0f6896c005711cf6a4448775a33b.',
STARTKEY => '',
ENDKEY => 'Demographics of Macedonia',
ENCODED => a79c0f6896c005711cf6a4448775a33b,
TABLE => {{...}}

ROW
wiki,Demographics of Macedonia,1300099733696.0a25ac7e5d0be211b9e890e83e24e458.

COLUMN+CELL
column=info:server, timestamp=1300333136402, value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1300099734011, value=REGION => {
NAME => 'wiki,Demographics of Macedonia,1300099733696.0a25...e458.',
STARTKEY => 'Demographics of Macedonia',
ENDKEY => 'June 30',
ENCODED => 0a25ac7e5d0be211b9e890e83e24e458,
TABLE => {{...}}

Both of the regions listed previously are served by the same server, localhost.local-
domain:35552. The first region starts at the empty string row ('') and ends with

'Demographics of Macedonia'. The second region starts at 'Demographics of Macedonia'
and goes to 'June 30'.

STARTKEY is inclusive, while ENDKEY is exclusive. So, if we were looking for the

'Demographics of Macedonia' row, we’d find it in the second region.

Since rows are kept in sorted order, we can use the information stored in

.META. to look up the region and server where any given row should be found.

But where is the .META. table stored?

114 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

It turns out that the .META. table is split into regions and served by region

servers just like any other table would be. To find out which servers have

which parts of the .META. table, we have to scan -ROOT-.

hbase> scan '-ROOT-', { COLUMNS => ['info:server', 'info:regioninfo'] }

ROW
.META.,,1

COLUMN+CELL
column=info:server, timestamp=1300333135782, value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1300092965825, value=REGION => {
NAME => '.META.,,1',
STARTKEY => '',
ENDKEY => '',
ENCODED => 1028785192,
TABLE => {{...}}

The assignment of regions to region servers, including .META. regions, is handled

by the master node, often referred to as HBaseMaster. The master server can

also be a region server, performing both duties simultaneously.

When a region server fails, the master server steps in and reassigns respon-

sibility for regions previously assigned to the failed node. The new stewards

of those regions would look to the WAL to see what, if any, recovery steps are

needed. If the master server fails, responsibility defers to any of the other

region servers that step up to become the master.

Scanning One Table to Build Another

Providing you’ve stopped the import script from running, we can move on to

the next task: extracting information from the imported wiki contents.

Wiki syntax is filled with links, some of which link internally to other articles

and some of which link to external resources. This interlinking contains a

wealth of topological data. Let’s capture it!

Our goal is to capture the relationships between articles as directional links,

pointing one article to another or receiving a link from another. An internal

article link in wikitext looks like this: [[<target name>|<alt text>]], where

<target name> is the article to link to, and <alt text> is the alternative text to

display (optional).

For example, if the text of the article on Star Wars contains the string

"[[Yoda|jedi master]]", we want to store that relationship twice—once as an

outgoing link from Star Wars and once as an incoming link to Yoda. Storing

the relationship twice means that it’s fast to look up both a page’s outgoing

links and its incoming links.

Day 2: Working with Big Data • 115

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Where’s My TABLE Schema?

The TABLE schema has been removed from the example output of regioninfo scans. This

reduces clutter, and we’ll be talking about performance-tuning options later. If you’re

dying to see the schema definition for a table, use the describe command. Here’s an

example:

hbase> describe 'wiki'
hbase> describe '.META.'
hbase> describe '-ROOT-'

To store this additional link data, we’ll create a new table. Head over to the

shell and enter this:

hbase> create 'links', {
NAME => 'to', VERSIONS => 1, BLOOMFILTER => 'ROWCOL'

},{
NAME => 'from', VERSIONS => 1, BLOOMFILTER => 'ROWCOL'

}

In principle, we could have chosen to shove the link data into an existing

column family or merely added one or more additional column families to the

wiki table, rather than create a new one. Creating a separate table has the

advantage that the tables have separate regions. This means that the cluster

can more effectively split regions as necessary.

The general guidance for column families in the HBase community is to try

to keep the number of families per table down. You can do this either by

combining more columns into the same families or by putting families in dif-

ferent tables entirely. The choice is largely decided by whether and how often

clients will need to get an entire row of data (as opposed to needing just a few

column values).

In our wiki case, we need the text and revision column families to be on the

same table so that when we put new revisions in, the metadata and the text

share the same timestamp. The links content, by contrast, will never have the

same timestamp as the article from which the data came. Further, most client

actions will be interested either in the article text or in the extracted informa-

tion about article links but probably not in both at the same time. So, splitting

out the to and from column families into a separate table makes sense.

Constructing the Scanner

With the links table created, we’re ready to implement a script that will scan

all the rows of the wiki table. Then, for each row, retrieve the wikitext and

parse out the links. Finally, for each link found, create incoming and outgoing

116 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

link table records. The bulk of this script should be pretty familiar to you by

now. Most of the pieces are recycled, and we’ll discuss the few novel bits.

hbase/generate_wiki_links.rb

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'org.apache.hadoop.hbase.client.Scan'
import 'org.apache.hadoop.hbase.util.Bytes'

def jbytes(*args)
return args.map { |arg| arg.to_s.to_java_bytes }

end

wiki_table = HTable.new(@hbase.configuration, 'wiki')
links_table = HTable.new(@hbase.configuration, 'links')
links_table.setAutoFlush(false)

scanner = wiki_table.getScanner(Scan.new)①

linkpattern = /\[\[([^\[\]\|\:\#][^\[\]\|:]*)(?:\|([^\[\]\|]+))?\]\]/
count = 0

while (result = scanner.next())

title = Bytes.toString(result.getRow())②

text = Bytes.toString(result.getValue(*jbytes('text', '')))
if text

put_to = nil
text.scan(linkpattern) do |target, label|③

unless put_to
put_to = Put.new(*jbytes(title))
put_to.setWriteToWAL(false)

end

target.strip!
target.capitalize!

label = '' unless label
label.strip!

put_to.add(*jbytes("to", target, label))
put_from = Put.new(*jbytes(target))
put_from.add(*jbytes("from", title, label))
put_from.setWriteToWAL(false)
links_table.put(put_from)④

end
links_table.put(put_to) if put_to⑤

links_table.flushCommits()

Day 2: Working with Big Data • 117

http://media.pragprog.com/titles/rwdata/code/hbase/generate_wiki_links.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

end
count += 1
puts "#{count} pages processed (#{title})" if count % 500 == 0

end
links_table.flushCommits()
exit

① First, we grab a Scan object, which we’ll use to scan through the wiki table.

② Extracting row and column data requires some byte wrangling but gener-

ally isn’t too bad either.

③ Each time the linkpattern appears in the page text, we extract the target

article and text of the link and then use those values to add to our Put
instances.

④

⑤

Finally, we tell the table to execute our accumulated Put operations. It’s

possible (though unlikely) for an article to contain no links at all, which

is the reason for the if put_to clause.

Using setWriteToWAL(false) for these puts is a judgment call. Since this exer-

cise is for educational purposes and since we could simply rerun the

script if anything went wrong, we’ll take the speed bonus and accept our

fate should the node fail.

Running the Script

If you’re ready to throw caution to the wind with reckless abandon, kick off

the script.

${HBASE_HOME}/bin/hbase shell generate_wiki_links.rb

It should produce output like this:

500 pages processed (10 petametres)
1000 pages processed (1259)
1500 pages processed (1471 BC)
2000 pages processed (1683)
...

As with the previous script, you can let it run as long as you like, even to

completion. If you want to stop it, press CTRL+C.

You can monitor the disk usage of the script using du as we’ve done before.

You’ll see new entries for the links table we just created, and the size counts

will increase as the script runs.

118 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Joe asks:

Couldn’t We Have Done This with Mapreduce?

In the introduction, we explained that our examples would be in (J)Ruby and Java-

Script. JRuby does not play nice with Hadoop, but if you wanted to use mapreduce

using Java, you’d have written this scanner code as a mapreduce job and sent it off

to Hadoop.

Generally speaking, tasks like this are ideally suited for a mapreduce implementation.

There’s a bulk of input in a regular format to be handled by a mapper (scanning an

HBase table) and a bulk of output operations to be executed in batches by a reducer

(writing rows out to an HBase table).

The Hadoop architecture expects Job instances to be written in Java and wholly

encapsulated (including all dependencies) into a jar file that can be sent out to all

the nodes of the cluster. Newer versions of JRuby can extend Java classes, but the

version that ships with HBase can’t.

There are a few open source projects that provide a bridge for running JRuby on

Hadoop but nothing yet that specifically works well with HBase. There are rumors

that in the future the HBase infrastructure will contain abstractions to make JRuby

MR (mapreduce) jobs possible. So, there’s hope for the future.

Examining the Output

We just created a scanner programmatically to perform a sophisticated task.

Now we’ll use the shell’s scan command to simply dump part of a table’s

contents to the console. For each link the script finds in a text: blob, it will

indiscriminately create both to and from entries in the links table. To see the

kinds of links being created, head over to the shell and scan the table.

hbase> scan 'links', STARTROW => "Admiral Ackbar", ENDROW => "It's a Trap!"

You should get a whole bunch of output. Of course, you can use the get
command to see the links for just a single article.

hbase> get 'links', 'Star Wars'
COLUMN CELL
...
links:from:Admiral Ackbar timestamp=1300415922636, value=
links:from:Adventure timestamp=1300415927098, value=
links:from:Alamogordo, New Mexico timestamp=1300415953549, value=
links:to:"weird al" yankovic timestamp=1300419602350, value=
links:to:20th century fox timestamp=1300419602350, value=

links:to:3-d film timestamp=1300419602350, value=
links:to:Aayla secura timestamp=1300419602350, value=
...

Day 2: Working with Big Data • 119

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

In the wiki table, the rows are very regular with respect to columns. As you

recall, each row has text:, revision:author, and revision:comment columns. The links
table has no such regularity. Each row may have one column or hundreds.

And the variety of column names is as diverse as the row keys themselves

(titles of Wikipedia articles). That’s OK! HBase is a so-called sparse data store

for exactly this reason.

To find out just how many rows are now in your table, you can use the count
command.

hbase> count 'wiki', INTERVAL => 100000, CACHE => 10000
Current count: 100000, row: Alexander wilson (vauxhall)
Current count: 200000, row: Bachelor of liberal studies
Current count: 300000, row: Brian donlevy
...
Current count: 2000000, row: Thomas Hobbes
Current count: 2100000, row: Vardousia
Current count: 2200000, row: Wörrstadt (verbandsgemeinde)
2256081 row(s) in 173.8120 seconds

Because of its distributed architecture, HBase doesn’t immediately know how

many rows are in each table. To find out, it has to count them (by performing

a table scan). Fortunately, HBase’s region-based storage architecture lends

itself to fast distributed scanning. So, even if the operation at hand requires

a table scan, we don’t have to worry quite as much as we would with other

databases.

Day 2 Wrap-Up

Whew, that was a pretty big day! We learned how to write an import script

for HBase that parses data out of a stream of XML. Then we used those

techniques to stream Wikipedia dumps directly into our wiki table.

We learned more of the HBase API, including some client-controllable perfor-

mance levers such as setAutoFlush(), flushCommits(), and setWriteToWAL(). Along those

lines, we discussed some HBase architectural features such as disaster

recovery, provided via the write-ahead log.

Speaking of architecture, we discovered table regions and how HBase divvies

up responsibility for them among the region servers in the cluster. We scanned

the .META. and -ROOT- tables to get a feel for HBase internals.

Finally, we discussed some of the performance implications of HBase’s sparse

design. In so doing, we touched on some community best practices regarding

the use of columns, families, and tables.

120 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Day 2 Homework

Find

1. Find a discussion or article describing the pros and cons of compression

in HBase.

2. Find an article explaining how Bloom filters work in general and how they

benefit HBase.

3. Aside from which algorithm to use, what other column family options

relate to compression?

4. How does the type of data and expected usage patterns inform column

family compression options?

Do

Expanding on the idea of data import, let’s build a database containing

nutrition facts.

Download the MyPyramid Raw Food Data set from Data.gov.5 Extract the

zipped contents to find Food_Display_Table.xml.

This data consists of many pairs of <Food_Display_Row> tags. Inside these, each

row has a <Food_Code> (integer value), <Display_Name> (string), and other facts

about the food in appropriately named tags.

1. Create a new table called foods with a single column family to store the

facts. What should you use for the row key? What column family options

make sense for this data?

2. Create a new JRuby script for importing the food data. Use the SAX

parsing style we used earlier for the Wikipedia import script and tailor it

for the food data.

3. Pipe the food data into your import script on the command line to populate

the table.

4. Finally, using the HBase shell, query the foods table for information about

your favorite foods.

5. http://explore.data.gov/Health-and-Nutrition/MyPyramid-Food-Raw-Data/b978-7txq

Day 2: Working with Big Data • 121

http://explore.data.gov/Health-and-Nutrition/MyPyramid-Food-Raw-Data/b978-7txq
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

4.4 Day 3: Taking It to the Cloud

In Days 1 and 2, we got a lot of hands-on experience using HBase in stand-

alone mode. Our experimentation so far has focused on accessing a single

local server. In reality, if you choose to use HBase, you’ll want to have a good

sized cluster in order to realize the performance benefits of its distributed

architecture.

Here in Day 3, we’ll turn our attention toward operating and interacting with

a remote HBase cluster. First we’ll develop a client application in Ruby and

connect to our local server using a binary protocol called Thrift. Then we’ll

bring up a multinode cluster with a cloud service provider—Amazon EC2—

using a cluster management technology called Apache Whirr.

Developing a Thrifty HBase Application

So far, we’ve been using the HBase shell, but HBase supports a number of

protocols for client connectivity. The following is a full list:

Production Ready?Connection MethodName

YesDirectShell

YesDirectJava API

YesBinary protocolThrift

YesHTTPREST

No (still experimental)Binary protocolAvro

In the previous table, the connection method describes whether the protocol

makes Java calls directly, shuttles data over HTTP, or moves data using a

compact binary format. All of them are production-grade, except for Avro,

which is relatively new and should be treated as experimental.

Of all these options, Thrift is probably the most popular for developing client

applications. A mature binary protocol with little overhead, Thrift was origi-

nally developed and open sourced by Facebook, later to become an Apache

Incubator project. Let’s get your machine ready to connect with Thrift.

Installing Thrift

Like many things in the database realm, working with Thrift requires a little

setup. To connect to our HBase server via Thrift, we’ll need to do the following:

1. Have HBase run the Thrift service.

2. Install the Thrift command-line tool.

3. Install libraries for your chosen client language.

122 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

4. Generate HBase model files for your language.

5. Create and run a client application.

We’ll start by running the Thrift service, which is pretty easy. Start the daemon

from the command line like this:

${HBASE_HOME}/bin/hbase-daemon.sh start thrift -b 127.0.0.1

Next, you’ll need to install the thrift command-line tool. The steps for this

depend greatly on your particular environment and generally require compiling

binaries. To test whether you have this installed correctly, call it on the

command line with the -version flag. You should see something like this:

$ thrift -version
Thrift version 0.6.0

For the client language, we’ll use Ruby, although the steps are similar for

other languages. Install the Thrift Ruby gem on the command line like so:

$ gem install thrift

To check whether the gem is installed correctly, we can run this Ruby one-

liner:

$ ruby -e "require 'thrift'"

If you see no output on the command line, that’s good! An error message

stating “no such file to load” means you should stop here and troubleshoot before

moving on.

Generate the Models

Next, we’ll generate the language-specific HBase model files. These model

files will be the glue that connects our specific HBase version with the partic-

ular Thrift version you have installed, so they have to be generated (rather

than coming premade).

First, locate the Hbase.thrift file under the ${HBASE_HOME}/src directory. The path

should be something like this:

${HBASE_HOME}/src/main/resources/org/apache/hadoop/hbase/thrift/Hbase.thrift

With the path identified, generate the model files with the following command,

replacing your path as indicated:

$ thrift --gen rb <path_to_Hbase.thrift>

This will create a new folder called gen-rb, which contains the following model

files:

Day 3: Taking It to the Cloud • 123

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

• hbase_constants.rb
• hbase.rb
• hbase_types.rb

We’ll be using these files next as we build a simple client application.

Building a Client Application

Our program will connect to HBase over Thrift and then list any tables it finds

along with their column families. These would be the first steps toward

building an administrative interface for HBase. Unlike our previous examples,

this script is meant to be run by good old normal Ruby, not JRuby. It could

be suitable for inclusion in a Ruby-based web application, for example.

Key this into a new text file (we called ours thrift_example.rb):

hbase/thrift_example.rb

$:.push('./gen-rb')
require 'thrift'
require 'hbase'

socket = Thrift::Socket.new('localhost', 9090)
transport = Thrift::BufferedTransport.new(socket)
protocol = Thrift::BinaryProtocol.new(transport)
client = Apache::Hadoop::Hbase::Thrift::Hbase::Client.new(protocol)

transport.open()

client.getTableNames().sort.each do |table|
puts "#{table}"
client.getColumnDescriptors(table).each do |col, desc|

puts " #{desc.name}"
puts " maxVersions: #{desc.maxVersions}"
puts " compression: #{desc.compression}"
puts " bloomFilterType: #{desc.bloomFilterType}"

end
end

transport.close()

In the previous code, the first thing we do is make sure Ruby can find the

model files by adding gen-rb to the path and including thrift and hbase. After

that, we create a connection to the Thrift server and wire it up to an HBase

client instance. The client object will be our means for communicating with

HBase.

After opening the transport, we iterate over the tables brought back by getTable-
Names(). For each table, we iterate over the list of column families returned by

getColumnDescriptors() and output some properties to standard output.

124 • Chapter 4. HBase

http://media.pragprog.com/titles/rwdata/code/hbase/thrift_example.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Now, let’s run the program on the command line. Your output should look

similar since we’re connecting to the local HBase server we started with earlier.

$> ruby thrift_example.rb
links

from:
maxVersions: 1
compression: NONE
bloomFilterType: ROWCOL

to:
maxVersions: 1
compression: NONE
bloomFilterType: ROWCOL

wiki
revision:

maxVersions: 2147483647
compression: NONE
bloomFilterType: NONE

text:
maxVersions: 2147483647
compression: GZ
bloomFilterType: ROW

You’ll find that the Thrift API for HBase has most of the same functionality

as the Java API we used previously, but many of the concepts are expressed

differently. For example, instead of creating a Put instance, in Thrift you create

a Mutation to update a single column or a BatchMutation to update several columns

in one transaction.

The Hbase.thrift file we used earlier to generate the model files—see Generate

the Models, on page 123—has a lot of good inline documentation to describe

the structures and methods available to you. Check it out!

Introducing Whirr

Setting up a functioning cluster using a cloud service used to be a lot of work.

Fortunately, Whirr is changing all that. Currently in the Apache Incubator

program, Whirr provides tools for launching, connecting to, and destroying

clusters of virtual machines. It supports popular services like Amazon’s

Elastic Compute Cloud (EC2) and RackSpace’s Cloud Servers. Whirr currently

supports setting up Hadoop, HBase, Cassandra, Voldemort, and ZooKeeper

clusters, with support for more technologies like MongoDB and ElasticSearch

on the way.

Though service providers like Amazon often supply some means of persisting

data after virtual machines have been terminated, we won’t be using them.

For our purposes, it will suffice to have temporary clusters that lose all data

Day 3: Taking It to the Cloud • 125

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

upon termination. If you decide to use HBase in a production capacity later,

you may want to set up persistent storage. If so, it’s worth considering whether

dedicated hardware would better suit your needs. Dynamic services like EC2

are great for horsepower on-the-fly, but you’ll generally get more bang for the

buck out of a cluster of dedicated physical or virtual machines.

Getting Set Up with EC2

Before you use Whirr to power up a cluster, you’ll need to have an account

with a supported cloud service provider. In this chapter, we’ll describe how

to use Amazon’s EC2, but you’re welcome to use another provider of your

choice.

If you don’t have an Amazon account already, head over to Amazon’s Web

Services (AWS) portal and make one.6 Log in, and then enable EC2 for your

account if it isn’t activated already.7 Finally, open the EC2 AWS console page

under Accounts Amazon EC2.8 It should look something like Figure 17,

Amazon EC2 console showing no instances, on page 127.

You’ll need your AWS credentials in order to start up EC2 nodes. Head back

to the AWS main page and then choose Account→Security Credentials. Scroll

down to the section called Access Credentials, and make a note of your Access

Key ID. Under Secret Access Key, click Show, and make a note of this value

as well. Respectively, we’ll refer to these keys as AWS_ACCESS_KEY_ID and

AWS_SECRET_ACCESS_KEY later when we configure Whirr.

Preparing Whirr

With your EC2 credentials in hand, let’s get Whirr. Go to the Apache Whirr

site9 and download the latest version. Unzip the downloaded file, and then

open a command prompt in this directory. We can test that Whirr is ready to

roll by executing the version command.

$ bin/whirr version
Apache Whirr 0.6.0-incubating

Next, we’ll create some passwordless SSH keys for Whirr to use when

launching instances (virtual machines).

$ mkdir keys
$ ssh-keygen -t rsa -P '' -f keys/id_rsa

6. http://aws.amazon.com/
7. http://aws.amazon.com/ec2/
8. https://console.aws.amazon.com/ec2/#s=Instances
9. http://incubator.apache.org/whirr/

126 • Chapter 4. HBase

http://aws.amazon.com/
http://aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/#s=Instances
http://incubator.apache.org/whirr/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 17—Amazon EC2 console showing no instances

This will create a directory called keys and add to it an id_rsa file and an id_rsa.pub
file. With these details out of the way, it’s time to start configuring our cluster.

Configuring the Cluster

To specify details about a cluster, we’ll supply Whirr with a .properties file

containing the relevant settings. Create a file in the Whirr directory called

hbase.properties with the following contents (inserting your AWS_ACCESS_KEY_ID and

AWS_SECRET_ACCESS_KEY as indicated):

hbase/hbase.properties

service provider
whirr.provider=aws-ec2
whirr.identity=your AWS_ACCESS_KEY_ID here
whirr.credential=your AWS_SECRET_ACCESS_KEY here

ssh credentials
whirr.private-key-file=keys/id_rsa
whirr.public-key-file=keys/id_rsa.pub

cluster configuration
whirr.cluster-name=myhbasecluster
whirr.instance-templates=\

1 zookeeper+hadoop-namenode+hadoop-jobtracker+hbase-master,\
5 hadoop-datanode+hadoop-tasktracker+hbase-regionserver

HBase and Hadoop version configuration
whirr.hbase.tarball.url=\

http://apache.cu.be/hbase/hbase-0.90.3/hbase-0.90.3.tar.gz
whirr.hadoop.tarball.url=\

http://archive.cloudera.com/cdh/3/hadoop-0.20.2-cdh3u1.tar.gz

Day 3: Taking It to the Cloud • 127

http://media.pragprog.com/titles/rwdata/code/hbase/hbase.properties
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The first two sections identify the service provider and all relevant credentials

—largely boilerplate—while the latter two sections are specific to the HBase

cluster that we’re going to create. The whirr.cluster-name is unimportant unless

you plan on running more than one cluster simultaneously, in which case

they should each have different names. The whirr.instance-templates property

contains a comma-separated list describing which roles the nodes will play

and how many of each there should be. In our case, we want one master and

five region servers. Finally, the whirr.hbase.tarball.url forces Whirr to use the same

version of HBase we’ve been using so far.

Launching the Cluster

With all the configuration details saved to hbase.properties, it’s time to launch

the cluster. On the command line, in the Whirr directory, execute the launch-
cluster command, providing it with the properties file we just made.

$ bin/whirr launch-cluster --config hbase.properties

This will produce a lot of output and may take a while. You can monitor the

progress of the launch by returning to the AWS EC2 console. It should look

something like Figure 18, Amazon EC2 console showing HBase instances

starting up, on page 129.

More information about the launch status is available in the whirr.log file in

the Whirr directory.

Connecting to the Cluster

Only secure traffic is allowed to the cluster by default, so to connect to HBase,

we’ll need to open an SSH session. First, we’ll need to know the name of a

server in the cluster to connect to. In your user’s home directory, Whirr cre-

ated a directory called .whirr/myhbasecluster. In here, you’ll find a tab-delimited

file called instances that lists all of the cluster’s running Amazon instances.

The third column contains the publicly addressable domain names of the

servers. Take the first one and plug it into this command:

$ ssh -i keys/id_rsa ${USER}@<SERVER_NAME>

Once connected, start up the HBase shell:

$ /usr/local/hbase-0.90.3/bin/hbase shell

Once the shell has started up, you can check on the health of the cluster with

the status command.

hbase> status
6 servers, 0 dead, 2.0000 average load

128 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 18—Amazon EC2 console showing HBase instances starting up

From here, you can perform all the same operations we did on Days 1 and 2

such as creating tables and inserting data. Connecting the sample Thrift-

based client application to the cluster is left as an exercise in the homework.

Of course, one more thing is worth talking about before we finish out the day:

destroying a cluster.

Destroying the Cluster

When you’re done with your remote HBase EC2 cluster, use Whirr’s destroy-
cluster command to shut it down. Note that you will lose any and all data that

had been inserted into the cluster when you do so, since we have not config-

ured the instances to use persistent storage.

At the command prompt, in the Whirr directory, run the following:

$ bin/whirr destroy-cluster --config hbase.properties
Destroying myhbasecluster cluster
Cluster myhbasecluster destroyed

This should take only a little while. Confirm that the instances are shutting

down in the AWS console, which should resemble Figure 19, Amazon EC2

console showing HBase instances shutting down, on page 130.

If anything goes wrong when shutting these things down, remember that you

can still terminate them directly using the AWS console.

Day 3: Taking It to the Cloud • 129

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 19—Amazon EC2 console showing HBase instances shutting down

Day 3 Wrap-Up

Today we stepped outside the HBase shell to look at other connection options,

including a binary protocol called Thrift. We developed a Thrifty client appli-

cation, and then we created and administrated a remote cluster in Amazon

EC2 using Apache Whirr. Coming up in the homework, you’ll string these

two things together, querying your remote EC2 cluster from your locally

running Thrift app.

Day 3 Homework

In today’s homework, you’ll connect your local Thrift application to a

remotely running HBase cluster. To do this, you’ll need to open your cluster

to insecure incoming TCP connections. If this were a production environment,

a better first step would be to create a secure channel for Thrift—for example

by setting up a virtual private network (VPN) with endpoints inside EC2 and

our principal network. Such a setup is outside the scope of this book; suffice

it to say that we strongly recommend securing your traffic when it matters

to do so.

Do

1. With your EC2 cluster running, open an SSH session to a node, start the

hbase shell, and then create a table with at least one column family.

2. In the same SSH session, start the Thrift service.

$ sudo /usr/local/hbase-0.90.3/bin/hbase-daemon.sh start thrift -b 0.0.0.0

130 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

3. Use the Amazon EC2 web interface console to open TCP port 9090 in the

security group for your cluster (Network & Security > Security Groups >

Inbound > Create a new rule).

4. Modify the simple Thrift-based Ruby client app you developed to hit the

EC2 node running Thrift instead of localhost. Run the program and con-

firm that it displays the correct information about your newly created

table.

4.5 Wrap-Up

HBase is a juxtaposition of simplicity and complexity. The data storage

model is pretty straightforward, with a few built-in schema constraints. It

doesn’t help, though, that many terms are overloaded with baggage from the

relational world (for example, words like table and column). Most of HBase

schema design is deciding on the performance characteristics of your tables

and columns.

HBase’s Strengths

Noteworthy features of HBase include a robust scale-out architecture and

built-in versioning and compression capabilities. HBase’s built-in versioning

capability can be a compelling feature for certain use cases. Keeping the ver-

sion history of wiki pages is a crucial feature for policing and maintenance,

for instance. By choosing HBase, we don’t have to take any special steps to

implement page history—we get it for free.

On the performance front, HBase is meant to scale out. If you have huge

amounts of data, measured in many gigabytes or terabytes, HBase may be

for you. HBase is rack-aware, replicating data within and between datacenter

racks so that node failures can be handled gracefully and quickly.

The HBase community is pretty awesome. There’s almost always somebody

on the IRC channel10 or mailing lists11 ready to help with questions and get

you pointed in the right direction. Although a number of high-profile compa-

nies use HBase for their projects, there is no corporate HBase service provider.

This means the people of the HBase community do it for the love of the project

and the common good.

10. irc://irc.freenode.net/#hbase
11. http://hbase.apache.org/mail-lists.html

Wrap-Up • 131

irc://irc.freenode.net/#hbase
http://hbase.apache.org/mail-lists.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

HBase’s Weaknesses

Although HBase is designed to scale out, it doesn’t scale down. The HBase

community seems to agree that five nodes is the minimum number you’ll

want to use. Because it’s designed to be big, it can also be harder to adminis-

trate. Solving small problems isn’t what HBase is about, and nonexpert

documentation is tough to come by, which steepens the learning curve.

Additionally, HBase is almost never deployed alone. Rather, it’s part of an

ecosystem of scale-ready pieces. These include Hadoop (an implementation

of Google’s MapReduce), the Hadoop distributed file system (HDFS), and

Zookeeper (a headless service that aids internode coordination). This ecosystem

is both a strength and a weakness; it simultaneously affords a great deal of

architectural sturdiness but also encumbers the administrator with the burden

of maintaining it.

One noteworthy characteristic of HBase is that it doesn’t offer any sorting or

indexing capabilities aside from the row keys. Rows are kept in sorted order

by their row keys, but no such sorting is done on any other field, such as

column names and values. So, if you want to find rows by something other

than their key, you need to scan the table or maintain your own index.

Another missing concept is datatypes. All field values in HBase are treated

as uninterpreted arrays of bytes. There is no distinction between, say, an

integer value, a string, and a date. They’re all bytes to HBase, so it’s up to

your application to interpret the bytes.

HBase on CAP

With respect to CAP, HBase is decidedly CP. HBase makes strong consistency

guarantees. If a client succeeds in writing a value, other clients will receive

the updated value on the next request. Some databases, like Riak, allow you

to tweak the CAP equation on a per-operation basis. Not so with HBase. In

the face of reasonable amounts of partitioning—for example, a node failing—

HBase will remain available, shunting the responsibility off to other nodes in

the cluster. However, in the pathological example, where only one node is left

alive, HBase has no choice but to refuse requests.

The CAP discussion gets a little more complex when you introduce cluster-

to-cluster replication, an advanced feature we didn’t cover in this chapter. A

typical multicluster setup could have clusters separated geographically by

some distance. In this case, for a given column family, one cluster is the

system of record, while the other clusters merely provide access to the repli-

cated data. This system is eventually consistent since the replication clusters

132 • Chapter 4. HBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

will serve up the most recent values they’re aware of, which may not be the

most recent values in the master cluster.

Parting Thoughts

As one of the first nonrelational databases we had ever encountered, HBase

was quite a challenge for us. The terminology can be deceptively reassuring,

and the installation and configuration are not for the faint of heart. On the

plus side, some of the features HBase offers, such as versioning and compres-

sion, are quite unique. These aspects can make HBase quite appealing for

solving certain problems. And of course, it scales out to many nodes of com-

modity hardware quite well. All in all, HBase—like a nail gun—is a pretty big

tool, so watch your thumbs.

Wrap-Up • 133

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 5

MongoDB

MongoDB is in many ways like a power drill. Your ability to complete a task

is framed largely by the components you choose to use (from drill bits of

varying size to sander adapters). MongoDB’s strength lies in versatility, power,

ease of use, and ability to handle jobs both large and small. Although it’s a

much newer invention than the hammer, it is increasingly a tool builders

reach for quite often.

First publicly released in 2009, MongoDB is a rising star in the NoSQL world.

It was designed as a scalable database—the name Mongo comes from

“humongous”—with performance and easy data access as core design goals.

It is a document database, which allows data to persist in a nested state, and

importantly, it can query that nested data in an ad hoc fashion. It enforces

no schema (similar to Riak but unlike Postgres), so documents can optionally

contain fields or types that no other document in the collection contains.

But don’t think that MongoDB’s flexibility makes it a toy. There are some

huge production MongoDB (often just called Mongo) deployments out there,

like Foursquare, bit.ly, and CERN, for collecting Large Hadron Collider data.

5.1 Hu(mongo)us

Mongo hits a sweet spot between the powerful queryability of a relational

database and the distributed nature of other datastores like Riak or HBase.

Project founder Dwight Merriman has said that MongoDB is the database he

wishes he’d had at DoubleClick, where as the CTO he had to house large-

scale data while still being able to satisfy ad hoc queries.

Mongo is a JSON document database (though technically data is stored in a

binary form of JSON known as BSON). A Mongo document can be likened to

a relational table row without a schema, whose values can nest to an arbitrary

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

ndOne({"_id" : ObjectId("4d0b6da3bb30773266f39fea")}))

{

"_id" : ObjectId("4d0b6da3bb30773266f39fea"),

"country" : {

"$ref" : "countries",

"$id" : ObjectId("4d0e6074deb8995216a8309e")

},

"famous_for" : [

"beer",

"food"

],

"last_census" : "Thu Sep 20 2007 00:00:00 GMT -0700 (PDT)",

"mayor" : {

"name" : "Sam Adams",

"party" : "D"

},

"name" : "Portland",

"population" : 582000,

"state" : "OR"

}

}
Collection

Database

er

Document

Figure 20—A Mongo document printed as JSON

depth. To get an idea of what a JSON document is, check out Figure 20, A

Mongo document printed as JSON, on page 136.

Mongo is an excellent choice for an ever-growing class of web projects with

large-scale data storage requirements but very little budget to buy big-iron

hardware. Thanks to its lack of structured schema, Mongo can grow and

change along with your data model. If you’re in a web startup with dreams

of enormity or are already large with the need to scale servers horizontally,

consider MongoDB.

5.2 Day 1: CRUD and Nesting

We’ll spend today working on some CRUD operations and finish up with

performing nested queries in MongoDB. As usual, we won’t walk you through

the installation steps, but if you visit the Mongo website,1 you can download

a build for your OS or find instructions on how to build from source. If you

have OS X, we recommend installing via Homebrew (brew install mongodb). If you

use some Debian/Ubuntu variant, try Mongodb.org’s own apt-get package.

1. http://www.mongodb.org/downloads

136 • Chapter 5. MongoDB

http://www.mongodb.org/downloads
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Eric says:

On the Fence

I was on the fence about using a document datastore before making the switch in

my own production code. Coming from the relational database world, I found Mongo

to be an easy move with its ad hoc queries. And its ability to scale out mirrored my

own web-scale dreams. But beyond the structure, I trusted the development team.

They readily admitted that Mongo wasn’t perfect, but their clear plans (and general

adherence to those plans) were based on general web infrastructure use cases, rather

than idyllic debates on scalability and replication. This pragmatic focus on usability

should shine as you use MongoDB. A trade-off of this evolutionary behavior is that

there are several paths to performing any given function in Mongo.

To prevent typos, Mongo requires you to first create the directory where mongod
will store its data. A common location is /data/db. Ensure the user you run the

server under has permission to read and write to this directory. If it’s not

already running, you can fire up the Mongo service by running mongod.

Command-Line Fun

To create a new database named book, first run this command in your terminal.

It will connect to the MySQL-inspired command-line interface.

$ mongo book

Typing help in the console is a good start. We’re currently in the book database,

but you can view others via show dbs and switch databases with the use
command.

Creating a collection (similar to a bucket in Riak nomenclature) in Mongo is

as easy as adding an initial record to the collection. Since Mongo is schema-

less, there is no need to define anything up front; merely using it is enough.

What’s more, our book database doesn’t really exist until we first add values

into it. The following code creates/inserts a towns collection:

> db.towns.insert({
name: "New York",
population: 22200000,
last_census: ISODate("2009-07-31"),
famous_for: ["statue of liberty", "food"],
mayor : {

name : "Michael Bloomberg",
party : "I"

}
})

Day 1: CRUD and Nesting • 137

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

In the previous section, we said documents were JSON (well, really BSON),

so we add new documents in JSON format, where brackets like {...} denote

an object (aka a hashtable or Map) with keyed values and where brackets like

[...] denote an array. You can nest these values to any depth.

With the show collections command, you can verify the collection now exists.

> show collections

system.indexes
towns

We just created towns, whereas system.indexes always exists. We can list the

contents of a collection via find(). We formatted the output here for readability,

but yours may just output as a single wrapped line.

> db.towns.find()

{
"_id" : ObjectId("4d0ad975bb30773266f39fe3"),
"name" : "New York",
"population": 22200000,
"last_census": "Fri Jul 31 2009 00:00:00 GMT-0700 (PDT)",
"famous_for" : ["statue of liberty", "food"],
"mayor" : { "name" : "Michael Bloomberg", "party" : "I" }

}

Unlike a relational database, Mongo does not support server-side joins. A

single JavaScript call will retrieve a document and all of its nested content,

free of charge.

You may have noticed that the JSON output of your newly inserted town

contains an _id field of ObjectId. This is akin to SERIAL incrementing a numeric

primary key in PostgreSQL. The ObjectId is always 12 bytes, composed of a

timestamp, client machine ID, client process ID, and a 3-byte incremented

counter. Bytes are laid out as depicted in Figure 21, An ObjectId layout

example, on page 139.

What’s great about this autonumbering scheme is that each process on every

machine can handle its own ID generation without colliding with other mongod
instances. This design choice gives a hint of Mongo’s distributed nature.

JavaScript

Mongo’s native tongue is JavaScript, be it as complex as mapreduce queries

or as simple as asking for help.

> db.help()
> db.towns.help()

138 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

0 1 2 3

time

4 5 6

mid

7 8

pid

9 10 11

inc

4d 0a d9 75 e3bb 30 77 32 66 f3 9f

Figure 21—An ObjectId layout example

These commands will list available functions related to the given object. db is
a JavaScript object that contains information about the current database.

db.x is a JavaScript object representing a collection (named x). Commands are

just JavaScript functions.

> typeof db
object
> typeof db.towns
object
> typeof db.towns.insert
function

If you want to inspect the source code for a function, call it without parameters

or parentheses (think more Python than Ruby).

db.towns.insert
function (obj, _allow_dot) {

if (!obj) {
throw "no object passed to insert!";

}
if (!_allow_dot) {

this._validateForStorage(obj);
}
if (typeof obj._id == "undefined") {

var tmp = obj;
obj = {_id:new ObjectId};
for (var key in tmp) {

obj[key] = tmp[key];
}

}
this._mongo.insert(this._fullName, obj);
this._lastID = obj._id;

}

Let’s populate a few more documents into our towns collection by creating our

own JavaScript function.

Day 1: CRUD and Nesting • 139

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

mongo/insert_city.js

function insertCity(
name, population, last_census,
famous_for, mayor_info

) {
db.towns.insert({

name:name,
population:population,
last_census: ISODate(last_census),
famous_for:famous_for,
mayor : mayor_info

});
}

You can just paste the code into the shell. Then we can call it.

insertCity("Punxsutawney", 6200, '2008-31-01',
["phil the groundhog"], { name : "Jim Wehrle" }

)

insertCity("Portland", 582000, '2007-20-09',
["beer", "food"], { name : "Sam Adams", party : "D" }

)

We should now have three towns in our collection, which you can confirm by

calling db.towns.find() as before.

Reading: More Fun in Mongo

Earlier we called the find() function without params to get all documents. To

access a specific one, you only need to set an _id property. _id is of type ObjectId,
and so to query, you must convert a string by wrapping it in an ObjectId(str)
function.

db.towns.find({ "_id" : ObjectId("4d0ada1fbb30773266f39fe4") })

{
"_id" : ObjectId("4d0ada1fbb30773266f39fe4"),
"name" : "Punxsutawney",
"population" : 6200,
"last_census" : "Thu Jan 31 2008 00:00:00 GMT-0800 (PST)",
"famous_for" : ["phil the groundhog"],
"mayor" : { "name" : "Jim Wehrle" }

}

The find() function also accepts an optional second parameter: a fields object

we can use to filter which fields are retrieved. If we want only the town name

(along with _id), pass in name with a value resolving to 1 (or true).

140 • Chapter 5. MongoDB

http://media.pragprog.com/titles/rwdata/code/mongo/insert_city.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

db.towns.find({ _id : ObjectId("4d0ada1fbb30773266f39fe4") }, { name : 1 })

{
"_id" : ObjectId("4d0ada1fbb30773266f39fe4"),
"name" : "Punxsutawney"

}

To retrieve all fields except name, set name to 0 (or false or null).

db.towns.find({ _id : ObjectId("4d0ada1fbb30773266f39fe4") }, { name : 0 })

{
"_id" : ObjectId("4d0ada1fbb30773266f39fe4"),
"population" : 6200,
"last_census" : "Thu Jan 31 2008 00:00:00 GMT-0800 (PST)",
"famous_for" : ["phil the groundhog"]

}

Like PostgreSQL, in Mongo you can construct ad hoc queries by field values,

ranges, or a combination of criteria. To find all towns that begin with the letter

P and have a population less than 10,000, you can use a Perl-compatible

regular expression (PCRE)2 and a range operator.

db.towns.find(
{ name : /^P/, population : { $lt : 10000 } },
{ name : 1, population : 1 }

)
{ "name" : "Punxsutawney", "population" : 6200 }

Conditional operators in Mongo follow the format of field : { $op : value }, where

$op is an operation like $ne (not equal to). You may want a terser syntax, like

field < value. But this is JavaScript code, not a domain-specific query language,

so queries must comply with JavaScript syntax rules (later today we’ll see

how to use the shorter syntax in a certain case, but we’ll skip that for now).

The good news about the query language being JavaScript is you can construct

operations as you would objects. Here, we build criteria where the population

must be between 10,000 and 1 million people.

var population_range = {}
population_range['$lt'] = 1000000
population_range['$gt'] = 10000
db.towns.find(

{ name : /^P/, population : population_range },
{ name: 1 }

)

{ "_id" : ObjectId("4d0ada87bb30773266f39fe5"), "name" : "Portland" }

2. http://www.pcre.org/

Day 1: CRUD and Nesting • 141

http://www.pcre.org/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We are not limited to number ranges but can also retrieve date ranges. We

can find all names with a last_census less than or equal to January 31, 2008,

like this:

db.towns.find(
{ last_census : { $lte : ISODate('2008-31-01') } },
{ _id : 0, name: 1 }

)

{ "name" : "Punxsutawney" }
{ "name" : "Portland" }

Notice how we suppressed the _id field in the output explicitly by setting it to

0.

Digging Deep

Mongo loves nested array data. You can query by matching exact values…

db.towns.find(
{ famous_for : 'food' },
{ _id : 0, name : 1, famous_for : 1 }

)

{ "name" : "New York", "famous_for" : ["statue of liberty", "food"] }
{ "name" : "Portland", "famous_for" : ["beer", "food"] }

…as well as matching partial values…

db.towns.find(
{ famous_for : /statue/ },
{ _id : 0, name : 1, famous_for : 1 }

)

{ "name" : "New York", "famous_for" : ["statue of liberty", "food"] }

…or query by all matching values…

db.towns.find(
{ famous_for : { $all : ['food', 'beer'] } },
{ _id : 0, name:1, famous_for:1 }

)

{ "name" : "Portland", "famous_for" : ["beer", "food"] }

…or the lack of matching values:

db.towns.find(
{ famous_for : { $nin : ['food', 'beer'] } },
{ _id : 0, name : 1, famous_for : 1 }

)

{ "name" : "Punxsutawney", "famous_for" : ["phil the groundhog"] }

142 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

But the true power of Mongo stems from its ability to dig down into a document

and return the results of deeply nested subdocuments. To query a subdocu-

ment, your field name is a string separating nested layers with a dot. For

instance, you can find towns with independent mayors…

db.towns.find(
{ 'mayor.party' : 'I' },
{ _id : 0, name : 1, mayor : 1 }

)

{
"name" : "New York",
"mayor" : {

"name" : "Michael Bloomberg",
"party" : "I"

}
}

…or those with mayors who don’t have a party:

db.towns.find(
{ 'mayor.party' : { $exists : false } },
{ _id : 0, name : 1, mayor : 1 }

)

{ "name" : "Punxsutawney", "mayor" : { "name" : "Jim Wehrle" } }

The previous queries are great if you want to find documents with a single

matching field, but what if we need to match several fields of a subdocument?

elemMatch

We’ll round out our dig with the $elemMatch directive. Let’s create another col-

lection that stores countries. This time we’ll override each _id to be a string

of our choosing.

db.countries.insert({
_id : "us",
name : "United States",
exports : {

foods : [
{ name : "bacon", tasty : true },
{ name : "burgers" }

]
}

})
db.countries.insert({

_id : "ca",
name : "Canada",
exports : {

foods : [

Day 1: CRUD and Nesting • 143

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

{ name : "bacon", tasty : false },
{ name : "syrup", tasty : true }

]
}

})
db.countries.insert({
_id : "mx",
name : "Mexico",
exports : {

foods : [{
name : "salsa",
tasty : true,
condiment : true

}]
}

})

To validate the countries were added, we can execute the count function,

expecting the number 3.

> print(db.countries.count())
3

Let’s find a country that not only exports bacon but exports tasty bacon.

db.countries.find(
{ 'exports.foods.name' : 'bacon', 'exports.foods.tasty' : true },
{ _id : 0, name : 1 }

)

{ "name" : "United States" }
{ "name" : "Canada" }

But this isn’t what we wanted. Mongo returned Canada because it exports

bacon and exports tasty syrup. $elemMatch helps us here. It specifies that if a

document (or nested document) matches all of our criteria, the document

counts as a match.

db.countries.find(
{

'exports.foods' : {
$elemMatch : {
name : 'bacon',
tasty : true

}
}

},
{ _id : 0, name : 1 }

)

{ "name" : "United States" }

144 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$elemMatch criteria can utilize advanced operators, too. You can find any

country that exports a tasty food that also has a condiment label:

db.countries.find(
{

'exports.foods' : {
$elemMatch : {

tasty : true,
condiment : { $exists : true }

}
}

},
{ _id : 0, name : 1 }

)

{ "name" : "Mexico" }

Mexico is just what we wanted.

Boolean Ops

So far, all of our criteria are implicitly and operations. If you try to find a

country with the name United States and an _id of mx, Mongo will yield no

results.

db.countries.find(
{ _id : "mx", name : "United States" },
{ _id : 1 }

)

However, searching for one or the other with $or will return two results. Think

of this layout like prefix notation: OR A B.

db.countries.find(
{

$or : [
{ _id : "mx" },
{ name : "United States" }

]
},
{ _id:1 }

)

{ "_id" : "us" }
{ "_id" : "mx" }

There are so many operators we can’t cover them all here, but we hope this

has given you a taste of MongoDB’s powerful query ability. The following is

is not a complete list of the commands but a good chunk of them.

Day 1: CRUD and Nesting • 145

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

DescriptionCommand

Match by any PCRE-compliant regular expression string (or

just use the // delimiters as shown earlier)

$regex

Not equal to$ne

Less than$lt

Less than or equal to$lte

Greater than$gt

Greater than or equal to$gte

Check for the existence of a field$exists

Match all elements in an array$all

Match any elements in an array$in

Does not match any elements in an array$nin

Match all fields in an array of nested documents$elemMatch

or$or

Not or$nor

Match array of given size$size

Modulus$mod

Match if field is a given datatype$type

Negate the given operator check$not

You can find all the commands on the MongoDB online documentation or

grab a cheat sheet from the Mongo website. We will revisit querying in the

days to come.

Updating

We have a problem. New York and Punxsutawney are unique enough, but

did we add Portland, Oregon, or Portland, Maine (or Texas or the others)?

Let’s update our towns collection to add some U.S. states.

The update(criteria,operation) function requires two parameters. The first is a cri-

teria query—the same sort of object you would pass to find(). The second

parameter is either an object whose fields will replace the matched document(s)

or a modifier operation. In this case, the modifier is to $set the field state with

the string OR.

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ $set : { "state" : "OR" } }

);

146 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

You may wonder why the $set operation is even required. Mongo doesn’t think

in terms of attributes; it has only an internal, implicit understanding of

attributes for optimization reasons. But nothing about the interface is at-

tribute-oriented. Mongo is document-oriented. You will rarely want something

like this (notice the lack of $set operation):

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ state : "OR" }

);

This would replace the entire matching document with the document you

gave it ({ state : "OR" }). Since you didn’t give it a command like $set, Mongo

assumes you just want to switch them up, so be careful.

We can verify our update was successful by finding it (note our use of findOne()
to retrieve only one matching object).

db.towns.findOne({ _id : ObjectId("4d0ada87bb30773266f39fe5") })

{
"_id" : ObjectId("4d0ada87bb30773266f39fe5"),
"famous_for" : [

"beer",
"food"

],
"last_census" : "Thu Sep 20 2007 00:00:00 GMT-0700 (PDT)",
"mayor" : {

"name" : "Sam Adams",
"party" : "D"

},
"name" : "Portland",
"population" : 582000,
"state" : "OR"

}

You can do more than $set a value. $inc (increment a number) is a pretty useful

one. Let’s increment Portland’s population by 1,000.

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ $inc : { population : 1000} }

)

There are more directives than this, such as the $ positional operator for

arrays. New operations are added frequently and are updated in the online

documentation. Here are the major directives:

Day 1: CRUD and Nesting • 147

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

DescriptionCommand

Sets the given field with the given value$set

Removes the field$unset

Adds the given field by the given number$inc

Removes the last (or first) element from an array$pop

Adds the value to an array$push

Adds all values to an array$pushAll

Similar to push, but won’t duplicate values$addToSet

Removes matching value from an array$pull

Removes all matching values from an array$pullAll

References

As we mentioned previously, Mongo isn’t built to perform joins. Because of

its distributed nature, joins are pretty inefficient operations. Still, it’s some-

times useful for documents to reference each other. In these cases, the Mongo

development team suggests you use a construct like { $ref : "collection_name", $id
: "reference_id" }. For example, we can update the towns collection to contain a

reference to a document in countries.

db.towns.update(
{ _id : ObjectId("4d0ada87bb30773266f39fe5") },
{ $set : { country: { $ref: "countries", $id: "us" } } }

)

Now you can retrieve Portland from your towns collection.

var portland = db.towns.findOne({ _id : ObjectId("4d0ada87bb30773266f39fe5") })

Then, to retrieve the town’s country, you can query the countries collection

using the stored $id.

db.countries.findOne({ _id: portland.country.$id })

Better yet, in JavaScript, you can ask the town document the name of the

collection stored in the fields reference.

db[portland.country.$ref].findOne({ _id: portland.country.$id })

The last two queries are equivalent; the second is just a bit more data-driven.

Deleting

Removing documents from a collection is simple. Merely replace the find

function with a call to remove(), and all matched criteria will be removed. It’s

148 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Spelling Bee Warning

Mongo is not very friendly when it comes to misspellings. If you haven’t run across

this problem yet, you probably will at some point, so be warned. You can draw parallels

between static and dynamic programming languages. You define static up front, while

dynamic will accept values you may not have intended, even nonsensical types like

person_name = 5.

Documents are schemaless, so Mongo has no way of knowing if you intended on

inserting pipulation into your city or meant to querying on lust_census; it will happily

insert those fields or return no matching values.

Flexibility has its price. Caveat emptor.

important to note that the entire matching document will be removed, not

simply a matching element or a matching subdocument.

We recommend running find() to verify your criteria before running remove().
Mongo won’t think twice before running your operation. Let’s remove all

countries that export bacon that isn’t tasty.

var bad_bacon = {
'exports.foods' : {

$elemMatch : {
name : 'bacon',
tasty : false

}
}

}
db.countries.find(bad_bacon)

{
"_id" : ObjectId("4d0b7b84bb30773266f39fef"),
"name" : "Canada",
"exports" : {

"foods" : [
{

"name" : "bacon",
"tasty" : false

},
{

"name" : "syrup",
"tasty" : true

}
]

}
}

Everything looks good. Let’s remove it.

Day 1: CRUD and Nesting • 149

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

db.countries.remove(bad_bacon)
db.countries.count()

2

Now when you run count(), verify we are left with only two countries. If so, our

delete was successful!

Reading with Code

Let’s close out this day with one more interesting query option: code. You can

request that MongoDB run a decision function across your documents. We

placed this last because it should always be a last resort. These queries run

quite slowly, you can’t index them, and Mongo can’t optimize them. But

sometimes it’s hard to beat the power of custom code.

Say we’re looking for a population between 6,000 and 600,000 people.

db.towns.find(function() {
return this.population > 6000 && this.population < 600000;

})

Mongo even has a shortcut for simple decision functions.

db.towns.find("this.population > 6000 && this.population < 600000")

You can run custom code with other criteria using the $where clause. In this

example, the query also filters for towns famous for groundhogs.

db.towns.find({
$where : "this.population > 6000 && this.population < 600000",
famous_for : /groundhog/

})

A word of warning: Mongo will brutishly run this function against each docu-

ment, and there is no guarantee that the given field exists. For example, if

you assume a population field exists and population is missing in even a single

document, the entire query will fail, since the JavaScript cannot properly

execute. Be careful when you write custom JavaScript functions, and be

comfortable using JavaScript before attempting custom code.

Day 1 Wrap-Up

Today we took a peek at our first document database, MongoDB. We saw how

we can store nested structured data as JSON objects and query that data at

any depth. You learned that a document can be envisioned as a schemaless

row in the relational model, keyed by a generated _id. A set of documents is

called a collection in Mongo, similar to a table in PostgreSQL.

150 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Unlike the previous styles we’ve encountered, with collections of sets of simple

datatypes, Mongo stores complex, denormalized documents, stored and

retrieved as collections of arbitrary JSON structures. Mongo tops off this

flexible storage strategy with a powerful query mechanism not constrained

by any predefined schema.

Its denormalized nature makes a document datastore a superb choice for

storing data with unknown qualities, while other styles (such as relational or

columnar) prefer you know in advance and require schema migrations to add

or edit fields.

Day 1 Homework

Find

1. Bookmark the online MongoDB documentation.

2. Look up how to construct regular expressions in Mongo.

3. Acquaint yourself with command-line db.help() and db.collections.help() output.

4. Find a Mongo driver in your programming language of choice (Ruby, Java,

PHP, and so on).

Do

1. Print a JSON document containing { "hello" : "world" }.

2. Select a town via a case-insensitive regular expression containing the

word new.

3. Find all cities whose names contain an e and are famous for food or beer.

4. Create a new database named blogger with a collection named articles—

insert a new article with an author name and email, creation date, and

text.

5. Update the article with an array of comments, containing a comment with

an author and text.

6. Run a query from an external JavaScript file.

5.3 Day 2: Indexing, Grouping, Mapreduce

Increasing MongoDB’s query performance is the first item on today’s docket,

followed by some more powerful and complex grouped queries. Finally, we’ll

round out the day with some data analysis using mapreduce, similar to what

we did with Riak.

Day 2: Indexing, Grouping, Mapreduce • 151

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Indexing: When Fast Isn’t Fast Enough

One of Mongo’s useful built-in features is indexing to increase query perfor-

mance—something, as we’ve seen, that’s not available on all NoSQL

databases. MongoDB provides several of the best data structures for indexing,

such as the classic B-tree, and other additions such as two-dimensional and

spherical GeoSpatial indexes.

For now we’re going to do a little experiment to see the power of MongoDB’s

B-tree index by populating a series of phone numbers with a random country

prefix (feel free to replace this code with your own country code). Enter the

following code into your console. This will generate 100,000 phone numbers

(it may take a while), between 1-800-555-0000 and 1-800-565-9999.

mongo/populate_phones.js

populatePhones = function(area,start,stop) {
for(var i=start; i < stop; i++) {

var country = 1 + ((Math.random() * 8) << 0);
var num = (country * 1e10) + (area * 1e7) + i;
db.phones.insert({

_id: num,
components: {
country: country,
area: area,
prefix: (i * 1e-4) << 0,
number: i

},
display: "+" + country + " " + area + "-" + i

});
}

}

Run the function with a three-digit area code (like 800) and a range of seven-

digit numbers (5,550,000 to 5,650,000—please verify your zeros when typing).

populatePhones(800, 5550000, 5650000)
db.phones.find().limit(2)

{ "_id" : 18005550000, "components" : { "country" : 1, "area" : 800,
"prefix" : 555, "number" : 5550000 }, "display" : "+1 800-5550000" }

{ "_id" : 88005550001, "components" : { "country" : 8, "area" : 800,
"prefix" : 555, "number" : 5550001 }, "display" : "+8 800-5550001" }

Whenever a new collection is created, Mongo automatically creates an index

by the _id. These indexes can be found in the system.indexes collection. The fol-

lowing query shows all indexes in the database:

db.system.indexes.find()

{ "name" : "_id_", "ns" : "book.phones", "key" : { "_id" : 1 } }

152 • Chapter 5. MongoDB

http://media.pragprog.com/titles/rwdata/code/mongo/populate_phones.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Most queries will include more fields than just the _id, so we need to make

indexes on those fields.

We’re going to create a B-tree index on the display field. But first, let’s verify

that the index will improve speed. To do this, we’ll first check a query without

an index. The explain() method is used to output details of a given operation.

db.phones.find({display: "+1 800-5650001"}).explain()

{
"cursor" : "BasicCursor",
"nscanned" : 109999,
"nscannedObjects" : 109999,
"n" : 1,
"millis" : 52,
"indexBounds" : {
}

}

Your output will not equal ours, but note the millis field—milliseconds to

complete the query—will likely be double digits.

We create an index by calling ensureIndex(fields,options) on the collection. The fields
parameter is an object containing the fields to be indexed against. The options
parameter describes the type of index to make. In this case, we’re building a

unique index on display that should just drop duplicate entries.

db.phones.ensureIndex(
{ display : 1 },
{ unique : true, dropDups : true }

)

Now try find() again, and check explain() to see whether the situation improves.

db.phones.find({ display: "+1 800-5650001" }).explain()

{
"cursor" : "BtreeCursor display_1",
"nscanned" : 1,
"nscannedObjects" : 1,
"n" : 1,
"millis" : 0,
"indexBounds" : {

"display" : [
[

"+1 800-5650001",
"+1 800-5650001"

]
]

}
}

Day 2: Indexing, Grouping, Mapreduce • 153

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The millis value changed from 52 to 0—an infinity improvement (52 / 0)! Just

kidding, but it is an orders of magnitude speedup. Also notice the cursor

changed from a Basic to a B-tree cursor (it’s called a cursor because it points

to where values are stored; it doesn’t contain them). Mongo is no longer doing

a full collection scan but instead walking the tree to retrieve the value.

Importantly, scanned objects dropped from 109999 to 1—since it has become

just a unique lookup.

explain() is a useful function, but you’ll use it only when testing specific query

calls. If you need to profile in a normal test or production environment, you’ll

need the system profiler.

Let’s set the profiling level to 2 (level 2 stores all queries; profiling level 1

stores only slower queries greater than 100 milliseconds) and then run find()
as normal.

db.setProfilingLevel(2)
db.phones.find({ display : "+1 800-5650001" })

This will create a new object in the system.profile collection, which you can read

as any other table. ts is the timestamp of when the query was performed, info

is a string description of the operation, and millis is the length of time it took.

db.system.profile.find()

{
"ts" : ISODate("2011-12-05T19:26:40.310Z"),
"op" : "query",
"ns" : "book.phones",
"query" : { "display" : "+1 800-5650001" },
"responseLength" : 146,
"millis" : 0,
"client" : "127.0.0.1",
"user" : ""

}

Like yesterday’s nested queries, Mongo can build your index on nested values.

If you wanted to index on all area codes, use the dot-notated field representa-

tion: components.area. In production, you should always build indexes in the

background using the { background : 1 } option.

db.phones.ensureIndex({ "components.area": 1 }, { background : 1 })

If we find() all of the system indexes for our phones collection, the new one should

appear last. The first index is always automatically created to quickly look

up by _id, and the second is the unique index we made previously.

154 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

db.system.indexes.find({ "ns" : "book.phones" })

{
"name" : "_id_",
"ns" : "book.phones",
"key" : { "_id" : 1 }

}
{

"_id" : ObjectId("4d2c96d1df18c2494fa3061c"),
"ns" : "book.phones",
"key" : { "display" : 1 },
"name" : "display_1",
"unique" : true,
"dropDups" : true

}
{

"_id" : ObjectId("4d2c982bdf18c2494fa3061d"),
"ns" : "book.phones",
"key" : { "components.area" : 1 },
"name" : "components.area_1"

}

Our book.phones indexes have rounded out quite nicely.

We should close this section by noting that creating an index on a large col-

lection can be slow and resource-intensive. You should always consider these

impacts when building an index by creating indexes off-peak times, running

index creation in the background, and running them manually rather than

using automated index creation. There are plenty more indexing tricks and

tips online, but these are the basics that are good to know.

Aggregated Queries

The queries we investigated yesterday are useful for basic extraction of data,

but any post-processing would be up to you to handle. For example, say we

wanted to count the phone numbers greater than 559–9999; we would prefer

the database perform such a count on the back end. Like in PostgreSQL,

count() is the most basic aggregator. It takes a query and returns a number

(of matches).

db.phones.count({'components.number': { $gt : 5599999 } })

50000

To see the power of the next few aggregating queries, let’s add another 100,000

phone numbers to our phones collection, this time with a different area code.

populatePhones(855, 5550000, 5650000)

Day 2: Indexing, Grouping, Mapreduce • 155

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Change Is Good

Aggregated queries return a structure other than the individual documents we’re

used to. count() aggregates the result into a count of documents, distinct() aggregates

the results into an array of results, and group() returns documents of its own design.

Even mapreduce generally takes a bit of effort to retrieve objects that resemble your

internal stored documents.

The distinct() command returns each matching value (not a full document)

where one or more exists. We can get the distinct component numbers that

are less than 5,550,005 in this way:

db.phones.distinct('components.number', {'components.number': { $lt : 5550005 } })

[5550000, 5550001, 5550002, 5550003, 5550004]

Although we have two 5,550,000 numbers (one with an 800 area code and

one with 855), it appears in the list only once.

The group() aggregate query is akin to GROUP BY in SQL. It’s also the most com-

plex basic query in Mongo. We can count all phone numbers greater than

5,599,999 and group the results into different buckets keyed by area code.

key is the field we want to group by, cond (condition) is the range of values

we’re interested in, and reduce takes a function that manages how the values

are to be output.

Remember mapreduce from the Riak chapter? Our data is already mapped

into our existing collection of documents. No more mapping is necessary;

simply reduce the documents.

db.phones.group({
initial: { count:0 },
reduce: function(phone, output) { output.count++; },
cond: { 'components.number': { $gt : 5599999 } },
key: { 'components.area' : true }

})

[{ "800" : 50000, "855" : 50000 }]

The following two examples are, admittedly, odd use cases. They serve only

to show the flexibility of group().

You can easily replicate the count() function with the following group() call. Here

we leave off the aggregating key:

db.phones.group({
initial: { count:0 },
reduce: function(phone, output) { output.count++; },

156 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

cond: { 'components.number': { $gt : 5599999 } }
})

[{ "count" : 100000 }]

The first thing we did here was set an initial object with a field named count
set to 0—fields created here will appear in the output. Next we describe what

to do with this field by declaring a reduce function that adds one for every

document we encounter. Finally, we gave group a condition restricting which

documents to reduce over. Our result was the same as count() because our

condition was the same. We left off a key, since we want every document

encountered added to our list.

We can also replicate the distinct() function. For performance sake, we’ll start

by creating an object to store the numbers as fields (we’re effectively creating

an ad hoc set). In the reduce function (which is run for each matching docu-

ment), we just set the value to 1 as a placeholder (it’s the field we want).

Technically this is all we need. However, if we want to really replicate distinct(),
we should return an array of integers. So, we add a finalize(out) method that is

run one last time before returning a value to convert the object into an array

of field values. The function then converts those number strings into integers

(if you really want to see the sausage being made, run the following without

the finalize function set).

db.phones.group({
initial: { prefixes : {} },
reduce: function(phone, output) {
output.prefixes[phone.components.prefix] = 1;

},
finalize: function(out) {

var ary = [];
for(var p in out.prefixes) { ary.push(parseInt(p)); }
out.prefixes = ary;

}
})[0].prefixes

[555, 556, 557, 558, 559, 560, 561, 562, 563, 564]

The group() function is powerful—like SQL’s GROUP BY—but Mongo’s implemen-

tation has a downside, too. First, you are limited to a result of 10,000

documents. Moreover, if you shard your Mongo collection (which we will to-

morrow) group() won’t work. There are also much more flexible ways of crafting

queries. For these and other reasons, we’ll dive into MongoDB’s version of

mapreduce in just a bit. But first, we’ll touch on the boundary between client-

side and server-side commands, which is a distinction that has important

consequences for your applications.

Day 2: Indexing, Grouping, Mapreduce • 157

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Server-Side Commands

If you were to run the following function through a command line (or through

a driver), the client will pull each phone locally, all 100,000 of them, and save

each phone document one by one to the server.

mongo/update_area.js

update_area = function() {
db.phones.find().forEach(

function(phone) {
phone.components.area++;
phone.display = "+"+
phone.components.country+" "+
phone.components.area+"-"+
phone.components.number;

db.phone.update({ _id : phone._id }, phone, false);
}

)
}

However, the Mongo db object provides a command named eval(), which passes

the given function to the server. This dramatically reduces chatter between

the client and server since the code is executed remotely.

> db.eval(update_area)

In addition to evaluating JavaScript functions, there are several other prebuilt

commands in Mongo, most of which are executed on the server, although

some require executing only under the admin database (which you can access

by entering use admin).

> use admin
> db.runCommand("top")

The top command will output access details about all collections on the server.

> use book
> db.listCommands()

On running listCommands(), you may notice a lot of commands we’ve used. In

fact, you can execute many common commands through the runCommand()
method, such as counting the number of phones. However, you may notice

a slightly different output.

> db.runCommand({ "count" : "phones" })
{ "n" : 100000, "ok" : 1 }

The number (n) returned is correct (100,000), but the format is an object with

an ok field. That’s because db.phones.count() is a wrapper function created for

our convenience by the shell’s JavaScript interface, whereas runCommand() is

158 • Chapter 5. MongoDB

http://media.pragprog.com/titles/rwdata/code/mongo/update_area.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

a count executed on the server. Remember that we can play detective on how

a function like count() works by leaving off the calling parentheses.

> db.phones.count
function (x) {

return this.find(x).count();
}

Interesting! collection.count() is just a convenience wrapper for calling count() on

the results of find() (which itself is just a wrapper for a native query object that

returns a cursor pointing to results). If you run that query...

> db.phones.find().count

you will get a much larger function (too much to print here). But look in the

code, and after a bunch of setup, you’ll find lines like this:

var res = this._db.runCommand(cmd);
if (res && res.n != null) {

return res.n;
}

Double interesting! count() executes runCommand() and returns the value from

the n field.

runCommand

And while we’re digging into how methods work, let’s take a look at the runCom-
mand() function.

> db.runCommand
function (obj) {

if (typeof obj == "string") {
var n = {};
n[obj] = 1;
obj = n;

}
return this.getCollection("$cmd").findOne(obj);

}

It turns out that runCommand() is also a helper function that wraps a call to a

collection named $cmd. You can execute any command using a call directly

to this collection.

> db.$cmd.findOne({'count' : 'phones'})
{ "n" : 100000, "ok" : 1 }

This is bare-metal and how drivers generally communicate to the Mongo

server.

Day 2: Indexing, Grouping, Mapreduce • 159

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Diversion

We took this diversion for two reasons:

• To drive home the idea that most of the magic you execute on the mongo
console is executed on the server, not the client, which just provides

convenient wrapper functions.

• We can leverage the concept of executing server-side code for our own

gain to create something in MongoDB that’s similar to the stored proce-

dures we saw in PostgreSQL.

Any JavaScript function can be stored in a special collection named system.js.
This is a normal collection; you just save the function by setting the name as

the _id, and value is the function object.

> db.system.js.save({
_id:'getLast',
value:function(collection){

return collection.find({}).sort({'_id':1}).limit(1)[0]
}

})

What we normally would do next is execute it on the server directly. The eval()
function passes the string to the server, evaluates it as JavaScript code, and

returns the results.

> db.eval('getLast(db.phones)')

It should return the same values as calling getLast(collection) locally.

> db.system.js.findOne({'_id': 'getLast'}).value(db.phones)

It’s worth mentioning that eval() blocks the mongod as it runs, so it’s mainly

useful for quick one-offs and tests, not common production procedures. You

can use this function inside $where and mapreduce, too. We have the last

weapon in our arsenal to begin executing mapreduce in MongoDB.

Mapreduce (and Finalize)

The Mongo mapreduce pattern is similar to Riak’s, with a few small differences.

Rather than the map() function returning a converted value, Mongo requires

your mapper to call an emit() function with a key. The benefit here is that you

can emit more than once per document. The reduce() function accepts a single

key and a list of values that were emitted to that key. Finally, Mongo provides

an optional third step called finalize(), which is executed only once per mapped

value after the reducers are run. This allows you to perform any final calcu-

lations or cleanup you may need.

160 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Since we already know the basics of mapreduce, we’ll skip the intro wading-

pool example and go right to the high-dive. Let’s generate a report that counts

all phone numbers that contain the same digits for each country. First we’ll

store a helper function that extracts an array of all distinct numbers (under-

standing how this helper works is not imperative to understanding the overall

mapreduce).

mongo/distinct_digits.js

distinctDigits = function(phone){
var

number = phone.components.number + '',
seen = [],
result = [],
i = number.length;

while(i--) {
seen[+number[i]] = 1;

}
for (i=0; i<10; i++) {

if (seen[i]) {
result[result.length] = i;

}
}
return result;

}
db.system.js.save({_id: 'distinctDigits', value: distinctDigits})

Load the file in the mongo command line. If the file exists in the same directory

you launched mongo from, you need only the filename; otherwise, a full path

is required.

> load('distinct_digits.js')

With all that in, we can do a quick test (if you have some trouble, don’t feel

shy about adding a smattering of print() functions).

db.eval("distinctDigits(db.phones.findOne({ 'components.number' : 5551213 }))")

[1, 2, 3, 5]

Now we can get to work on the mapper. As with any mapreduce function,

deciding what fields to map by is a crucial decision, since it dictates the

aggregated values that you return. Since our report is finding distinct num-

bers, the array of distinct values is one field. But since we also need to query

by country, that is another field. We add both values as a compound key:

{digits : X, country : Y}.

Day 2: Indexing, Grouping, Mapreduce • 161

http://media.pragprog.com/titles/rwdata/code/mongo/distinct_digits.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Our goal is to simply count these values, so we emit the value 1 (each docu-

ment represents one item to count). The reducer’s job is to sum all those 1s

together.

mongo/map_1.js

map = function() {
var digits = distinctDigits(this);
emit({digits : digits, country : this.components.country}, {count : 1});

}

mongo/reduce_1.js

reduce = function(key, values) {
var total = 0;
for(var i=0; i<values.length; i++) {

total += values[i].count;
}
return { count : total };

}

results = db.runCommand({
mapReduce: 'phones',
map: map,
reduce: reduce,
out: 'phones.report'

})

Since we set the collection name via the out parameter (out : 'phones.report'), you

can query the results like any other. It’s a materialized view that you can see

in the show tables list.

> db.phones.report.find({'_id.country' : 8})
{
"_id" : { "digits" : [0, 1, 2, 3, 4, 5, 6], "country" : 8 },
"value" : { "count" : 19 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5], "country" : 8 },
"value" : { "count" : 3 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5, 6], "country" : 8 },
"value" : { "count" : 48 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5, 6, 7], "country" : 8 },
"value" : { "count" : 12 }

}
has more

162 • Chapter 5. MongoDB

http://media.pragprog.com/titles/rwdata/code/mongo/map_1.js
http://media.pragprog.com/titles/rwdata/code/mongo/reduce_1.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Type it to continue iterating through the results. Note the unique emitted keys

are under the field _ids, and all of the data returned from the reducers are

under the field value.

If you prefer that the mapreducer just output the results, rather than out-

putting to a collection, you can set the out value to { inline : 1 }, but bear in

mind there is a limit to the size of a result you can output. As of Mongo 2.0,

that limit is 16MB.

Recall from the Riak chapter that reducers can have either mapped (emitted)

results or other reducer results as inputs. Why would the output of one

reducer feed into the input of another if they are mapped to the same key?

Think of how this would look if run on separate servers, as shown in Figure

22, A Mongo map reduce call over two servers, on page 164.

Each server must run its own map() and reduce() functions and then push those

results to be merged with the service that initiated the call, gathering them

up. Classic divide and conquer. If we had renamed the output of the reducer

to total instead of count, we would have needed to handle both cases in the

loop, as shown here:

mongo/reduce_2.js

reduce = function(key, values) {
var total = 0;
for(var i=0; i<values.length; i++) {

var data = values[i];
if('total' in data) {
total += data.total;

} else {
total += data.count;

}
}
return { total : total };

}

However, Mongo predicted that you might need to perform some final changes,

such as rename a field or some other calculations. If we really need the output

field to be total, we can implement a finalize() function, which works the same

way as the finalize function under group().

Day 2 Wrap-Up

On Day 2 we’ve expanded our query power by including several aggregate

queries: count(), distinct(), and topped off by group(). To speed up the response

time of these queries, we used MongoDB’s indexing options. When more

power is required, the ever-present mapReduce() is available.

Day 2: Indexing, Grouping, Mapreduce • 163

http://media.pragprog.com/titles/rwdata/code/mongo/reduce_2.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

mongos

mongod 1 mongod 2

map map map

reduce

map map map

reduce

reduce

db.runCommand({'mapReduce'...})

Figure 22—A Mongo map reduce call over two servers

Day 2 Homework

Find

1. A shortcut for admin commands.

2. The online documentation for queries and cursors.

3. The MongoDB documentation for mapreduce.

4. Through the JavaScript interface, investigate the code for three collections

functions: help(), findOne(), and stats().

Do

1. Implement a finalize method to output the count as the total.

2. Install a Mongo driver for a language of your choice, and connect to the

database. Populate a collection through it, and index one of the fields.

164 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

5.4 Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS

Mongo has a powerful ability to store and query data in a variety of ways. But

then again, so can other databases. What makes document databases unique

is their ability to efficiently handle arbitrarily nested, schemaless data docu-

ments. What makes Mongo special in the realm of document stores is its

ability to scale across several servers, by replicating (copying data to other

servers) or sharding collections (splitting a collection into pieces) and perform-

ing queries in parallel. Both promote availability.

Replica Sets

Mongo was built to scale out, not to run stand-alone. It was built for data

consistency and partition tolerance, but sharding data has a cost: if one part

of a collection is lost, the whole thing is compromised. What good is querying

against a collection of countries that contains only the western hemisphere?

Mongo deals with this implicit sharding weakness in a simple manner:

duplication. You should rarely run a single Mongo instance in production

but rather replicate the stored data across multiple services.

Rather than muck with our existing database, today we’ll start from scratch

and spawn a few new servers. Mongo’s default port is 27017, so we’ll start

up each server on other ports. Recall you must create the data directories

first, so create three of them:

$ mkdir ./mongo1 ./mongo2 ./mongo3

Next we’ll fire up the Mongo servers. This time we’ll add the replSet flag with

the name book and specify the ports. While we’re at it, let’s turn on the REST

flag so we can use the web interface.

$ mongod --replSet book --dbpath ./mongo1 --port 27011 --rest

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 165

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Open another terminal window, and run the next command, which launches

another server, pointing to a different directory, available on another port.

Then open a third terminal to start the third server.

$ mongod --replSet book --dbpath ./mongo2 --port 27012 --rest
$ mongod --replSet book --dbpath ./mongo3 --port 27013 --rest

Notice that you get a lot of this noise on the output.

[startReplSets] replSet can't get local.system.replset config from self \
or any seed (EMPTYCONFIG)

That’s a good thing; we’ve yet to initialize our replica set, and Mongo is letting

us know that. Fire up a mongo shell to one of the servers, and execute the

rs.initiate() function.

$ mongo localhost:27011
> rs.initiate({
_id: 'book',
members: [

{_id: 1, host: 'localhost:27011'},
{_id: 2, host: 'localhost:27012'},
{_id: 3, host: 'localhost:27013'}

]
})
> rs.status()

Notice we’re using a new object called rs (replica set). Like other objects, it

has a help() method you can call. Running the status() command will let us

know when our replica set is running, so just keep checking the status for

completion before continuing. If you watch the three server outputs, you

should see that one server outputs this line:

[rs Manager] replSet PRIMARY

And two servers will have the following output:

[rs_sync] replSet SECONDARY

PRIMARY will be the master server. Chances are, this will be the server on port

27011 (since it started first); however, if it’s not, go ahead and fire up a console

to the primary. Just insert any old thing on the command line, and we’ll try

an experiment.

> db.echo.insert({ say : 'HELLO!' })

After the insert, exit the console, and then let’s test that our change has been

replicated by shutting down the master node; pressing CTRL+C is sufficient. If

you watch the logs of the remaining two servers, you should see that one of

the two has now been promoted to master (it will output the replSet PRIMARY

166 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

line). Open a console into that machine (for us it was localhost:27012), and

db.echo.find() should contain your value.

We’ll play one more round of our console-shuffle game. Open a console into

the remaining SECONDARY server. Just to be sure, run the isMaster() function.

Ours looked like this:

$ mongo localhost:27013
MongoDB shell version: 1.6.2
connecting to: localhost:27013/test
> db.isMaster()
{

"setName" : "book",
"ismaster" : false,
"secondary" : true,
"hosts" : [

"localhost:27013",
"localhost:27012",
"localhost:27011"

],
"primary" : "localhost:27012",
"ok" : 1

}

In this shell, let’s attempt to insert another value.

> db.echo.insert({ say : 'is this thing on?' })
not master

The message not master is letting us know that we cannot write to a secondary

node. Nor can you directly read from it. There is only one master per replica

set, and you must interact with it. It is the gatekeeper to the set.

Replicating data has its own issues not found in single-source databases. In

the Mongo setup, one problem is deciding who gets promoted when a master

node goes down. Mongo deals with this by giving each mongod service a vote,

and the one with the freshest data is elected the new master. Right now you

should still have two mongod services running. Go ahead and shut down the

current master. Remember, when we did this with three nodes, one of the

others just got promoted to be the new master. But this time something dif-

ferent happened. The output of the last remaining server will be something

like this:

[ReplSetHealthPollTask] replSet info localhost:27012 is now down (or...
[rs Manager] replSet can't see a majority, will not try to elect self

This comes down to the Mongo philosophy of server setups and the reason

we should always have an odd number of servers (three, five, and so on).

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 167

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Go ahead and relaunch the other servers and watch the logs. When the nodes

are brought back up, they go into a recovery state and attempt to resync their

data with the new master node. “What a minute!?” (we hear you cry). “So,

what if the original master had data that did not yet propagate?” Those

operations are dropped. A write in a Mongo replica set isn’t considered suc-

cessful until most nodes have a copy of the data.

The Problem with Even Nodes

The concept of replication is easy enough to grasp: you write to one MongoDB

server, and that data is duplicated across others within the replica set. If one

server is unavailable, then one of the others can be promoted and serve

requests. But there are more ways a server can be unavailable than a server

crash. Sometimes, the network connection between nodes is down. In that

case, Mongo dictates that a majority of nodes that can still communicate make

up the network.

MongoDB expects an odd number of total nodes in the replica set. Consider

a five-node network, for example. If connection issues split it into a three-

node fragment and a two-node fragment, the larger fragment has a clear

majority and can elect a master and continue servicing requests. With no

clear majority, a quorum couldn’t be reached.

To see why an odd number of nodes is preferred, consider what might happen

to a four-node replica set. Say a network partition causes two of the servers

to lose connectivity from the other two. One set will have the original master,

but since it can’t see a clear majority of the network, the master steps down.

The other set will similarly be unable to elect a master because it too can’t

communicate with a clear majority of nodes. Both sets are now unable to

process requests and the system is effectively down. Having an odd number

of total nodes would have made this particular scenario—a fragmented network

where each fragment has less than a clear majority—less likely to occur.

Some databases (e.g., CouchDB) are built to allow multiple masters, but

Mongo is not, and so it isn’t prepared to resolve data updates between them.

MongoDB deals with conflicts between multiple masters by simply not

allowing them.

Unlike, say, Riak, Mongo always knows the most recent value; the client

needn’t decide. Mongo’s concern is strong consistency on writes, and prevent-

ing a multimaster scenario is not a bad method for achieving it.

168 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Voting and Arbiters

You may not always want to have an odd number of servers replicating data. In that

case, you can either launch an arbiter (generally recommended) or increase voting

rights on your servers (generally not recommended). In Mongo, an arbiter is a voting

but nonreplicating server in the replica set. You launch it just like any other server,

but on configuration set a flag, like this: {_id: 3, host: 'localhost:27013', arbiterOnly : true}.
Arbiters are useful for breaking ties, like the U.S. vice president in the Senate. By

default each mongod instance has a single vote.

Sharding

One of the central reasons for Mongo to exist is to safely and quickly handle

very large datasets. The clearest method of achieving this is through horizontal

sharding by value ranges—or just sharding for brevity. Rather than a single

server hosting all values in a collection, some range of values are split (or in

other words, sharded) onto other servers. For example, in our phone numbers

collection, we may put all phone numbers less than 1-500-000-0000 onto

Mongo server A and put numbers greater than or equal to 1-500-000-0001

onto a server B. Mongo makes this easier by autosharding, managing this

division for you.

Let’s launch a couple of (nonreplicating) mongod servers. Like replica sets,

there’s a special parameter necessary to be considered a shard server (which

just means this server is capable of sharding).

$ mkdir ./mongo4 ./mongo5
$ mongod --shardsvr --dbpath ./mongo4 --port 27014
$ mongod --shardsvr --dbpath ./mongo5 --port 27015

Now we need a server to actually keep track of our keys. Imagine we created

a table to store city names alphabetically. We need some way to know that

(for example) cities starting with A–N go to server mongo4 and O–Z go to

server mongo5. In Mongo you create a config server (which is just a regular

mongod) that keeps track of which server (mongo4 or mongo5) owns what val-

ues.

$ mkdir ./mongoconfig
$ mongod --configsvr --dbpath ./mongoconfig --port 27016

Finally, we need to run a fourth server called mongos, which is the single point

of entry for our clients. The mongos server will connect to the mongoconfig config

server to keep track of the sharding information stored there. We’ll set it on

port 27020 with a chunkSize of 1. (Our chunkSize is 1MB, which is the smallest

value allowed. This is just for our small dataset, so we can watch sharding

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 169

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

mongos vs. mongoconfig
You may wonder why Mongo separates configuration and the mongos point of entry into

two different servers. This is because in production environments they will generally

live on different physical servers. The config server (itself replicated) manages the

sharded information for other sharded servers, while mongos will likely live on your

local application server where clients can easily connect (without needing to manage

which shards to connect to).

take place. In production you’d use the default or a much bigger number.)

We point mongos to the config server:port with the --configdb flag.

$ mongos --configdb localhost:27016 --chunkSize 1 --port 27020

A neat thing about mongos is that it is a lightweight clone of a full mongod
server. Nearly any command you can throw at a mongod, you can throw at a

mongos, which makes it the perfect go-between for clients to connect to multiple

sharded servers. A picture of our server setup may help (Figure 23, Our little

baby sharded cluster, on page 171).

Now let’s jump into the mongos server console on the admin database. We’re

going to configure some sharding.

$ mongo localhost:27020/admin
> db.runCommand({ addshard : "localhost:27014" })
{ "shardAdded" : "shard0000", "ok" : 1 }
> db.runCommand({ addshard : "localhost:27015" })
{ "shardAdded" : "shard0001", "ok" : 1 }

With that set up, now we have to give it the database and collection to shard

and the field to shard by (in our case, the city name).

> db.runCommand({ enablesharding : "test" })
{ "ok" : 1 }
> db.runCommand({ shardcollection : "test.cities", key : {name : 1} })
{ "collectionsharded" : "test.cities", "ok" : 1 }

With all that setup out of the way, let’s load some data. If you download the

book code, you’ll find a 12MB data file named mongo_cities1000.json that contains

data for every city in the world with a population of more than 1,000 people.

Download that file, and run the following import script that imports the data

into our mongos server:

$ mongoimport -h localhost:27020 -db test --collection cities \
--type json mongo_cities1000.json

170 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

shard1
(mongod)

shard2
(mongod)

mongos

config
(mongod)

clients

Figure 23—Our little baby sharded cluster

From the mongos console, type use test to go back to the test environment from

the admin environment.

GeoSpatial Queries

Mongo has a neat trick built into it. Although we’ve focused on server setups

today, no day would be complete without a little bit of razzle-dazzle, and that’s

Mongo’s ability to quickly perform geospatial queries. First connect to the

mongos sharded server.

$ mongo localhost:27020

The core of the geospatial secret lies in indexing. It’s a special form of indexing

geographic data called geohash that not only finds values of a specific value

or range quickly but finds nearby values quickly in ad hoc queries. Conve-

niently, at the end of our previous section, we installed a lot of geographic

data. So to query it, step 1 is to index the data on the location field. The 2d

index must be set on any two value fields, in our case a hash (for example,

{ longitude:1.48453, latitude:42.57205 }), but it could easily have been an array (for

example, [1.48453, 42.57205]).

> db.cities.ensureIndex({ location : "2d" })

If we were not dealing with a sharded collection, we could easily query for

cities at or near a location. However, the following will work only with non-

sharded collections in our current version of Mongo.

> db.cities.find({ location : { $near : [45.52, -122.67] } }).limit(5)

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 171

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This should be patched in future versions for sharded collections. But in the

meantime, to query a sharded cities collection for other cities near a location,

use the geoNear() command. Here is a sample of what it can return:

> db.runCommand({geoNear : 'cities', near : [45.52, -122.67],
num : 5, maxDistance : 1})

{
"ns" : "test.cities",
"near" : "1000110001000000011100101011100011001001110001111110",
"results" : [

{
"dis" : 0.007105400003747849,
"obj" : {
"_id" : ObjectId("4d81c216a5d037634ca98df6"),
"name" : "Portland",
...

}
},
...

],
"stats" : {

"time" : 0,
"btreelocs" : 53,
"nscanned" : 49,
"objectsLoaded" : 6,
"avgDistance" : 0.02166813996454613,
"maxDistance" : 0.07991909980773926

},
"ok" : 1

}

geoNear() also helps with troubleshooting geospatial commands. It returns a

gold mine of useful information such as distance from the queried point,

average and max distance of the returned set, and index information.

GridFS

One downside of a distributed system can be the lack of a single coherent

filesystem. Say you operate a website where users can upload images of

themselves. If you run several web servers on several different nodes, you

must manually replicate the uploaded image to each web server’s disk or

create some alternative central system. Mongo handles this scenario by its

own distributed filesystem called GridFS.

Mongo comes bundled with a command-line tool for interacting with the

GridFS. The great thing is we don’t have to set up anything special to use it.

If we list the files in the mongos managed shards using the command mongofiles,
we get an empty list.

172 • Chapter 5. MongoDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ mongofiles -h localhost:27020 list

connected to: localhost:27020

But upload any file.

$ mongofiles -h localhost:27020 put my_file.txt

connected to: localhost:27020
added file: { _id: ObjectId('4d81cc96939936015f974859'), filename: "my_file.txt", \
chunkSize: 262144, uploadDate: new Date(1300352150507), \
md5: "844ab0d45e3bded0d48c2e77ed4f3b0e", length: 3067 }

done!

And voila! If we list the contents of mongofiles, we’ll find the uploaded name

name.

$ mongofiles -h localhost:27020 list

connected to: localhost:27020
my_file.txt 3067

Back in our mongo console, we can see the collections Mongo stores the data

in.

> show collections

cities
fs.chunks
fs.files
system.indexes

Since they’re just plain old collections, they can be replicated or queried like

any other.

Day 3 Wrap-Up

This wraps up our investigation of MongoDB. Today we focused on how

Mongo enhances data durability with replica sets and supports horizontal

scaling with sharding. We looked at good server configurations and how

Mongo provides the mongos server to act as a relay for handling autosharding

between multiple nodes. Finally, we toyed with some of Mongo’s built-in tools,

such as geospatial queries and GridFS.

Day 3 Homework

Find

1. Read the full replica set configuration options in the online docs.

2. Find out how to create a spherical geo index.

Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS • 173

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Do

1. Mongo has support for bounding shapes (namely, squares and circles).

Find all cities within a 50-mile box around the center of London.3

2. Run six servers: three servers in a replica set, and each replica set is one

of two shards. Run a config server and mongos. Run GridFS across them

(this is the final exam).

5.5 Wrap-Up

We hope this taste of MongoDB has piqued your fancy and showed you how

it earns the moniker of the “humongous” database. We covered a lot in a

single chapter, but as usual, we only clawed at the surface.

Mongo’s Strengths

Mongo’s primary strength lies in its ability to handle huge amounts of data

(and huge amounts of requests) by replication and horizontal scaling. But it

also has an added benefit of a very flexible data model, since you needn’t ever

conform to a schema and can simply nest any values you would generally

join using SQL in an RDBMS anyway.

Finally, MongoDB was built to be easy to use. You may have noticed the

similarity between Mongo commands and SQL database concepts (minus the

server-side joins). This is not by accident and is one reason Mongo is gaining

so much mind share from former object-relational model (ORM) users. It’s

different enough to scratch a lot of developer itches but not so different it

becomes a wholly different and scary monster.

Mongo’s Weaknesses

How Mongo encourages denormalization of schemas (by not having any) might

be a bit too much for some to swallow. Some developers find the cold, hard

constraints of a relational database reassuring. It can be dangerous to insert

any old value of any type into any collection. A single typo can cause hours

of headache if you don’t think to look at field names and collection names as

a possible culprit. Mongo’s flexibility is generally not important if your data

model is already fairly mature and locked down.

Because Mongo is focused on large datasets, it works best in large clusters,

which can require some effort to design and manage. Unlike Riak, where

3. http://www.mongodb.org/display/DOCS/Geospatial+Indexing

174 • Chapter 5. MongoDB

http://www.mongodb.org/display/DOCS/Geospatial+Indexing
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

adding new nodes is transparent and relatively painless for operations, setting

up a Mongo cluster requires a little more forethought.

Parting Thoughts

Mongo is an excellent choice if you are currently using a relational database

to store your data through an ORM out of habit. We often recommend it to

Rails, Django, and Model-View-Controller (MVC) developers, since they can

then perform validations and field management through the models at the

application layer and because schema migrations become a thing of the past

(for the most part). Adding new fields to a document is as easy as adding a

new field to your data model, and Mongo will happily accept the new terms.

We find Mongo to be a much more natural answer to many common problem

scopes for application-driven datasets than relational databases.

Wrap-Up • 175

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 6

CouchDB

Ratchet wrenches are light and convenient tools you carry around for a range

of big and small jobs. Like power drills, you can swap out variously sized bits

like sockets or screws. Unlike a power drill that needs to be plugged into 120

volts of AC power, however, a wrench is happy to rest in your pocket and run

on elbow grease. Apache CouchDB is like that. Able to scale down as well as

up, CouchDB fits problem spaces of varying size and complexity with ease.

CouchDB is the quintessential JSON- and REST-based document-oriented

database. First released in 2005, CouchDB was designed with the Web in

mind and all the innumerable flaws, faults, failures, and glitches that come

with it. Consequently, CouchDB offers a robustness unmatched by most

other databases. Whereas other systems tolerate occasional network drops,

CouchDB thrives even when connectivity is only rarely available.

Somewhat like MongoDB, CouchDB stores documents—JSON objects consist-

ing of key-value pairs where values may be any of several types, including

other objects nested to any depth. There is no ad hoc querying, though;

indexed views produced by incremental mapreduce are the principal way you

find documents.

6.1 Relaxing on the Couch

CouchDB lives up to its tag line: relax. Instead of focusing only on big-iron

cluster installations, CouchDB aims to support a variety of deployment sce-

narios from the datacenter down to the smartphone. You can run CouchDB

on your Android phone, on your MacBook, and in your datacenter. Written

in Erlang, CouchDB is heartily built—the only way to shut it down is to kill

the process! With its append-only storage model, your data is virtually

incorruptible and easy to replicate, back up, and restore.

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CouchDB is document-oriented, using JSON as its storage and communication

language. Like Riak, all calls to CouchDB happen over its REST interface.

Replication can be one-way or bidirectional and ad hoc or continuous.

CouchDB gives you a lot of flexibility to decide how to structure, protect, and

distribute your data.

Comparing CouchDB and MongoDB

One of the big questions we wanted to address in this book is “What’s the

difference between CouchDB and MongoDB?” On the surface, CouchDB and

MongoDB—which we covered in Chapter 5, MongoDB, on page 135—can seem

quite similar. They’re both document-oriented datastores with an affinity for

JavaScript that use JSON for data transport. There are many differences,

though, ranging from project philosophy to implementation to scalability

characteristics. We’ll cover many of these as we explore the beautiful simplic-

ity of CouchDB.

During our three-day tour we’ll explore many of CouchDB’s compelling features

and design choices. We’ll start, as always, with individual CRUD commands

and then move on to indexing through mapreduce views. As we’ve done with

other databases, we’ll import some structured data and then use it to explore

some advanced concepts. Finally, we’ll develop some simple event-driven

client-side applications using Node.js and learn how CouchDB’s master-

master replication strategy deals with conflicting updates. Let’s get to it!

6.2 Day 1: CRUD, Futon, and cURL Redux

Today we’re going to kick-start our CouchDB exploration by using CouchDB’s

friendly Futon web interface to perform basic CRUD operations. After that,

we’ll revisit cURL—which we used to communicate with Riak in Chapter 3,

Riak, on page 51—to make REST calls. All libraries and drivers for CouchDB

end up sending REST requests under the hood, so it makes sense to start by

understanding how they work.

Getting Comfortable with Futon

CouchDB comes with a useful web interface called Futon. Once you have

CouchDB installed and running, open a web browser to http://localhost:5984/_utils/.
This will open the Overview page pictured in Figure 24, CouchDB Futon:

Overview page, on page 179.

Before we can start working with documents, we need to create a database

to house them. We’re going to create a database to store musicians along with

178 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 24—CouchDB Futon: Overview page

Figure 25—CouchDB Futon: creating a document

their album and track data. Click the Create Database... button. In the pop-

up, enter music and click Create. This will redirect you automatically to the

database’s page. From here, we can create new documents or open existing

ones.

On the music database’s page, click the New Document button. This will take

you to a new page that looks like Figure 25, CouchDB Futon: creating a docu-

ment, on page 179.

Day 1: CRUD, Futon, and cURL Redux • 179

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Welcome to Admin Party!

In Futon, you may notice the warning at the bottom of the right column explaining

that everyone is an admin. Were this destined to become a production server, your

next step would be to click the “Fix this” link and create an admin user to restrict

who can do what. In our case, leaving it open is fine for now and will make our other

tasks easier.

Just as in MongoDB, a document consists of a JSON object containing key-

value pairs called fields. All documents in CouchDB have an _id field, which

must be unique and can never be changed. You can specify an _id explicitly,

but if you don’t, CouchDB will generate one for you. In our case, the default

is fine, so click Save Document to finish.

Immediately after saving the document, CouchDB will assign it an additional

field called _rev. The _rev field will get a new value every time the document

changes. The format for the revision string consists of an integer followed by

a dash and then a pseudorandom unique string. The integer at the beginning

denotes the numerical revision—in this case 1.

Field names that begin with an underscore have special meaning to CouchDB,

and _id and _rev are particularly important. To update or delete an existing

document, you must provide both an _id and the matching _rev. If either of

these do not match, CouchDB will reject the operation. This is how it prevents

conflicts—by ensuring only the most recent document revisions are modified.

There are no transactions or locking in CouchDB. To modify an existing

record, you first read it out, taking note of the _id and _rev. Then, you request

an update by providing the full document, including the _id and _rev. All

operations are first come, first served. By requiring a matching _rev, CouchDB

ensures that the document you think you’re modifying hasn’t been altered

behind your back while you weren’t looking.

With the document page still open, click the Add Field button. In the Field

column, enter name, and in the Value column, enter The Beatles. Click the

green check mark next to the value to ensure it sticks, and then click the

Save Document button. Notice how the _rev field now begins with 2.

CouchDB is not limited to storing string values. It can handle any JSON

structure nested to any depth. Click the Add Field button again. This time,

set Field to albums, and for Value enter the following (this is not an exhaustive

list):

180 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 26—CouchDB Futon: document with an array value

[
"Help!",
"Sgt. Pepper's Lonely Hearts Club Band",
"Abbey Road"

]

After you click Save Document, it should look like Figure 26, CouchDB Futon:

document with an array value, on page 181.

There’s more relevant information about an album than just its name, so let’s

add some. Modify the albums field and replace the value you just set with this:

[{
"title": "Help!",
"year": 1965

},{
"title": "Sgt. Pepper's Lonely Hearts Club Band",
"year": 1967

},{
"title": "Abbey Road",
"year": 1969

}]

After you save the document, this time you should be able to expand the

albums value to expose the nested documents underneath. It should resemble

Figure 27, CouchDB Futon: document with deep nested values, on page 182.

Clicking the Delete Document button would do what you might expect; it

would remove the document from the music database. But don’t do it just yet.

Instead, let’s drop down to the command line and take a look at how to

communicate with CouchDB over REST.

Day 1: CRUD, Futon, and cURL Redux • 181

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 27—CouchDB Futon: document with deep nested values

Performing RESTful CRUD Operations with cURL

All communication with CouchDB is REST-based, and this means issuing

commands over HTTP. CouchDB isn’t the first database we’ve talked about

with this quality. Riak—covered in Chapter 3, Riak, on page 51—also relies

on REST for all client communication. And like we did with Riak, we can

communicate with CouchDB using the command-line tool cURL.

Here we’ll perform some basic CRUD operations before moving on to the

topic of views. To start, open a command prompt and run the following:

$ curl http://localhost:5984/
{"couchdb":"Welcome","version":"1.1.1"}

Issuing GET requests (cURL’s default) retrieves information about the thing

indicated in the URL. Accessing the root as you just did merely informs you

that CouchDB is up and running and what version is installed. Next let’s get

some information about the music database we created earlier (output formatted

here for readability):

$ curl http://localhost:5984/music/
{
"db_name":"music",
"doc_count":1,
"doc_del_count":0,
"update_seq":4,

182 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

"purge_seq":0,
"compact_running":false,
"disk_size":16473,
"instance_start_time":"1326845777510067",
"disk_format_version":5,
"committed_update_seq":4

}

This returns some information about how many documents are in the

database, how long the server has been up, and how many operations have

been performed.

Reading a Document with GET

To retrieve a specific document, append its _id to the database URL like so:

$ curl http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000ac4
{

"_id":"74c7a8d2a8548c8b97da748f43000ac4",
"_rev":"4-93a101178ba65f61ed39e60d70c9fd97",
"name":"The Beatles",
"albums": [

{
"title":"Help!",
"year":1965

},{
"title":"Sgt. Pepper's Lonely Hearts Club Band",
"year":1967

},{
"title":"Abbey Road",
"year":1969

}
]

}

In CouchDB, issuing GET requests is always safe. CouchDB won’t make any

changes to documents as the result of a GET. To make changes, you have to

use other HTTP commands like PUT, POST, and DELETE.

Creating a Document with POST

To create a new document, use POST. Make sure to specify a Content-Type

header with the value application/json; otherwise, CouchDB will refuse the

request.

$ curl -i -X POST "http://localhost:5984/music/" \
-H "Content-Type: application/json" \
-d '{ "name": "Wings" }'

HTTP/1.1 201 Created
Server: CouchDB/1.1.1 (Erlang OTP/R14B03)

Day 1: CRUD, Futon, and cURL Redux • 183

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Location: http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b
Date: Wed, 18 Jan 2012 00:37:51 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 95
Cache-Control: must-revalidate

{
"ok":true,
"id":"74c7a8d2a8548c8b97da748f43000f1b",
"rev":"1-2fe1dd1911153eb9df8460747dfe75a0"

}

The HTTP response code 201 Created tells us that our creation request was

successful. The body of the response contains a JSON object with useful

information such as the _id and _rev values.

Updating a Document with PUT

The PUT command is used to update an existing document or create a new

one with a specific _id. Just like GET, the URL for a PUT URL consists of the

database URL followed by the document’s _id.

$ curl -i -X PUT \
"http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b" \
-H "Content-Type: application/json" \
-d '{

"_id": "74c7a8d2a8548c8b97da748f43000f1b",
"_rev": "1-2fe1dd1911153eb9df8460747dfe75a0",
"name": "Wings",
"albums": ["Wild Life", "Band on the Run", "London Town"]

}'
HTTP/1.1 201 Created
Server: CouchDB/1.1.1 (Erlang OTP/R14B03)
Location: http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b
Etag: "2-17e4ce41cd33d6a38f04a8452d5a860b"
Date: Wed, 18 Jan 2012 00:43:39 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 95
Cache-Control: must-revalidate

{
"ok":true,
"id":"74c7a8d2a8548c8b97da748f43000f1b",
"rev":"2-17e4ce41cd33d6a38f04a8452d5a860b"

}

Unlike MongoDB, in which you modify documents in place, with CouchDB

you always overwrite the entire document to make any change. The Futon

web interface we saw earlier may have made it look like you could modify a

184 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

single field in isolation, but behind the scenes it was rerecording the whole

document when you hit Save.

As we mentioned earlier, both the _id and _rev fields must exactly match the

document being updated, or the operation will fail. To see how, try executing

the same PUT operation again.

HTTP/1.1 409 Conflict
Server: CouchDB/1.1.1 (Erlang OTP/R14B03)
Date: Wed, 18 Jan 2012 00:44:12 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 58
Cache-Control: must-revalidate

{"error":"conflict","reason":"Document update conflict."}

You’ll get an HTTP 409 Conflict response with a JSON object describing the

problem. This is how CouchDB enforces consistency.

Removing a Document with DELETE

Finally, we can use the DELETE operation to remove a document from the

database.

$ curl -i -X DELETE \
"http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b" \
-H "If-Match: 2-17e4ce41cd33d6a38f04a8452d5a860b"

HTTP/1.1 200 OK
Server: CouchDB/1.1.1 (Erlang OTP/R14B03)
Etag: "3-42aafb7411c092614ce7c9f4ab79dc8b"
Date: Wed, 18 Jan 2012 00:45:36 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 95
Cache-Control: must-revalidate

{
"ok":true,
"id":"74c7a8d2a8548c8b97da748f43000f1b",
"rev":"3-42aafb7411c092614ce7c9f4ab79dc8b"

}

The DELETE operation will supply a new revision number, even though the

document is gone. It’s worth noting that the document wasn’t really removed

from disk, but rather a new empty document was appended, flagging the

document as deleted. Just like with an update, CouchDB does not modify

documents in place. But for all intents and purposes, it’s deleted.

Day 1: CRUD, Futon, and cURL Redux • 185

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Day 1 Wrap-Up

Now that we’ve learned how to do basic CRUD operations in Futon and cURL,

we’re about ready to move onto more advanced topics. In Day 2 we’ll dig into

creating indexed views, which will provide other avenues for retrieving docu-

ments than just specifying them by their _id values.

Day 1 Homework

Find

1. Find the CouchDB HTTP Document API documentation online.

2. We’ve already used GET, POST, PUT, and DELETE. What other HTTP commands

are supported?

Do

1. Use cURL to PUT a new document into the music database with a specific

_id of your choice.

2. Use curl to create a new database with a name of your choice, and then

delete that database also via cURL.

3. Again using cURL, create a new document that contains a text document

as an attachment. Lastly, craft and execute a cURL request that will return

just that document’s attachment.

6.3 Day 2: Creating and Querying Views

In CouchDB, a view is a window into the documents contained in a database.

Views are the principal way that documents are accessed in all but trivial

cases—like those individual CRUD operations we saw in Day 1. Today, we’ll

discover how to create the functions that make up a view. We’ll also learn

how to perform ad hoc queries against views using cURL. Finally, we’ll import

music data, which will make the views more salient and demonstrate how to

use couchrest, a popular Ruby library for working with CouchDB.

Accessing Documents Through Views

A view consists of mapper and reducer functions that are used to generate

an ordered list of key-value pairs. Both keys and values can be any valid

JSON. The simplest view is called _all_docs. It is provided out of the box for all

databases and contains an entry for each document in the database, keyed

by its string _id.

186 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

To retrieve all the things in the database, issue a GET request for the _all_docs
view.

$ curl http://localhost:5984/music/_all_docs
{

"total_rows":1,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"74c7a8d2a8548c8b97da748f43000ac4",
"value":{
"rev":"4-93a101178ba65f61ed39e60d70c9fd97"

}
}]

}

You can see in the previous output the one document we’ve created so far.

The response is a JSON object that contains an array of rows. Each row is an

object with three fields:

• id is the document’s _id.
• key is the JSON key produced by the mapreduce functions.

• value is the associated JSON value, also produced through mapreduce.

In the case of _all_docs, the id and key fields match, but for custom views this

will almost never be the case.

By default, views won’t include all of each document’s content in the value
returned. To retrieve all of the document’s fields, add the include_docs=true URL

parameter.

$ curl http://localhost:5984/music/_all_docs?include_docs=true
{

"total_rows":1,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"74c7a8d2a8548c8b97da748f43000ac4",
"value":{
"rev":"4-93a101178ba65f61ed39e60d70c9fd97"

},
"doc":{
"_id":"74c7a8d2a8548c8b97da748f43000ac4",
"_rev":"4-93a101178ba65f61ed39e60d70c9fd97",
"name":"The Beatles",
"albums":[{

"title":"Help!",
"year":1965

},{
"title":"Sgt. Pepper's Lonely Hearts Club Band",

Day 2: Creating and Querying Views • 187

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

"year":1967
},{
"title":"Abbey Road",
"year":1969

}]
}

}]
}

Here you can see that the other properties name and albums have been added

to the value object in the output. With this basic structure in mind, let’s make

our own views.

Writing Your First View

Now that we’ve gotten a rough overview of how views work, let’s try creating

our own views. To start, we’ll reproduce the behavior of the _all_docs view, and

after that, we’ll make increasingly complex views to extract deeper information

from our documents for indexing.

To execute a temporary view, open a browser to Futon1 as we did in Day 1.

Next open the music database by clicking the link. In the upper-right corner

of the music database’s page, choose “Temporary view...” from the View drop-

down. It should bring you to a page that resembles Figure 28, CouchDB Futon:

temporary view, on page 189.

The code in the left Map Function box should look like this:

function(doc) {
emit(null, doc);

}

If you click the Run button underneath the map function, CouchDB will

execute this function once for each document in the database, passing in

that document as the doc parameter each time. This will generate a table with

a single row of results resembling the following:

ValueKey

{_id: "74c7a8d2a8548c8b97da748f43000ac4", _rev: "4-93a101178ba65f61ed39e60d70c9fd97",
name: "The Beatles", albums: [{title: "Help!", year: 1965}, {title: "Sgt. Pepper's Lonely Hearts
Club Band", year: 1967}, {title: "Abbey Road", year: 1969}]}

null

The secret to this output, and all views, is the emit() function (this works just

like the MongoDB function of the same name). emit takes two arguments: the

key and the value. A given map function may call emit one time, many times,

1. http://localhost:5984/_utils/

188 • Chapter 6. CouchDB

http://localhost:5984/_utils/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 28—CouchDB Futon: temporary view

or no times for a given document. In the previous case, the map function

emits the key-value pair null/doc. As we see in the output table, the key is

indeed null, and the value is the same object we saw in Day 1 when we

requested it directly from cURL.

To make a mapper that achieves the same thing as _all_docs, we need to emit

something a little different. Recall that _all_docs emits the document’s _id field

for the key and a simple object containing only the _rev field for the value.

With that in mind, change the Map Function code to the following, and then

click Run.

function(doc) {
emit(doc._id, { rev: doc._rev });

}

The output table should now resemble the following table, echoing the same

key-value pair we saw earlier when enumerating records via _all_docs:

ValueKey

{rev: "4-93a101178ba65f61ed39e60d70c9fd97"}"74c7a8d2a8548c8b97da748f43000ac4"

Note that you don’t have to use Futon to execute temporary views. You may

also send a POST request to the _temp_view handler. In this case, you pass in

your map function as a JSON object in the request body.

Day 2: Creating and Querying Views • 189

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl -X POST \
http://localhost:5984/music/_temp_view \
-H "Content-Type: application/json" \
-d '{"map":"function(doc){emit(doc._id,{rev:doc._rev});}"}'

{
"total_rows":1,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"74c7a8d2a8548c8b97da748f43000ac4",
"value":{

"rev":"4-93a101178ba65f61ed39e60d70c9fd97"
}

}]
}

The response is now identical to what we’d expect from _all_docs. But what

happens when we add the include_docs=true parameter? Let’s find out!

$ curl -X POST \
http://localhost:5984/music/_temp_view?include_docs=true \
-H "Content-Type: application/json" \
-d '{"map":"function(doc){emit(doc._id,{rev:doc._rev});}"}'

{
"total_rows":1,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"74c7a8d2a8548c8b97da748f43000ac4",
"value":{

"rev":"4-93a101178ba65f61ed39e60d70c9fd97"
},
"doc":{

"_id":"74c7a8d2a8548c8b97da748f43000ac4",
"_rev":"4-93a101178ba65f61ed39e60d70c9fd97",
"name":"The Beatles",
"albums":[...]

}
}]

}

This time, instead of integrating additional fields into the value object, a sepa-

rate property called doc is added to the row result containing the full document.

A custom view may emit any value, even null. Providing a separate doc property

prevents problems that might otherwise arise with combining the row value

with the document. Next, let’s see how to save a view so that CouchDB can

index the results.

190 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Saving a View as a Design Document

When CouchDB executes a temporary view, it must execute the provided map

function for each and every document in the database. This is extremely

resource-intensive, chewing up a lot of processing power, and it’s slow. You

should use temporary views only for development purposes. For production,

you should store your views in design documents.

A design document is a real document in the database, just like the Beatles

document we created earlier. As such, it can show up in views and be repli-

cated to other CouchDB servers in the usual fashion. To save a temporary

view as a design document in Futon, click the Save As... button, and then fill

in the Design Document and View Name fields.

Design documents always have IDs that start with _design/ and contain one or

more views. The view name distinguishes this view from others housed in the

same design document. Deciding which views belong in which design docu-

ments is largely application-specific and subject to taste. As a general rule,

you should group views based on what they do relative to your data. We’ll

see examples of this as we create more interesting views.

Finding Artists by Name

Now that we’ve covered the basics of view creation, let’s develop an application-

specific view. Recall that our music database stores artist information,

including a name field that contains the band’s name. Using the normal GET
access pattern or the _all_docs view, we can access documents by their _id values,

but we’re more interested in looking up bands by name.

In other words, today we can look up the document with _id equal to

74c7a8d2a8548c8b97da748f43000ac4, but how do we find the document with name
equal to The Beatles? For this, we need a view. In Futon, head back to the

Temporary View page, enter the following Map Function code, and click Run.

couchdb/artists_by_name_mapper.js

function(doc) {
if ('name' in doc) {

emit(doc.name, doc._id);
}

}

This function checks whether the current document has a name field and, if

so, emits the name and document _id as the relevant key-value pair. This

should produce a table like this:

Day 2: Creating and Querying Views • 191

http://media.pragprog.com/titles/rwdata/code/couchdb/artists_by_name_mapper.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

ValueKey

"74c7a8d2a8548c8b97da748f43000ac4""The Beatles"

Click the Save As... button; then for Design Document, enter artists and for

View Name enter by_name. Click Save to persist the change.

Finding Albums by Name

Finding artists by name is pretty useful, but we can do more. This time, let’s

make a view that lets us find albums. This will be the first example where

the map function will emit more than one result per document.

Again return to the Temporary View page; then enter the following mapper:

couchdb/albums_by_name_mapper.js

function(doc) {
if ('name' in doc && 'albums' in doc) {

doc.albums.forEach(function(album){
var

key = album.title || album.name,
value = { by: doc.name, album: album };

emit(key, value);
});

}
}

This function checks whether the current document has a name field and an

albums field. If so, it emits a key-value pair for each album where the key is

the album’s title or name and the value is a compound object containing the

artist’s name and the original album object. It produces a table like this:

ValueKey

{by: "The Beatles", album: {title: "Abbey Road", year: 1969}}"Abbey Road"
{by: "The Beatles", album: {title: "Help!", year: 1965}}"Help!"
{by: "The Beatles", album: {title: "Sgt. Pepper's Lonely Hearts
Club Band", year: 1967}}

"Sgt. Pepper's Lonely Hearts Club
Band"

Just like we did with the Artists By Name view, click the Save As... button.

This time, for Design Document, enter albums, and for View Name enter by_

name. Click Save to persist the change. Now let’s see how to query these

documents.

Querying Our Custom Artist and Album Views

Now that we have a couple of custom design documents saved, let’s jump

back to the command line and query them with the curl command. We’ll start

with the Artists By Name view. On the command line, execute the following:

192 • Chapter 6. CouchDB

http://media.pragprog.com/titles/rwdata/code/couchdb/albums_by_name_mapper.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl http://localhost:5984/music/_design/artists/_view/by_name
{

"total_rows":1,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"The Beatles",
"value":"74c7a8d2a8548c8b97da748f43000ac4"

}]
}

To query a view, construct the path /<database_name>/_design/<design_doc>/_view/
<view_name>, replacing the parts as appropriate. In our case, we’re querying

the by_name view in the artists design document of the music database. No surprise

here that the output includes our one document, keyed by the band name.

Next, let’s try to find Albums By Name:

$ curl http://localhost:5984/music/_design/albums/_view/by_name
{

"total_rows":3,
"offset":0,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"Abbey Road",
"value":{
"by":"The Beatles",
"album":{

"title":"Abbey Road",
"year":1969

}
}

},{
"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"Help!",
"value":{
"by":"The Beatles",
"album":{

"title":"Help!",
"year":1965

}
}

},{
"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"Sgt. Pepper's Lonely Hearts Club Band",
"value":{
"by":"The Beatles",
"album":{

"title":"Sgt. Pepper's Lonely Hearts Club Band",
"year":1967

Day 2: Creating and Querying Views • 193

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

}
}

}]
}

CouchDB will ensure that the records are presented in alphanumerical order

by the emitted keys. In effect, this is the indexing that CouchDB offers. When

designing your views, it’s important to pick emitted keys that will make sense

when ordered. Requesting a view in this fashion returns the whole set, but

what if we want just a subset? One way to do that is to use the key URL

parameter. When you specify a key, only rows with that exact key are returned.

$ curl 'http://localhost:5984/music/_design/albums/_view/by_name?key="Help!"'
{
"total_rows":3,
"offset":1,
"rows":[{

"id":"74c7a8d2a8548c8b97da748f43000ac4",
"key":"Help!",
"value":{

"by":"The Beatles",
"album":{"title":"Help!","year":1965}

}
}]

}

Notice the total_rows and offset fields in the response. The total_rows field counts

the total number of records in the view, not just the subset returned for this

request. The offset field tells us how far into that full set the first record pre-

sented appears. Based on these two numbers and the length of the rows, we

can calculate how many more records there are in the view on both sides.

Requests for views can be sliced a few other ways beyond the keys parameter,

but to really see them in action, we’re going to need more data.

Importing Data Into CouchDB Using Ruby

Importing data is a recurring problem that you’ll face no matter what database

you end up using. CouchDB is no exception here. In this section, we’ll use

Ruby to import structured data into our music database. Through this you’ll

see how to perform bulk imports into CouchDB, and it’ll also give us a nice

pool of data to work with when we create more advanced views.

We’ll use music data from Jamendo.com,2 a site devoted to hosting freely

licensed music. Jamendo provides all their artist, album, and track data in

2. http://www.jamendo.com/

194 • Chapter 6. CouchDB

http://www.jamendo.com/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

a structured XML format, making it ideal for importing into a document-

oriented database like CouchDB.

Head over to Jamendo’s NewDatabaseDumps page3 and download dbdump_
artistalbumtrack.xml.gz.4 The zipped file is only about 15MB. To parse Jamendo’s

XML file, we’ll use the libxml-ruby gem.

Rather than writing our own Ruby-CouchDB driver or issuing HTTP requests

directly, we’ll use a popular Ruby gem called couchrest that wraps these calls

into a convenient Ruby API. We’ll be using only a few methods from the API,

but if you want to continue using this driver for your own projects, the docu-

mentation is quite good.5

On the command line, install the necessary gems:

$ gem install libxml-ruby couchrest

Just like we did for Wikipedia data in Chapter 4, HBase, on page 93, we’ll

use a SAX-style parser to process documents sequentially for insert as they’re

streamed in through standard input. Here’s the code:

couchdb/import_from_jamendo.rb

require 'rubygems'①

require 'libxml'
require 'couchrest'

include LibXML

class JamendoCallbacks②

include XML::SaxParser::Callbacks
def initialize()③

@db = CouchRest.database!("http://localhost:5984/music")
@count = 0
@max = 100 # maximum number to insert
@stack = []
@artist = nil
@album = nil
@track = nil
@tag = nil
@buffer = nil

end
def on_start_element(element, attributes)④

case element
when 'artist'

@artist = { :albums => [] }

3. http://developer.jamendo.com/en/wiki/NewDatabaseDumps
4. http://img.jamendo.com/data/dbdump_artistalbumtrack.xml.gz
5. http://rdoc.info/github/couchrest/couchrest/master/

Day 2: Creating and Querying Views • 195

http://media.pragprog.com/titles/rwdata/code/couchdb/import_from_jamendo.rb
http://developer.jamendo.com/en/wiki/NewDatabaseDumps
http://img.jamendo.com/data/dbdump_artistalbumtrack.xml.gz
http://rdoc.info/github/couchrest/couchrest/master/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

@stack.push @artist
when 'album'

@album = { :tracks => [] }
@artist[:albums].push @album
@stack.push @album

when 'track'
@track = { :tags => [] }
@album[:tracks].push @track
@stack.push @track

when 'tag'
@tag = {}
@track[:tags].push @tag
@stack.push @tag

when 'Artists', 'Albums', 'Tracks', 'Tags'
ignore

else
@buffer = []

end
end

def on_characters(chars)⑤

@buffer << chars unless @buffer.nil?
end

def on_end_element(element)⑥

case element
when 'artist'

@stack.pop
@artist['_id'] = @artist['id'] # reuse Jamendo's artist id for doc _id
@artist[:random] = rand
@db.save_doc(@artist, false, true)
@count += 1
if !@max.nil? && @count >= @max
on_end_document

end
if @count % 500 == 0
puts " #{@count} records inserted"

end
when 'album', 'track', 'tag'

top = @stack.pop
top[:random] = rand

when 'Artists', 'Albums', 'Tracks', 'Tags'
ignore

else
if @stack[-1] && @buffer
@stack[-1][element] = @buffer.join.force_encoding('utf-8')
@buffer = nil

end
end

end

196 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

def on_end_document()
puts "TOTAL: #{@count} records inserted"
exit(1)

end
end

parser = XML::SaxParser.io(ARGF)⑦

parser.callbacks = JamendoCallbacks.new
parser.parse

① To kick things off, we bring in the rubygems module and the specific gems

that we need.

② The standard way to use LibXML is by defining a callbacks class. Here

we define a JamendoCallbacks class to encapsulate our SAX handlers for

various events.

③ The first thing our class does during initialization is connect to our local

CouchDB server using the CouchRest API and then create the music
database (if it doesn’t exist already). After that, it sets up some instance

variables for storing state information during the parse. Note that if you

set the @max parameter to nil, all documents will be imported, not just the

first 100.

④ Once parsing has started, the on_start_element() method will handle any

opening tags. Here we watch for certain especially interesting tags like

<artist>, <album>, <track>, and <tag>. We specifically ignore certain container

elements—<Artists>, <Albums>, <Tracks>, and <Tags>—and treat all others as

properties to be set on the nearest container items.

⑤ Whenever the parser encounters character data, we buffer it to be added

as a property to the current container element (the end of @stack).

⑥ Much of the interesting stuff happens in the on_end_element() method. Here,

we close out the current container element by popping it off the stack. If

the tag closes an <artist> element, we take the opportunity to save off the

document in CouchDB with the @db.save_doc() method. For any container

element, we also add a random property containing a freshly generated

random number. We’ll use this later when selecting a random track,

album, or artist.

⑦ Ruby’s ARGF stream combines standard input and any files specified on

the command line. We feed this into LibXML and specify an instance of

our JamendoCallbacks class to handle the tokens—start tags, end tags, and

character data—as they’re encountered.

Day 2: Creating and Querying Views • 197

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

To run the script, pipe the unzipped XML content into the import script:

$ zcat dbdump_artistalbumtrack.xml.gz | ruby import_from_jamendo.rb
TOTAL: 100 records inserted

When the import has finished, drop back down to the command line, and

we’ll see how our views look. First let’s pull up a few artists. The limit URL

parameter specifies that we want only that number of documents in the

response (or less).

$ curl http://localhost:5984/music/_design/artists/_view/by_name?limit=5
{"total_rows":100,"offset":0,"rows":[
{"id":"370255","key":"\"\"ATTIC\"\"","value":"370255"},
{"id":"353262","key":"10centSunday","value":"353262"},
{"id":"367150","key":"abdielyromero","value":"367150"},
{"id":"276","key":"AdHoc","value":"276"},
{"id":"364713","key":"Adversus","value":"364713"}
]}

The previous request started at the very beginning of the list of artists. To

jump to the middle, we can use the startkey parameter:

$ curl http://localhost:5984/music/_design/artists/_view/by_name?\
limit=5\&startkey=%22C%22
{"total_rows":100,"offset":16,"rows":[
{"id":"340296","key":"CalexB","value":"340296"},
{"id":"353888","key":"carsten may","value":"353888"},
{"id":"272","key":"Chroma","value":"272"},
{"id":"351138","key":"Compartir D\u00f3na Gustet","value":"351138"},
{"id":"364714","key":"Daringer","value":"364714"}
]}

Previously, we started with artists whose names began with C. Specifying an

endkey provides another way to limit the returned content. Here we specify

that we want artists only between C and D:

$ curl http://localhost:5984/music/_design/artists/_view/by_name?\
startkey=%22C%22\&endkey=%22D%22
{"total_rows":100,"offset":16,"rows":[
{"id":"340296","key":"CalexB","value":"340296"},
{"id":"353888","key":"carsten may","value":"353888"},
{"id":"272","key":"Chroma","value":"272"},
{"id":"351138","key":"Compartir D\u00f3na Gustet","value":"351138"}
]}

To get the rows in reverse order, use the descending URL parameter. Be sure

to reverse your startkey and endkey as well.

$ curl http://localhost:5984/music/_design/artists/_view/by_name?\
startkey=%22D%22\&endkey=%22C%22\&descending=true
{"total_rows":100,"offset":16,"rows":[

198 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

{"id":"351138","key":"Compartir D\u00f3na Gustet","value":"351138"},
{"id":"272","key":"Chroma","value":"272"},
{"id":"353888","key":"carsten may","value":"353888"},
{"id":"340296","key":"CalexB","value":"340296"}
]}

A number of other URL parameters are available for modifying view requests,

but these are the most common and are the ones you’ll reach for most often.

Some of the URL parameters have to do with grouping, which comes from

the reducer part of CouchDB mapreduce views. We’ll explore these tomorrow.

Day 2 Wrap-Up

Today we covered some good ground. We learned how to create basic views

in CouchDB and save them into design documents. We explored different

ways of querying views to get subsets of the indexed content. Using Ruby and

a popular gem called couchrest, we imported structured data and used it to

support our views. Leading into tomorrow, we’ll expand on these ideas by

creating more advanced views by adding reducers and then move on to other

APIs that CouchDB supports.

Day 2 Homework

Find

1. We’ve seen that the emit() method can output keys that are strings. What

other types of values does it support? What happens when you emit an

array of values as a key?

2. Find a list of available URL parameters (like limit and startkey) that can be

appended to view requests and what they do.

Do

1. The import script import_from_jamendo.rb assigned a random number to each

artist by adding a property called random. Create a mapper function that

will emit key-value pairs where the key is the random number and the

value is the band’s name. Save this in a new design document named

_design/random with the view name artist.

2. Craft a cURL request that will retrieve a random artist.

Hint: You’ll need to use the startkey parameter, and you can produce a ran-

dom number on the command line via `ruby -e 'puts rand'`.

Day 2: Creating and Querying Views • 199

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

3. The import script also added a random property for each album, track, and

tag. Create three additional views in the _design/random design document

with the view names album, track, and tag to match the earlier artist view.

6.4 Day 3: Advanced Views, Changes API, and Replicating Data

In Days 1 and 2 we learned how to perform basic CRUD operations and

interact with views for finding data. Building on this experience, today we’ll

take a closer look at views, dissecting the reduce part of the mapreduce

equation. After that, we’ll develop some Node.js applications in JavaScript to

leverage CouchDB’s unique Changes API. Lastly, we’ll discuss replication and

how CouchDB handles conflicting data.

Creating Advanced Views with Reducers

Mapreduce-based views provide the means by which we can harness

CouchDB’s indexing and aggregation facilities. In Day 2, all our views consisted

of only mappers. Now we’re going to add reducers to the mix, developing new

capabilities against the Jamendo data we imported in Day 2.

One great thing about the Jamendo data is its depth. Artists have albums,

which have tracks. Tracks, in turn, have attributes including tags. We’ll now

turn our attention to tags to see whether we can write a deep inspecting view

to collect and count them.

First, return to the Temporary View page, and then enter the following map

function:

couchdb/tags_by_name_mapper.js

function(doc) {
(doc.albums || []).forEach(function(album){

(album.tracks || []).forEach(function(track){
(track.tags || []).forEach(function(tag){

emit(tag.idstr, 1);
});

});
});

}

This function digs into the artist document and then down into each album,

each track, and finally each tag. For each tag, it emits a key-value pair con-

sisting of the tag’s idstr property (a string representation of the tag, like "rock")

and the number 1.

With the map function in place, enter the following under Reduce Function:

200 • Chapter 6. CouchDB

http://media.pragprog.com/titles/rwdata/code/couchdb/tags_by_name_mapper.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

couchdb/simple_count_reducer.js

function(key, values, rereduce) {
return sum(values);

}

This code merely sums the numbers in the values list—which we’ll talk about

momentarily once we’ve run the view. Finally, click the Run button. The

output should resemble the following table:

ValueKey

1"17sonsrecords"
1"17sonsrecords"
1"17sonsrecords"
1"17sonsrecords"
1"17sonsrecords"
1"acid"
1"acousticguitar"
1"acousticguitar"
1"action"
1"action"

This shouldn’t be too surprising. The value is always 1 as we indicated in the

mapper, and the Key fields exhibit as much repetition as there is in the tracks

themselves. Notice, however, the Reduce checkbox in the top-right corner of

the output table. Check that box, and then look at the table again. It should

now look something like this:

ValueKey

5"17sonsrecords"
1"acid"
2"acousticguitar"
2"action"
3"adventure"
1"aksband"
1"alternativ"
3"alternativ"
28"ambient"
17"autodidacta"

Day 3: Advanced Views, Changes API, and Replicating Data • 201

http://media.pragprog.com/titles/rwdata/code/couchdb/simple_count_reducer.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

What happened? In short, the reducer reduced the output by combining like

mapper rows in accordance with our Reducer Function. The CouchDB

mapreduce engine works conceptually like the other mapreducers we’ve seen

before (Riak’s Introducing Mapreduce, on page 63, and MongoDB’s Mapreduce

(and Finalize), on page 160). Specifically, here’s a high-level outline of the steps

CouchDB takes to build a view:

1. Send documents off to the mapper function.

2. Collect all the emitted values.

3. Sort emitted rows by their keys.

4. Send chunks of rows with the same keys to the reduce function.

5. If there was too much data to handle all reductions in a single call, call

the reduce function again but with previously reduced values.

6. Repeat recursive calls to the reduce function as necessary until no

duplicate keys remain.

Reduce functions in CouchDB take three arguments: key, values, and rereduce.
The first argument, key, is an array of tuples—two element arrays containing

the key emitted by the mapper and the _id of the document that produced it.

The second argument, values, is an array of values corresponding to the keys.

The third argument, rereduce, is a boolean value that will be true if this invo-

cation is a rereduction. That is, rather than being sent keys and values that

were emitted from mapper calls, this call is sent the products of previous

reducer calls. In this case, the key parameter will be null.

Stepping Through Reducer Calls

Let’s work through an example based on the output we just saw.

Consider documents (artists) with tracks that have been tagged as “ambient.”

The mappers run on the documents and emit key-value pairs of the form

“ambient”/1.

At some point, enough of these have been emitted that CouchDB invokes a

reducer. That call might look like this:

reduce(
[["ambient", id1], ["ambient", id2], ...], // keys are the same
[1, 1, ...], // values are all 1
false // rereduce is false

)

202 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Recall that in our reducer function we take the sum() of values. Since they’re

all 1, the sum will simply be the length—effectively a count of how many

tracks have the “ambient” tag. CouchDB keeps this return value for later

processing. For the sake of this example, let’s call that number 10.

Some time later, after CouchDB has run these kinds of calls several times,

it decides to combine the intermediate reducer results by executing a rereduce:

reduce(
null, // key array is null
[10, 10, 8], // values are outputs from previous reducer calls
true // rereduce is true

)

Our reducer function again takes the sum() of values. This time, the values add

up to 28. Rereduce calls may be recursive. They go on as long as there is

reduction to be done, until all the intermediate values have been combined

into one.

Most mapreduce systems, including the ones used by other databases we’ve

covered in this book like Riak and MongoDB, throw away the output of

mappers and reducers after the work is done. In those systems, mapreduce

is seen as a means to an end—something to be executed whenever the need

arises, each time starting from scratch. Not so with CouchDB.

Once a view is codified into a design document, CouchDB will keep the

intermediate mapper and reducer values until a change to a document would

invalidate the data. At that time, CouchDB will incrementally run mappers

and reducers to correct for the updated data. It won’t start from scratch,

recalculating everything each time. This is the genius of CouchDB views.

CouchDB is able to use mapreduce as its primary indexing mechanism by

not tossing away intermediate data values.

Watching CouchDB for Changes

CouchDB’s incremental approach to mapreduce is an innovative feature, to

be sure; it’s one of many that set CouchDB apart from other databases. The

next feature we’ll investigate is the Changes API. This interface provides

mechanisms for watching a database for changes and getting updates

instantly.

The Changes API makes CouchDB a perfect candidate for a system of record.

Imagine a multidatabase system where data is streaming in from several

directions and other systems need to be kept up-to-date (we’ll actually do this

in the next chapter, Section 8.4, Day 3: Playing with Other Databases, on

Day 3: Advanced Views, Changes API, and Replicating Data • 203

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

page 291). Examples might include a search engine backed by Lucene or

ElasticSeach or a caching layer implemented on memcached or Redis. You

could have different maintenance scripts kick off in response to changes too

—performing tasks such as database compaction and remote backups. In

short, this simple API opens up a world of possibilities. Today we’ll learn how

to harness it.

To make use of the API, we’re going to develop some simple client applications

using Node.js.6 Node.js is a server-side JavaScript platform built on the V8

JavaScript engine—the same one used in Google’s Chrome browser. Because

Node.js is event-driven and code for it is written in JavaScript, it’s a natural

fit for integrating with CouchDB. If you don’t already have Node.js, head over

to the Node.js site and install the latest stable version (we use version 0.6).

The three flavors of the Changes API are polling, long-polling, and continuous.

We’ll talk about each of these in turn. As always, we’ll start with cURL to get

close to the bare metal and then follow up with a programmatic approach.

cURLing for Changes

The first and simplest way to access the Changes API is through the polling

interface. Head to the command line, and try the following (the output was

truncated for brevity; yours may differ):

$ curl http://localhost:5984/music/_changes
{
"results":[{

"seq":1,
"id":"370255",
"changes":[{"rev":"1-a7b7cc38d4130f0a5f3eae5d2c963d85"}]

},{
"seq":2,
"id":"370254",
"changes":[{"rev":"1-2c7e0deec3ffca959ba0169b0e8bfcef"}]

},{
... 97 more records ...

},{
"seq":100,
"id":"357995",
"changes":[{"rev":"1-aa649aa53f2858cb609684320c235aee"}]

}],
"last_seq":100

}

6. http://nodejs.org/

204 • Chapter 6. CouchDB

http://nodejs.org/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

When you send a GET request for _changes with no other parameters, CouchDB

will respond with everything it has. Just like accessing views, you can specify

a limit parameter to request just a subset of the data, and adding include_docs=true
will cause full documents to be returned.

Typically you won’t want all the changes from the beginning of time. You’re

more likely to want the changes that have occurred since you last checked.

For this, use the since parameter.

$ curl http://localhost:5984/music/_changes?since=99
{

"results":[{
"seq":100,
"id":"357995",
"changes":[{"rev":"1-aa649aa53f2858cb609684320c235aee"}]

}],
"last_seq":100

}

If you specify a since value that’s higher than the last sequence number, you’ll

get an empty response:

$ curl http://localhost:5984/music/_changes?since=9000
{

"results":[
],
"last_seq":9000

}

Using this method, the client application would check back periodically to

find out whether any new changes have occurred, taking application-specific

actions accordingly.

Polling is a fine solution if your need for up-to-date changes can suffer delays

between updates. If updates are relatively rare, this would be the case. For

example, if you were pulling blog entries, polling every five minutes might be

just fine.

If you want updates quicker, without incurring the overhead of reopening

connections, then longpolling is a better option. When you specify the URL

parameter feed=longpoll, CouchDB will leave the connection open for some time,

waiting for changes to happen before finishing the response. Try this:

$ curl 'http://localhost:5984/music/_changes?feed=longpoll&since=9000'
{"results":[

Day 3: Advanced Views, Changes API, and Replicating Data • 205

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

You should see the beginning of a JSON response but nothing else. If you

leave the terminal open long enough, CouchDB will eventually close the con-

nection by finishing it:

],
"last_seq":9000}

From a development perspective, writing a driver that watches CouchDB for

changes using polling is equivalent to writing one for longpolling. The difference

is essentially just how long CouchDB is willing to leave the connection open.

Now let’s turn our attention to writing a Node.js application that watches and

uses the change feed.

Polling for Changes with Node.js

Node.js is a strongly event-driven system, so our CouchDB watcher will adhere

to this principle as well. Our driver will watch the changes feed and emit

change events whenever CouchDB reports changed documents. To get started,

we’ll look at a skeletal outline of our driver, talk about the major pieces, and

then fill in the feed-specific details.

Without further ado, here’s the outline of our watcher program, as well as a

brief discussion of what it does:

couchdb/watch_changes_skeleton.js

var
http = require('http'),
events = require('events');

/**
* create a CouchDB watcher based on connection criteria;
* follows node.js EventEmitter pattern, emits 'change' events.
*/
exports.createWatcher = function(options) {①

var watcher = new events.EventEmitter();②

watcher.host = options.host || 'localhost';
watcher.port = options.port || 5984;
watcher.last_seq = options.last_seq || 0;
watcher.db = options.db || '_users';

watcher.start = function() {③

// ... feed-specific implementation ...
};

return watcher;

};

206 • Chapter 6. CouchDB

http://media.pragprog.com/titles/rwdata/code/couchdb/watch_changes_skeleton.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

// start watching CouchDB for changes if running as main script
if (!module.parent) {④

exports.createWatcher({
db: process.argv[2],
last_seq: process.argv[3]

})
.on('change', console.log)
.on('error', console.error)
.start();

}

① exports is a standard object provided by the CommonJS Module API that

Node.js implements. Adding the createWatcher() method to exports makes it

available to other Node.js scripts that might want to use this as a library.

The options argument allows the caller to specify which database to watch

as well as override other connection settings.

② createWatcher() produces an EventEmitter object that the caller can use to listen

for change events. The relevant capabilities of an EventEmitter is that you

can listen to events by calling its on() method and trigger events by calling

its emit() method.

③ watcher.start() is responsible for issuing HTTP requests to watch CouchDB

for changes. When changes to documents happen, watcher should emit

them as change events. All of the feed-specific implementation details will

be in here.

④ The last chunk of code at the bottom specifies what the script should do

if it’s called directly from the command line. In this case, the script will

invoke the createWatcher() method and then set up listeners on the returned

object that dump results to standard output. Which database to connect

to and what sequence ID number to start from can be set via command-

line arguments.

So far, there’s nothing specific to CouchDB at all in this code. It’s all just

Node.js’s way of doing things. This code may look foreign to you, especially

if you haven’t developed with an event-driven server technology before, but

it’s one we’ll be using increasingly in this book going forward.

With the skeleton in place, let’s add the code to connect to CouchDB via

longpolling and emit events. The following is just the code that goes inside

the watcher.start() method. Written inside the previous outline (where the com-

ment says feed-specific implementation), the new complete file should be called

watch_changes_longpolling.js.

Day 3: Advanced Views, Changes API, and Replicating Data • 207

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

couchdb/watch_changes_longpolling_impl.js

var
http_options = {①

host: watcher.host,
port: watcher.port,
path:

'/' + watcher.db + '/_changes' +
'?feed=longpoll&include_docs=true&since=' + watcher.last_seq

};

http.get(http_options, function(res) {②

var buffer = '';
res.on('data', function (chunk) {
buffer += chunk;

});
res.on('end', function() {

var output = JSON.parse(buffer);③

if (output.results) {
watcher.last_seq = output.last_seq;
output.results.forEach(function(change){
watcher.emit('change', change);

});
watcher.start();

} else {
watcher.emit('error', output);

}
})

})
.on('error', function(err) {

watcher.emit('error', err);
});

① The first thing this script does is set up the http_options configuration object

in preparation for the request. The path points to the same _changes URL

we’ve been using, with feed set to longpoll and include_docs=true.

② After that, the script calls http.get(), a Node.js library method that fires off

a GET request according to our settings. The second parameter to http.get
is a callback that will receive an HTTPResponse. The response object emits

data events as the content is streamed back, which we add to the buffer.

③ Finally, when the response object emits an end event, we parse the buffer

(which should contain JSON). From this we learn the new last_seq value,

emit a change event, and then reinvoke watcher.start() to wait for the next

change.

To run this script in command-line mode, execute it like this (output truncated

for brevity):

208 • Chapter 6. CouchDB

http://media.pragprog.com/titles/rwdata/code/couchdb/watch_changes_longpolling_impl.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ node watch_changes_longpolling.js music
{ seq: 1,

id: '370255',
changes: [{ rev: '1-a7b7cc38d4130f0a5f3eae5d2c963d85' }],
doc:
{ _id: '370255',

_rev: '1-a7b7cc38d4130f0a5f3eae5d2c963d85',
albums: [[Object]],
id: '370255',
name: '""ATTIC""',
url: 'http://www.jamendo.com/artist/ATTIC_(3)',
mbgid: '',
random: 0.4121620435325435 } }

{ seq: 2,
id: '370254',
changes: [{ rev: '1-2c7e0deec3ffca959ba0169b0e8bfcef' }],
doc:
{ _id: '370254',

_rev: '1-2c7e0deec3ffca959ba0169b0e8bfcef',
... 98 more entries ...

Hurrah, our app works! After outputting a record for each document, the

process will keep running, polling CouchDB for future changes.

Feel free to modify a document in Futon directly or increase the @max value

on import_from_jamendo.rb and run it again. You’ll see those changes reflected on

the command line. Next we’ll see how to go full-steam ahead and use the

continuous feed to get even snappier updates.

Watching for Changes Continuously

The polling and longpolling feeds produced by the _changes service both produce

proper JSON results. The continuous feed does things a little differently.

Instead of combining all available changes into a results array and closing the

stream afterward, it sends each change separately and keeps the connection

open. This way, it’s ready to return more JSON serialized change notification

objects as changes become available.

To see how this works, try the following (output truncated for readability):

$ curl 'http://localhost:5984/music/_changes?since=97&feed=continuous'
{"seq":98,"id":"357999","changes":[{"rev":"1-0329f5c885...87b39beab0"}]}
{"seq":99,"id":"357998","changes":[{"rev":"1-79c3fd2fe6...1e45e4e35f"}]}
{"seq":100,"id":"357995","changes":[{"rev":"1-aa649aa53f...320c235aee"}]}

Eventually, if no changes have happened for a while, CouchDB will close the

connection after outputting a line like this:

{"last_seq":100}

Day 3: Advanced Views, Changes API, and Replicating Data • 209

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The benefit of this method over polling or longpolling is the reduced overhead

that accompanies leaving the connection open. There’s no time lost reestab-

lishing the HTTP connections. On the other hand, the output isn’t straight

JSON, which means it’s a bit more of a chore to parse. Also, it’s not a good

fit if your client is a web browser. A browser downloading the feed asyn-

chronously might not receive any of the data until the entire connection fin-

ishes (better to use longpolling in this case).

Filtering Changes

As we’ve just seen, the Changes API provides a unique window into the goings

on of a CouchDB database. On the plus side, it provides all the changes in a

single stream. However, sometimes you may want just a subset of changes,

rather than the fire hose of everything that has ever changed. For example,

you may be interested only in document deletions or maybe only in documents

that have a particular quality. This is where filter functions come in.

A filter is a function that takes in a document (and request information) and

makes a decision as to whether that document ought to be allowed through

the filter. This is gated by the return value. Let’s explore how this works.

Considering our music database, most artist documents we’ve been inserting

have a country property that contains a three-letter code. Say we were interested

only in bands from Russia (RUS). Our filter function might look like the

following:

function(doc) {
return doc.country === "RUS";

}

If we added this to a design document under the key filters, we’d be able to

specify it when issuing requests for _changes. But before we do, let’s expand

the example. Rather than always wanting Russian bands, it’d be better if we

could parameterize the input so the country could be specified in the URL.

Here’s a parameterized country-based filter function:

function(doc, req) {
return doc.country === req.query.country;

}

Notice this time how we’re comparing the document’s country property to a

parameter of the same name passed in the request’s query string. To see this

in action, let’s create a new design document just for geography-based filters

and add it:

210 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl -X PUT \
http://localhost:5984/music/_design/wherabouts \
-H "Content-Type: application/json" \
-d '{"language":"javascript","filters":{"by_country":

"function(doc,req){return doc.country === req.query.country;}"
}}'

{
"ok":true,
"id":"_design/wherabouts",
"rev":"1-c08b557d676ab861957eaeb85b628d74"

}

Now we can make a country-filtered changes request:

$ curl "http://localhost:5984/music/_changes?\
filter=wherabouts/by_country&\
country=RUS"
{"results":[
{"seq":10,"id":"5987","changes":[{"rev":"1-2221be...a3b254"}]},
{"seq":57,"id":"349359","changes":[{"rev":"1-548bde...888a83"}]},
{"seq":73,"id":"364718","changes":[{"rev":"1-158d2e...5a7219"}]},
...

Using filters, you have the power to set up a sort of pseudosharding, where

only a subset of records are replicated between nodes. It’s not quite the same

as truly sharded systems like MongoDB or HBase, but it does afford a means

of splitting the responsibility of servicing certain kinds of requests. For

instance, your main CouchDB server might have separate filters for users,

orders, messages, and inventory. Separate CouchDB servers could replicate

changes based on these filters, each supporting a different aspect of the

business.

Since filter functions may contain arbitrary JavaScript, more sophisticated

logic can be put into them. Testing for deeply nested fields would be similar

to what we did for creating views. You could also use regular expressions for

testing properties or compare them mathematically (for example, filtering by

a date range). There’s even a user context property on the request object

(req.userCtx) you can use to find out more about the credentials provided with

the request.

We’ll revisit Node.js and the CouchDB Changes API in Chapter 8, Redis, on

page 261 when we build a multidatabase application. For now, though, it’s

time to move on to the last distinguishing feature of CouchDB we’re going to

cover: replication.

Day 3: Advanced Views, Changes API, and Replicating Data • 211

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CouchDB or BigCouch?

CouchDB’s approach makes sense in a lot of use cases. It certainly fills a niche that

the other databases we’ve discussed largely don’t address. On the other hand,

sometimes it’s nice to selectively replicate data between nodes in order to capitalize

on available disk space. That is, instead of having all nodes have all the data, keep

only a certain number of copies. This is the N in NWR—discussed in Nodes/Writes/

Reads, on page 74.

This isn’t a feature that CouchDB offers out of the box, but don’t worry! BigCouch

has you covered. Developed and maintained by Cloudant, BigCouch offers a CouchDB-

compatible interface (with only a few minor differencesa). Under the surface, though,

it implements the sharding and replication strategy of a Dynamo-inspired database

like Riak.

Installing BigCouch is quite a chore—much harder than vanilla CouchDB—but may

be worth it if your deployment scenario consists of a big-iron datacenter.

a. http://bigcouch.cloudant.com/api

Replicating Data in CouchDB

CouchDB is all about asynchronous environments and data durability.

According to CouchDB, the safest place to store your data is everywhere, and

it gives you the tools to do it. Some other databases we’ve looked at maintain

a single master node to guarantee consistency. Still others ensure it with a

quorum of agreeing nodes. CouchDB does neither of these; instead, it supports

something called multi-master or master-master replication.

Each CouchDB server is equally able to receive updates, respond to requests,

and delete data, regardless of whether it’s able to connect to any other server.

In this model, changes are selectively replicated in one direction, and all data

is subject to replication in the same way. In other words, there is no sharding.

Servers participating in replication will all have all of the data.

Replication is the last major topic in CouchDB that we’ll be discussing. First

we’ll see how to set up ad hoc and continuous replication between databases.

Then we’ll work through the implications of conflicting data and how to make

applications capable of handling these cases gracefully.

To begin, click the Replicator link in the Tools menu on the right side of the

page. It should open a page that looks like Figure 29, CouchDB Futon: Repli-

cator, on page 213. In the “Replicate changes from” dialog, choose music from

the left drop-down menu and enter music-repl in the right-side slot. Leave the

Continuous checkbox unchecked, and then click Replicate. Click OK to create

212 • Chapter 6. CouchDB

http://bigcouch.cloudant.com/api
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 29—CouchDB Futon: Replicator

the music-repl database when prompted. This should produce an event message

in the event log below the form.

To confirm that the replication request worked, go back to the Futon Overview

page. There should now be a new database called music-repl with the same

number of documents as the music database. If it has fewer, give it some time

and refresh the page—CouchDB may be in the process of catching up. Don’t

be concerned if the Update Seq values don’t match. That’s because the original

music database had deletions and updates to documents, whereas the music-
repl database had only insertions to bring it up to speed.

Creating Conflicts

Next we’ll create a conflict and then explore how to deal with it. Keep the

Replicator page handy because we’re going to be triggering ad hoc replication

between music and music-repl frequently.

Drop back to the command line, and enter this to create a document in the

music database:

$ curl -X PUT "http://localhost:5984/music/theconflicts" \
-H "Content-Type: application/json" \
-d '{ "name": "The Conflicts" }'

{
"ok":true,
"id":"theconflicts",
"rev":"1-e007498c59e95d23912be35545049174"

}

On the Replicator page, click Replicate to trigger another synchronization.

We can confirm that the document was successfully replicated by retrieving

it from the music-repl database.

Day 3: Advanced Views, Changes API, and Replicating Data • 213

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ curl "http://localhost:5984/music-repl/theconflicts"
{
"_id":"theconflicts",
"_rev":"1-e007498c59e95d23912be35545049174",
"name":"The Conflicts"

}

Next, let’s update it in music-repl by adding an album called Conflicts of Interest.

$ curl -X PUT "http://localhost:5984/music-repl/theconflicts" \
-H "Content-Type: application/json" \
-d '{

"_id": "theconflicts",
"_rev": "1-e007498c59e95d23912be35545049174",
"name": "The Conflicts",
"albums": ["Conflicts of Interest"]

}'
{
"ok":true,
"id":"theconflicts",
"rev":"2-0c969fbfa76eb7fcdf6412ef219fcac5"

}

And create a conflicting update in music proper by adding a different album:

Conflicting Opinions.

$ curl -X PUT "http://localhost:5984/music/theconflicts" \
-H "Content-Type: application/json" \
-d '{

"_id": "theconflicts",
"_rev": "1-e007498c59e95d23912be35545049174",
"name": "The Conflicts",
"albums": ["Conflicting Opinions"]

}'
{
"ok":true,
"id":"theconflicts",
"rev":"2-cab47bf4444a20d6a2d2204330fdce2a"

}

At this point, both the music and music-repl databases have a document with an

_id value of theconflicts. Both documents are at version 2 and derived from the

same base revision (1-e007498c59e95d23912be35545049174). Now the question is,

what happens when we try to replicate between them?

Resolving Conflicts

With our document now in a conflicting state between the two databases,

head back to the Replicator page and kick off another replication. If you were

214 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

expecting this to fail, you may be shocked to learn that the operation succeeds

just fine. So, how did CouchDB deal with the discrepancy?

It turns out that CouchDB basically just picks one and calls that one the

winner. Using a deterministic algorithm, all CouchDB nodes will pick the

same winner when a conflict is detected. However, the story doesn’t end there.

CouchDB stores the unselected “loser” documents as well so that a client

application can review the situation and resolve it at a later date.

To find out which version of our document won during the last replication,

we can request it using the normal GET request channel. By adding the con-
flicts=true URL parameter, CouchDB will also include information about the

conflicting revisions.

$ curl http://localhost:5984/music-repl/theconflicts?conflicts=true
{

"_id":"theconflicts",
"_rev":"2-cab47bf4444a20d6a2d2204330fdce2a",
"name":"The Conflicts",
"albums":["Conflicting Opinions"],
"_conflicts":[

"2-0c969fbfa76eb7fcdf6412ef219fcac5"
]

}

So, we see that the second update won. Notice the _conflicts field in the response.

It contains a list of other revisions that conflicted with the chosen one. By

adding a rev parameter to a GET request, we can pull down those conflicting

revisions and decide what to do about them.

$ curl http://localhost:5984/music-repl/theconflicts?rev=2-0c969f...
{

"_id":"theconflicts",
"_rev":"2-0c969fbfa76eb7fcdf6412ef219fcac5",
"name":"The Conflicts",
"albums":["Conflicts of Interest"]

}

The takeaway here is that CouchDB does not try to intelligently merge con-

flicting changes. How to merge two documents is highly application-specific,

and a general solution isn’t practical. In our case, combining the two albums
arrays by concatenating them makes sense, but one could easily think of

scenarios where the appropriate action is not obvious.

For example, consider you’re maintaining a database of calendar events. One

copy is on your smartphone; another is on your laptop. You get a text message

from a party planner specifying the venue for the party you’re hosting, so you

Day 3: Advanced Views, Changes API, and Replicating Data • 215

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

update your phone database accordingly. Later, back at the office, you receive

another email from the planner specifying a different venue. So, you update

your laptop database and then replicate between them. CouchDB has no way

of knowing which of the two venues is correct. The best it can do is make

them consistent, keeping the old value around so you can verify which of the

conflicting values should be kept. It would be up to the application to deter-

mine the right user interface for presenting this situation and asking for a

decision.

Day 3 Wrap-Up

And so ends our tour of CouchDB. Here in Day 3 we started out by learning

how to add reducer functions to our mapreduce-generated views. After that,

we took a deep dive into the Changes API, including a jaunt into the world of

event-driven server-side JavaScript development with Node.js. Lastly, we took

a brief look at how CouchDB achieves its master-master replication strategy

and how client applications can detect and correct for conflicts.

Day 3 Homework

Find

1. What native reducers are available in CouchDB? What are the benefits

of using native reducers over custom JavaScript reducers?

2. How can you filter the changes coming out of the _changes API on the

server side?

3. Like everything in CouchDB, the tasks of initializing and canceling repli-

cation are controlled by HTTP commands under the hood. What are the

REST commands to set up and remove replication relationships between

servers?

4. How can you use the _replicator database to persist replication relationships?

Do

1. Create a new module called watch_changes_continuous.js based on the skeletal

Node.js module described in the section Polling for Changes with Node.js,

on page 206.

2. Implement watcher.start() such that it monitors the continuous _changes feed.

Confirm that it produces the same output as watch_changes_longpolling.js.

Hint: If you get stuck, you can find an example implementation in the

downloads that accompany this book.

216 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

3. Documents with conflicting revisions have a _conflicts property. Create a

view that emits conflicting revisions and maps them to the doc _id.

6.5 Wrap-Up

Through this chapter we’ve seen how to do a pretty wide range of tasks with

CouchDB, from performing basic CRUD operations to building views out of

mapreduce functions. We saw how to watch for changes, and we explored

developing nonblocking event-driven client applications. Finally, we learned

how to perform ad hoc replication between databases and how to detect and

resolve conflicts. Despite all of this content, there’s still a lot we didn’t cover,

but now it’s time to wrap things up before heading off to our next database.

CouchDB’s Strengths

CouchDB is a robust and stable member of the NoSQL community. Built on

the philosophy that networks are unreliable and hardware failure is imminent,

CouchDB offers a heartily decentralized approach to data storage. Small

enough to live in your smartphone and big enough to support the enterprise,

CouchDB affords a variety of deployment situations.

CouchDB is as much an API as a database. In this chapter, we focused on

the canonical Apache CouchDB project, but there are an increasing number

of alternative implementations and CouchDB service providers built on hybrid

back ends. Because CouchDB is made “of the Web, for the Web,” it’s fairly

straightforward to layer in web technologies—such as load balancers and

caching layers—and still end up with something that’s true to CouchDB’s

APIs.

CouchDB’s Weaknesses

Of course, CouchDB isn’t for everything. CouchDB’s mapreduce-based views,

while novel, can’t perform all the fancy data slicing you’d expect from a rela-

tional database. In fact, you shouldn’t be running ad hoc queries at all in

production. Also, CouchDB’s replication strategy isn’t always the right choice.

CouchDB replication is all or nothing, meaning all replicated servers will have

the same contents. There is no sharding to distribute content around the

datacenter. The principal reason for adding more CouchDB nodes is not to

spread the data around so much as to increase throughput for read and write

operations.

Wrap-Up • 217

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Parting Thoughts

CouchDB’s attention to robustness in the face of uncertainty makes it a great

choice if your system must stand up to the harsh realities of the wild Internet.

By leveraging standard webisms like HTTP/REST and JSON, CouchDB fits

in easily wherever web technologies are prevalent, which is increasingly

everywhere. Inside the walled garden of a datacenter, CouchDB can still make

sense if you commit to managing conflicts when they arise or if you pursue

an alternative implementation like BigCouch, but don’t expect to get sharding

right out of the box.

There are plenty of other features that make CouchDB unique and special

that we didn’t have time to cover. A short list would include ease of backups,

binary attachments to documents, and CouchApps—a system for developing

and deploying web apps directly through CouchDB with no other middleware.

Having said that, we hope we’ve provided enough of an overview to whet your

appetite for more. Try CouchDB for your next data-driven web app; you won’t

be disappointed!

218 • Chapter 6. CouchDB

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 7

Neo4J

A bungee cord may not seem a standard carpentry tool, just like Neo4j may

not seem like a standard database. Bungee cord is used to tie things together

—no matter how awkwardly shaped the objects may be. If your ability to tie

a table to a column to a pickup truck in the most organic way is of the utmost

importance, this is your go-to tool.

Neo4j is a new type of NoSQL datastore called a graph database. As the name

implies, it stores data as a graph (in the mathematical sense). It’s known for

being “whiteboard friendly,” meaning if you can draw a design as boxes and

lines on a whiteboard, you can store it in Neo4j. Neo4j focuses more on the

relationships between values than on the commonalities among sets of values

(such as collections of documents or tables of rows). In this way, it can store

highly variable data in a natural and straightforward way.

Neo4j is small enough to be embedded into nearly any application. On the

other end of the spectrum, Neo4j can store tens of billions of nodes and as

many edges. And with its cluster support with master-slave replication across

many servers, it can handle most any sized problem you can throw at it.

7.1 Neo4J Is Whiteboard Friendly

Imagine you must create a wine suggestion engine where wines have different

varieties, regions, wineries, vintages, and designations. Perhaps you need to

keep track of articles by authors describing wines. Perhaps you want to let

users track their favorites.

A relational model may create a category table and a many-to-many relation-

ship between a single winery’s wine and some combination of categories and

other data. But this isn’t quite how humans mentally model data. Compare

these two figures: Figure 30, Wine suggestion schema in relational UML, on

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

id
name

categories

id
name

year

wines

wine_id
category_id

wines_categories

id
publish_date

title

content

articles

wine_id
article_id

wines_articles

Figure 30—Wine suggestion schema in relational UML

page 220 and Figure 31, Wine suggestion data on a whiteboard, on page 221.

There’s an old saying in the relational database world: on a long enough

timeline, all fields become optional. Neo4j handles this implicitly by providing

values and structure only where necessary. If a wine blend has no vintage,

instead add a bottle year and point the vintages to the blend node. There is

no schema to adjust.

Over the next three days we’ll learn how to interact with Neo4j through a

console and then through REST and search indexes. We’ll work with some

larger graphs with graph algorithms. Finally, on Day 3, we’ll take a peek at

the enterprise tools Neo4j provides for mission-critical applications, from full

ACID-compliant transactions to high-availability clustering and incremental

backups.

In this chapter, we’ll use the Neo4j 1.7 Enterprise edition. Most of the actions

we perform can actually use the GPL Community edition, but we’ll require

some enterprise functionality for Day 3: high availability.

7.2 Day 1: Graphs, Groovy, and CRUD

Today we’re really going to jump in with both feet. In addition to exploring

the Neo4j web interface, we’ll get deep into graph database terminology and

CRUD. Much of today will be learning how to query a graph database through

a process called walking. The concepts here differ significantly from other

databases we’ve looked at so far, which have largely taken a document- or

record-based view of the world. In Neo4j, it’s all about relationships.

220 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 31—Wine suggestion data on a whiteboard

But before we get to all that, let’s start with the web interface to see how Neo4j

represents data in graph form and how to walk around that graph. After

you’ve downloaded and unzipped the Neo4j package, cd into the directory and

start up the server with this:

$ bin/neo4j start

To make sure you’re up and running, try curling this URL:

$ curl http://localhost:7474/db/data/

Like CouchDB, the default Neo4j package comes equipped with a substantial

web administration tool and data browser, which is excellent for playing with

toy commands. If that weren’t enough, it has one of the coolest graph data

browsers we’ve ever seen. This is perfect for getting started, since graph

traversal can feel very awkward at first try.

Neo4j’s Web Interface

Launch a web browser, and navigate to the administration page.

http://localhost:7474/webadmin/

You’ll be greeted by a colorful yet empty graph like the one pictured in Figure

32, The web administration page dashboard, on page 222. Click the Data

Browser option at the top. A new Neo4j install will have a preexisting reference

node: node 0.

A node in a graph database is not entirely unlike the nodes we talked about

in prior chapters. Previously, when we spoke of a node, we meant a physical

server in a network. If you viewed the entire network as a huge interconnected

Day 1: Graphs, Groovy, and CRUD • 221

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Figure 32—The web administration page dashboard

graph, a server node was a point, or vertex, between the server relationships,

or edges.

In Neo4j, a node is conceptually similar; it’s a vertex between edges that may

hold data, as a set of key-values. Click the + Property button and set the key

to name and value to Prancing Wolf Ice Wine 2007 to represent a specific wine

and vintage. Next, click the + Node button pictured below:

Node Relationship

To the new node, add the property name with a value of Wine Expert Monthly

(we’ll write it in shorthand like this: [name : "Wine Expert Monthly"]). The node

number will be automatically incremented.

Now we have two nodes sitting out there but nothing connecting them. Since

Wine Expert reported on the Prancing Wolf wine, we need to relate the two

by creating an edge. Click the + Relationship button, and set from node 1 to

node 0 with type reported_on.

You’ll get a URL to this specific relationship...

http://localhost:7474/db/data/relationship/0

that shows Node 1 reported_on Node 0.

Just like nodes, relationships can contain properties. Click the + Add Property

button and enter the property [rating : 92] so we can keep track of what score

the wine received.

222 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This particular ice wine is created from the riesling grape, so let’s add that

information too. We could add the property directly to the wine node, but

riesling is a general category that could apply to other wines, so let’s create

a new node and set its property to [name : "riesling"]. Next add another relation-

ship from node 0 to 2 as grape_type and give it the property [style : "ice wine"].

But what does our graph look like? If you click the “switch view mode” button

(the squiggle-looking one beside + Relationship), you’ll see something like

Figure 33, A graph of nodes related to the current one, on page 224.

The Style button brings up a menu where you can choose which profile is

used for rendering the graph visualization. To see more useful information

on the diagram, click Style and then New Profile. This will take you to the

“Create new visualization profile” page. Enter the name wines at the top, and

then change the label from {id} to {id}: {prop.name}. Click Save to bring you

back to the visualization page. Now you can choose wines from the Style

menu, which should produce something like Figure 34, A graph of nodes

using a custom profile, on page 224.

Although the web interface is an easy way to make a few edits, we need a

more powerful interface for production work.

Neo4j via Gremlin

There are several languages that interoperate with Neo4j: Java code, REST,

Cypher, Ruby console, and others. The one we’ll use today is called Gremlin,

which is a graph traversal language written in the Groovy programming lan-

guage. You needn’t actually know Groovy to use Gremlin, however, so think

of it as just another declarative domain-specific language, like SQL.

Like other consoles we’ve explored, Gremlin provides access to the underlying

language infrastructure on which it’s based. This means you can use Groovy

constructs and Java libraries in Gremlin. We found it a powerful and more

natural way of interacting with graphs than Neo4j’s native Java code. And

even better, the Gremlin console is available in the Web Admin; just click the

Console link at the top, and choose Gremlin.

As a matter of convention, g is a variable that represents the graph object.

Graph actions are functions called on it.

Since Gremlin is a general-purpose graph traversal language, it uses general

mathematic graph terms. Where Neo4j calls a graph data point a node,

Gremlin prefers vertex, and rather than relationship, Gremlin calls it an edge.

Day 1: Graphs, Groovy, and CRUD • 223

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

1

02

reported_on

grape_type

Figure 33—A graph of nodes related to the current one

2: reisling

1: Wine Expert Monthly

0: Prancing Wolf Ice Wine 2007
grape_type

reported_on

Figure 34—A graph of nodes using a custom profile

To access all of the vertices in this graph, there is a property simply named

V for vertices.

gremlin> g.V
==>v[0]
==>v[1]
==>v[2]

along with a sister property named E, for edges.

gremlin> g.E
==> e[0][1-reported_on->0]
==> e[1][0-grape_type->2]

You can grab a particular vertex by passing a node number into the v (lower-

case) method.

gremlin> g.v(0)
==> v[0]

To make sure you have the correct vertex, you can list its properties via the

map() method. Note that you can chain method calls in Groovy/Gremlin.

gremlin> g.v(0).map()
==> name=Prancing Wolf Ice Wine 2007

224 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Although using v(0) will retrieve the exact node, you could also filter out all

nodes by some value you want. For example, to retrieve riesling by name, you

can use the {…} filter syntax, which in Groovy code is called a closure. All of

the code between the curly braces, {…}, define the function that, if it returns

true, will walk that vertex. The it keyword inside the closure represents the

current object and is automatically populated for your use.

gremlin> g.V.filter{it.name=='riesling'}
==> v[2]

Once you have a vertex, you can get the outgoing edges by calling outE() on

the returned vertex. Incoming edges are retrieved by inE(), and both incoming

and outgoing are called by bothE().

gremlin> g.V.filter{it.name=='Wine Expert Monthly'}.outE()
==> e[0][1-reported_on->0]

Note that in Groovy, like Ruby, method parentheses are optional for methods,

so calling outE is fine too.

gremlin> g.V.filter{it.name=='Wine Expert Monthly'}.outE
==> e[0][1-reported_on->0]

From the out edges, you can walk to incoming vertices with inV—that is, the

vertices into which the edges point. The reported_on edge from Wine Expert

points into the Prancing Wolf Ice Wine 2007 vertex, so outE.inV will return it.

Then retrieve the name property by calling it on the vertex.

gremlin> g.V.filter{it.name=='Wine Expert Monthly'}.outE.inV.name
==> Prancing Wolf Ice Wine 2007

The expression outE.inV asks for any vertices to which the input vertices have

edges. The reverse operation (asking for all vertices that have edges into the

input vertices) is achieved with inE.outV. Because these two operations are so

common, Gremlin has shorthand versions of both. The expression out is short

for outE.inV, and in is short for inE.outV.

gremlin> g.V.filter{it.name=='Wine Expert Monthly'}.out.name
==> Prancing Wolf Ice Wine 2007

A winery makes more than one wine, so if we plan to add more, we should

add the winery as a joining node and add an edge to the Prancing Wolf.

gremlin> pwolf = g.addVertex([name : 'Prancing Wolf Winery'])
==> v[3]
gremlin> g.addEdge(pwolf, g.v(0), 'produced')
==> e[2][3-produced->0]

From here we’ll add a couple more rieslings: Kabinett and Spatlese.

Day 1: Graphs, Groovy, and CRUD • 225

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

gremlin> kabinett = g.addVertex([name : 'Prancing Wolf Kabinett 2002'])
==> v[4]
gremlin> g.addEdge(pwolf, kabinett, 'produced')
==> e[3][3-produced->4]
gremlin> spatlese = g.addVertex([name : 'Prancing Wolf Spatlese 2007'])
==> v[5]
gremlin> g.addEdge(pwolf, spatlese, 'produced')
==> e[4][3-produced->5]

Let’s wrap up this little graph by adding some edges from the riesling vertex

to the newly added vertices. We’ll set the riesling variable by filtering the

riesling node; next() is necessary to grab the first vertex out of the pipeline—

something we will go over in more detail shortly.

gremlin> riesling = g.V.filter{it.name=='riesling'}.next()
==> v[2]
gremlin> g.addEdge([style:'kabinett'], kabinett, riesling, 'grape_type')
==> e[5][4-grape_type->2]

The Spatlese can be pointed to riesling in a similar way, but with the style set

to spatlese. With all this data added, in the visualizer your graph should look

like Figure 35, A graph of nodes after adding data with Gremlin, on page 227.

The Power of Pipes

You can think of Gremlin operations as a series of pipes. Each pipe takes a

collection as input and pushes a collection as output. A collection may have

one item, many items, or no items at all. The items may be vertices, edges,

or property values.

For example, the outE pipe takes in a collection of vertices and sends out a

collection of edges. The series of pipes is called a pipeline and expresses

declaratively what the problem is. Contrast this with a typical imperative

programming approach, which would require you to describe the steps to

solve the problem. Using pipes is one of the most concise ways to query a

graph database.

At its heart, Gremlin is a language to build these pipes. Specifically, it is built

on top of a Java project named Pipes. To explore the pipe concept, let’s return

to our wine graph. Suppose we want to find wines that are similar to a given

wine—that is, they have the same type. We can follow an ice wine that also

shares a grape_type edge with other out nodes (ignoring the initial wine node).

ice_wine = g.v(0)
ice_wine.out('grape_type').in('grape_type').filter{ !it.equals(ice_wine) }

226 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

1: Wine Expert Monthly

0: Prancing Wolf Ice Wine 2007

5: Prancing Wolf Spatlese 2007

4: Prancing Wolf Kabinett 2007

2: riesling
grape_type

grape_type

grape_type

produced

produced

produced

reported_on

3: Prancing Wolf Winery

Figure 35—A graph of nodes after adding data with Gremlin

If you’ve worked in Smalltalk or Rails with scopes, this style of method

chaining will seem familiar to you. But compare the previous to using the

standard Neo4j Java API shown next, where a node’s relationships must be

iterated through in order to access the varietal nodes.

enum WineRelationshipType implements RelationshipType {
grape_type

}

import static WineRelationshipType.grape_type;

public static List<Node> same_variety(Node wine) {
List<Node> wine_list = new ArrayList<Node>();
// walk into all out edges from this vertex
for(Relationship outE : wine.getRelationships(grape_type)) {

// walk into all in edges from this edge's out vertex
for(Edge inE : outE.getEndNode().getRelationships(grape_type)) {

// only add vertices that are not the given vertex
if(!inE.getStartNode().equals(wine)) {

wine_list.add(inE.getStartNode());
}

}
}

return wine_list;
}

Rather than nesting and iterating as shown earlier, the Pipes project designed

a way to declare incoming and outgoing vertices. You create a sequence of in

and out pipes, filters, and request values from the pipeline. Then iteratively

call the pipeline’s hasNext() method, which returns the next matching node. In

other words, the pipeline walks the tree for you. Until the pipeline is

requested, you’re simply declaring how the walk will occur.

To illustrate, here’s another implementation of the same_variety() method, which

uses Pipes rather than explicitly looping:

Day 1: Graphs, Groovy, and CRUD • 227

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Jim says:

jQuery and Gremlin

Users of the popular jQuery JavaScript library may find Gremlin’s collection-oriented

traversal method to be quite familiar. Consider this HTML snippet:

<ul id="navigation">

section 1

section 2

Now suppose we want to find the text of all tags with the name section1 that are children

of list items () under the navigation element (id=navigation). One way to do that in

jQuery is with code like this:

$('[id=navigation]').children('li').children('[name=section1]').text()

Next, consider what a Gremlin query might look like for a similar data set, imagining

that each parent node has an edge pointing to each of its children. Pretty similar,

eh?

g.V.filter{it.id=='navigation'}.out.filter{it.tag=='li'}.
out.filter{it.name=='section1'}.text

public static void same_variety(Vertex wine) {
List<Vertex> wine_list = new ArrayList<Vertex>();
Pipe inE = new InPipe("grape_type");
Pipe outE = new OutPipe("grape_type");
Pipe not_wine = new ObjectFilterPipe(wine, true);
Pipe<Vertex,Vertex> pipeline =

new Pipeline<Vertex,Vertex>(outE, inE, not_wine);
pipeline.setStarts(Arrays.asList(wine));
while(pipeline.hasNext()) {

wine_list.add(pipeline.next());
}
return wine_list;

}

Deep down Gremlin is a Pipe-building language. The work of walking the graph

is still being done on the Neo4j server, but Gremlin simplifies the effort of

building queries that Neo4j can understand.

Pipeline vs. Vertex

To grab a collection containing just one specific vertex, we can filter it from

the list of all nodes. This is what we have been doing when we call, for

228 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Eric says:

Cypher Language

Cypher is the other graph query language supported by Neo4j, based on pattern

matching and a SQL-like syntax. The clauses feel familiar, making it easy to under-

stand what’s going on. Particularly, the MATCH clause is very intuitive, resulting in

ASCII art–like expressions.

At first I didn’t like Cypher’s verbosity, but over time as my eyes adjusted to reading

its grammar, I’ve become a fan.

Look at this Cypher equivalent of our “similar wines” query:

START ice_wine=node(0)
MATCH (ice_wine) -[:grape_type]-> () <-[:grape_type]- (similar)
RETURN similar

We’ve started by binding ice_wine to node 0. The MATCH clause uses identifiers within

parentheses to indicate nodes and typed “arrows” like -[:grape_type]-> for directional

relationships. I actually like this construct, because it’s easy to visualize the node

walk.

It can quickly get advanced, however. This is a more real-world style example—every

bit as powerful and wordy as SQL.

START ice_wine=node:wines(name=”Prancing Wolf Ice Wine 2007”)
MATCH ice_wine -[:grape_type]-> wine_type <-[:grape_type]- similar
WHERE wine_type =~ /(?i)riesl.*)/
RETURN wine_type.name, collect(similar) as wines, count(*) as wine_count
ORDER BY wine_count desc
LIMIT 10

While I chose to focus on Gremlin in the main chapter, the two languages are natural

complements and happily coexist. In day-to-day work, you’ll find reasons to use

either, depending on how you think about the problem at hand.

example, g.V.filter{it.name=='reisling'}. The V property is the list of all nodes, from

which we’re culling a sublist. But when we want the vertex itself, we need to

call next(). This method retrieves the first vertex from the pipeline. It’s akin to

the difference between an array of one element and the element itself.

If you look at the class constructed by calling the filter’s class property, notice

it returns GremlinPipeline.

gremlin> g.V.filter{it.name=='Prancing Wolf Winery'}.class
==>class com.tinkerpop.gremlin.pipes.GremlinPipeline

Compare that to the class of the next node from the pipeline. It returns

something else, the Neo4jVertex.

Day 1: Graphs, Groovy, and CRUD • 229

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

gremlin> g.V.filter{it.name=='Prancing Wolf Winery'}.next().class
==>class com.tinkerpop.blueprints.pgm.impls.neo4j.Neo4jVertex

Although the console conveniently lists the nodes retrieved from the pipeline,

it remains a pipeline until you retrieve something from it.

Schemaless Social

Creating a social aspect to the graph is as easy as adding more nodes. Suppose

we want to add three people—two who know each other and one stranger,

each with their own wine preferences.

Alice has a bit of a sweet tooth and so is a big ice wine fan.

alice = g.addVertex([name:'Alice'])
ice_wine = g.V.filter{it.name=='Prancing Wolf Ice Wine 2007'}.next()
g.addEdge(alice, ice_wine, 'likes')

Tom loves Kabinett and ice wine and trusts anything written by Wine Expert

Monthly.

tom = g.addVertex([name:'Tom'])
kabinett = g.V.filter{it.name=='Prancing Wolf Kabinett 2002'}.next()
g.addEdge(tom, kabinett, 'likes')
g.addEdge(tom, ice_wine, 'likes')
g.addEdge(tom, g.V.filter{it.name=='Wine Expert Monthly'}.next(), 'trusts')

Patty is friends with both Tom and Alice but is new to wine and has yet to

choose any favorites.

patty = g.addVertex([name:'Patty'])
g.addEdge(patty, tom, 'friends')
g.addEdge(patty, alice, 'friends')

Without changing any fundamental structure of our existing graph, we were

able to superimpose behavior beyond our original intent. The new nodes are

related, as visualized in the following:

8: Patty
trustsfriends

friends

likes

likes

likes

re
port

ed_on

4: Prancing Wolf Kabinett 2002

0: Prancing Wolf Ice Wine 2007

1: Wine Expert Monthly7: Tom

6: Alice

230 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Stepping Stones

We’ve looked at a few core Gremlin steps, or Pipe-processing units. Gremlin

provides many more. Let’s take a look at more of these building blocks that

not only walk the graph but also transform objects, filter steps, and produce

side effects like counting nodes grouped by criteria.

We’ve seen inE, outE, inV, and outV, which are transform steps for retrieving the

incoming and outgoing edges and vertices. Two other types are bothE and bothV,
which just follow an edge, regardless of whether it is directed in or out.

This retrieves both Alice and all of her friends. We’ll tack name to the end to

get each vertice’s name property. Since we don’t care which direction the friend
edge goes, we’ll use bothE and bothV.

alice.bothE('friends').bothV.name

==> Alice
==> Patty

If we don’t want Alice, the except() filter lets us pass in a list of nodes we don’t

want, and it walks the rest.

alice.bothE('friends').bothV.except([alice]).name

==> Patty

The opposite of except() is retain(), which, as you may have guessed, walks only

matching nodes.

Another option is to instead filter the last vertex with a code block, where the

current step is not equal to the alice vertex.

alice.bothE('friends').bothV.filter{!it.equals(alice)}.name

What if you wanted to know friends of Alice’s friends? You could just repeat

the steps like so:

alice.bothE('friends').bothV.except([alice]).
bothE('friends').bothV.except([alice])

In the same fashion, we could get friends of Alice’s friends’ friends by adding

more bothE/bothV/except calls to the chain. But that’s a lot of typing, and it’s

not possible to write this for a variable number of steps in this manner. The

loop() method does just that. It repeats some number of previous steps and

continues while the given closure is still true.

The following code will loop the previous three steps by counting periods back

from the loop call. So, except is one, bothV is two, and bothE is three.

Day 1: Graphs, Groovy, and CRUD • 231

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

alice.bothE('friends').bothV.except([alice]).loop(3){
it.loops <= 2

}.name

After each time through the looped series of steps, loop() invokes the given in

the closure—that is, the code between the {...} brackets. In here, the it.loops
property keeps track of how many times the current loop has been executed.

In our case, we check and return whether this number is less than or equal

to 2, meaning the loop will execute two times and stop. In effect, the closure

is very much like the clause for a while loop in a typical programming language.

==>Tom
==>Patty
==>Patty

The loop worked, correctly finding both Tom and Patty. But now we have two

copies of Patty. That’s because one matches Patty as a friend of Alice, and

the other matches because she is friends with Tom. So, now we need a way

to filter out duplicate objects, which the dedup() (de-duplicate) filter provides.

alice.bothE('friends').bothV.except([alice]).loop(3){
it.loops <= 2

}.dedup.name

==>Tom
==>Patty

To get more insight into the path taken to arrive at these values, you can

follow the friend->friend path by using the paths() transform.

alice.bothE('friends').bothV.except([alice]).loop(3){
it.loops <= 2

}.dedup.name.paths

==> [v[7], e[12][9-friends->7], v[9], e[11][9-friends->8], v[8], Tom]
==> [v[7], e[12][9-friends->7], v[9], e[11][9-friends->8], v[9], Patty]

All traversals you’ve done so far have been to walk forward through a graph.

Sometimes you need to take two steps forward and two steps back. Starting

with the Alice node, we walk out two steps and then back two, which returns

us to the Alice node.

gremlin> alice.outE.inV.back(2).name
==> Alice

The last commonly used step we’ll investigate is groupCount(), which walks

through the nodes and counts duplicate values, capturing them in a map.

Consider this example that collects all the name properties of all vertices in

the graph and counts how many of each there are:

232 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

gremlin> name_map = [:]
gremlin> g.V.name.groupCount(name_map)
gremlin> name_map
==> Prancing Wolf Ice Wine 2007=1
==> Wine Expert Monthly=1
==> riesling=1
==> Prancing Wolf Winery=1
==> Prancing Wolf Kabinett 2002=1
==> Prancing Wolf Spatlese 2007=1
==> Alice=1
==> Tom=1
==> Patty=1

In Groovy/Gremlin, a map is denoted by the nomenclature [:] and is pretty

much identical to the Ruby/JavaScript object literal {}. Notice how all of the

values are 1. This is exactly what we’d expect, since we haven’t repeated any

names, and the V collection has exactly one copy of each node in our graph.

Next, let’s count up the number of wines liked by each person in our system.

We can get all of the liked vertices and count up the numbers per name.

gremlin> wines_count = [:]
gremlin> g.V.outE('likes').outV.name.groupCount(wines_count)
gremlin> wines_count
==> Alice=1
==> Tom=2

As we should expect, Alice liked one wine, and Tom liked two.

Getting Groovy

Besides the Gremlin steps, we also get the wide array of Groovy language

constructs and methods. Groovy has a map function (a la mapreduce) named

collect() and a reduce function named inject(). Using these, we can preform

mapreduce-like queries.

Consider the case where we want to count how many wines have not yet been

rated. We can do this by first mapping out a list of true/false values indicating

whether each wine has been rated. Then, we can run that list through a

reducer to count up all the trues and falses. The mapping part uses collect
and looks like this:

rated_list = g.V.in('grape_type').collect{
!it.inE('reported_on').toList().isEmpty()

}

In the previous code, the expression g.V.in('grape_type') returns all the nodes

that have an incoming grape_type relationship. Only wines will have this type

of edge, so we have our list of all wines in the system. Next, in the collect

Day 1: Graphs, Groovy, and CRUD • 233

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

closure, we determine whether the wine in question has any incoming report-
ed_on edges. The toList() call forces the pipeline to become a true list, which we

can then test for emptiness. The rated_list produced by this code will be a list

of true and false values.

To count how many wines have not been rated, we can run that list through

a reducer using the inject() method.

rated_list.inject(0){ count, is_rated ->
if (is_rated) {

count
} else {

count + 1
}

}

In Groovy, the arrow operator (->) separates the input arguments for a closure

from the body of the closure. In our reducer, we need to keep track of the

accumulated count and process whether the current wine has been rated or

not, which is the reason for count and is_rated. The 0 part of inject(0) initialized

count to 0 before the first invocation. Then, within the body of the closure

function, we either return the current count if the wine has already been

rated or return that value plus 1 if it hasn’t been rated. The final output will

be the number of false values in the list (that is, the count of unrated wines).

==> 2

So, it turns out that two of our wines are as yet unrated.

With all these tools available, you can craft many powerful combinations of

graph traversals and transformations. Suppose we want to find all of the pairs

of friends in our graph. To do that, first we need to find all edges with a friends
type and then output the names of both people who share that edge by using

the transform operation.

g.V.outE('friends').transform{[it.outV.name.next(), it.inV.name.next()]}

==> [Patty, Tom]
==> [Patty, Alice]

In the previous code, the return value of the transform closure is an array literal

([...]) with two elements: the output and input vertices to the friend edge.

To find all people and the wines they like, we transform our output of people

(identified as vertices with friends) into a list with two elements: the name of

the person and a list of wines they like.

234 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

g.V.both('friends').dedup.transform{
[it.name, it.out('likes').name.toList()]

}

==> [Alice, [Prancing Wolf Ice Wine 2007]]
==> [Patty, []]
==> [Tom, [Prancing Wolf Ice Wine 2007, Prancing Wolf Kabinett 2002]]

Gremlin definitely takes a little getting used to, especially if you haven’t done

much Groovy programming before. Once you get the hang of it, you’ll find it’s

an expressive and powerful way to perform queries against Neo4j.

Domain-Specific Steps

Graph traversal is nice, but businesses and organizations tend to converse

in domain-specific languages. For example, we wouldn’t normally ask “What

is the vertex with the incoming edge of grape_type sharing the outgoing edge

of this wine’s vertex?” but rather “What varietal is this wine?”

Gremlin is already a language specific to the domain of querying graph

databases, but what about making the language even more specific? Gremlin

lets us do this by creating new steps that are semantically meaningful to the

data stored in the graph.

Let’s start by creating a new step named varietal that seeks to answer the

question posed before. When varietal() is called on a vertex, it will look for out-

going edges of type grape_type and step to those related vertices.

We’re getting into a bit of Groovy-foo here, so we’ll first look at our code to

create the step and then describe it line by line.

neo4j/varietal.groovy

Gremlin.defineStep('varietal',
[Vertex, Pipe],
{_().out('grape_type').dedup}

)

First we tell the Gremlin engine we’re adding a new step called varietal. The

second line tells Gremlin that this new step should attach to both Vertex and

Pipe classes (when in double, just use both). The last line is where the magic

happens. Effectively, this creates a closure that contains the code this step

should execute. The underscore and parentheses represent the current

pipeline object. From this object, we walk to any neighbor nodes related by

a grape_type edge—that is, the varietal node. We end with dedup to remove any

possible duplicates.

Day 1: Graphs, Groovy, and CRUD • 235

http://media.pragprog.com/titles/rwdata/code/neo4j/varietal.groovy
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Calling our new step is just like any other step. For example, the following

gets the name of the ice wine’s varietal:

g.V.filter{it.name=='Prancing Wolf Ice Wine 2007'}.varietal.name

==> riesling

Let’s try another one. This time we’re making a step for a commonly

requested action: get all friends’ favorite wines.

neo4j/friendsuggest.groovy

Gremlin.defineStep('friendsuggest',
[Vertex, Pipe],
{

_().sideEffect{start = it}.both('friends').
except([start]).out('likes').dedup

}
)

Just like last time, we give Gremlin our new friendsuggest step name and bind

it to Vertex and Pipe. This time, our code will filter out the current person. We

do that by setting the current vertex/pipe to a variable (start) by using the

sideEffect{start = it} function. Then we get all friends nodes, except for the current

person (we don’t want to list Alice as her own friend).

Now we’re cooking with pipes! We can call this new step as we normally would.

g.V.filter{it.name=='Patty'}.friendsuggest.name

==> Prancing Wolf Ice Wine 2007
==> Prancing Wolf Kabinett 2002

Since varietal and friendsuggest are just normal Pipe-building steps, you can chain

them together to make more interesting queries. The following finds the

varietals that Patty’s friends like best:

g.V.filter{it.name=='Patty'}.friendsuggest.varietal.name

==> riesling

Using Groovy metaprogramming to create new steps is a powerful force for

crafting domain-specific languages. But like Gremlin itself, the practice can

take some getting used to.

Update, Delete, Done

You’ve inserted and stepped through a graph, but what about updating and

deleting data? It’s easy enough, once you find the vertex or edge you want to

alter. Let’s add a weight to how much Alice likes the Prancing Wolf Ice Wine

2007.

236 • Chapter 7. Neo4J

http://media.pragprog.com/titles/rwdata/code/neo4j/friendsuggest.groovy
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

gremlin> e=g.V.filter{it.name=='Alice'}.outE('likes').next()
gremlin> e.weight = 95
gremlin> e.save

We can remove the value just as easily.

gremlin> e.removeProperty('weight')
gremlin> e.save

Before we call it a day and go into some homework, we should cover how to

clean up our database.

Don’t run these commands until you’ve finished the homework for the day!

The graph object has functions to remove vertices and edges, removeVertex and

removeEdge, respectively. We could destroy our graph by removing all vertices

and edges.

gremlin> g.V.each{ g.removeVertex(it) }
gremlin> g.E.each{ g.removeEdge(it) }

You can validate they are gone by calling g.V and g.E. Or you can achieve the

same thing with the ridiculously dangerous clear() method.

gremlin> g.clear()

If you’re running your own Gremlin instance (outside of the web interface),

it’s a good idea to cleanly shut down the graph connection with the shutdown()
method.

gremlin> g.shutdown()

If you don’t, it may corrupt the database. But usually it will just yell at you

the next time you connect to the graph.

Day 1 Wrap-Up

Today we got to peek at the graph database Neo4j—and what a different beast

it is. Although we didn’t cover specific design patterns, our brains were buzzing

with possibilities when we first began working with Neo4j. If you can draw it

on a whiteboard, you can store it in a graph database.

Day 1 Homework

Find

1. Bookmark the Neo4j wiki.

2. Bookmark the Gremlin steps from the wiki or API.

3. Find two other Neo4j shells (such as the Cypher shell in the admin

console).

Day 1: Graphs, Groovy, and CRUD • 237

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Do

1. Query all node names with another shell (such as the Cypher query

language).

2. Delete all the nodes and edges in your database.

3. Create a new graph that represents your family.

7.3 Day 2: REST, Indexes, and Algorithms

Today we’ll start with Neo4j’s REST interface. We’ll create nodes and relation-

ships using REST and then use REST to index and execute a full-text search.

We’ll then look at a plug-in that lets us execute Gremlin queries on the server

through REST, freeing our code from the confines of the Gremlin console—or

even running Java at all in our application server or clients.

Taking a REST

Just like Riak, HBase, Mongo, and CouchDB, Neo4j ships with a REST

interface. One of the reasons all of these databases support REST is because

it allows language-agnostic interactions in a standard connection interface.

We can connect to Neo4j—which requires Java to work—from a separate

machine with no trace of Java whatsoever. And with the Gremlin plug-in,

we’ll see how to gain the power of its terse query syntax over REST.

First you might want to check that the REST server is running by issuing a

GET against the base URL, which retrieves the root node. It runs on the same

port as the web admin tool you used yesterday, at the /db/data/ path. We’ll use

our trusty friend curl to issue the REST commands.

$ curl http://localhost:7474/db/data/
{
"relationship_index" : "http://localhost:7474/db/data/index/relationship",
"node" : "http://localhost:7474/db/data/node",
"relationship_types" : "http://localhost:7474/db/data/relationship/types",
"extensions_info" : "http://localhost:7474/db/data/ext",
"node_index" : "http://localhost:7474/db/data/index/node",
"extensions" : {
}

}

It will return a nice JSON object describing the URLs of other commands,

like node actions or indices.

Creating Nodes and Relationships Using REST

It’s as easy to create nodes and relationships in Neo4j REST as in CouchDB

or Riak. Creating a node is a POST to the /db/data/node path with JSON data. As

238 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

matter of convention, it pays to give each node a name property. This makes

viewing any node’s information easy: just call name.

$ curl -i -X POST http://localhost:7474/db/data/node \
-H "Content-Type: application/json" \
-d '{"name": "P.G. Wodehouse", "genre": "British Humour"}'

When posted, you’ll get the node path in the header and a body of metadata

about the node (both are truncated here for brevity). All of this data is retriev-

able by calling GET on the given header Location value (or the self property in

the metadata).

HTTP/1.1 201 Created
Location: http://localhost:7474/db/data/node/9
Content-Type: application/json

{
"outgoing_relationships" :

"http://localhost:7474/db/data/node/9/relationships/out",
"data" : {

"genre" : "British Humour",
"name" : "P.G. Wodehouse"

},
"traverse" : "http://localhost:7474/db/data/node/9/traverse/{returnType}",
"all_typed_relationships" :
"http://localhost:7474/db/data/node/9/relationships/all/{-list|&|types}",

"property" : "http://localhost:7474/db/data/node/9/properties/{key}",
"self" : "http://localhost:7474/db/data/node/9",
"properties" : "http://localhost:7474/db/data/node/9/properties",
"outgoing_typed_relationships" :

"http://localhost:7474/db/data/node/9/relationships/out/{-list|&|types}",
"incoming_relationships" :
"http://localhost:7474/db/data/node/9/relationships/in",

"extensions" : {
},
"create_relationship" : "http://localhost:7474/db/data/node/9/relationships",
"paged_traverse" :

"http://localhost:7474/db/.../{returnType}{?pageSize,leaseTime}",
"all_relationships" : "http://localhost:7474/db/data/node/9/relationships/all",
"incoming_typed_relationships" :
"http://localhost:7474/db/data/node/9/relationships/in/{-list|&|types}"

}

If you just want the node properties (not the metadata), you can GET that by

appending /properties to the node URL or even an individual property by further

appending the property name.

$ curl http://localhost:7474/db/data/node/9/properties/genre
"British Humour"

Day 2: REST, Indexes, and Algorithms • 239

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

One node doesn’t do us much good, so go ahead and create another one with

the properties ["name" : "Jeeves Takes Charge", "style" : "short story"].

Since P.G. Wodehouse wrote the short story “Jeeves Takes Charge,” we can

make a relationship between them.

$ curl -i -X POST http://localhost:7474/db/data/node/9/relationships \
-H "Content-Type: application/json" \
-d '{"to": "http://localhost:7474/db/data/node/10", "type": "WROTE",
"data": {"published": "November 28, 1916"}}'

A nice thing about the REST interface is that it actually reported on how to

create a relationship early in the body metadata’s create_relationship property.

In this way, the REST interfaces tend to be mutually discoverable.

Finding Your Path

Through the REST interface, you can find the path between two nodes by

posting the request data to the starting node’s /paths URL. The POST request

data must be a JSON string denoting the node you want the path to, the type

of relationships you want to follow, and the path-finding algorithm to use.

For example, here we’re looking for a path following relationships of the type

WROTE from node 1 using the shortestPath algorithm and capping out at a depth

of 10.

$ curl -X POST http://localhost:7474/db/data/node/9/paths \
-H "Content-Type: application/json" \
-d '{"to":"http://localhost:7474/db/data/node/10",
"relationships": {"type" : "WROTE"},
"algorithm":"shortestPath", "max_depth":10}'

[{
"start" : "http://localhost:7474/db/data/node/9",
"nodes" : [

"http://localhost:7474/db/data/node/9",
"http://localhost:7474/db/data/node/10"

],
"length" : 1,
"relationships" : ["http://localhost:7474/db/data/relationship/14"],
"end" : "http://localhost:7474/db/data/node/10"

}]

The other path algorithm choices are allPaths, allSimplePaths, and dijkstra. Details

on these algorithms can be found in the online documentation,1 but covering

them in detail is outside the scope of this book.

1. http://api.neo4j.org/current/org/neo4j/graphalgo/GraphAlgoFactory.html

240 • Chapter 7. Neo4J

http://api.neo4j.org/current/org/neo4j/graphalgo/GraphAlgoFactory.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Indexing

Like other databases we’ve seen, Neo4j supports fast data lookups by con-

structing indexes. There is a twist, though. Unlike other database indexes

where you perform queries in much the same way as without one, Neo4j

indexes have a different path. This is because the indexing service is actually

a separate service.

The simplest index is the key-value or hash style. You key the index by some

node data, and the value is a REST URL, which points to the node in the

graph. You can have as many indexes as you like, so we’ll name this one

“authors.” The end of the URL will contain the author name we want to index

and pass in node 1 as the value (or whatever your Wodehouse node was).

$ curl -X POST http://localhost:7474/db/data/index/node/authors \
-H "Content-Type: application/json" \
-d '{ "uri" : "http://localhost:7474/db/data/node/9",
"key" : "name", "value" : "P.G.+Wodehouse"}'

Retrieving the node is simply a call to the index, which you’ll notice doesn’t

return the URL we set but instead the actual node data.

$ curl http://localhost:7474/db/data/index/node/authors/name/P.G.+Wodehouse

Besides key-value, Neo4j provides a full-text search inverted index, so you

can perform queries like this: “Give me all books that have names beginning

with ’Jeeves.’” To build this index, we need to build it against the entire

dataset, rather than our one-offs earlier. Like Riak, Neo4j incorporates Lucene

to build our inverted index.

$ curl -X POST http://localhost:7474/db/data/index/node \
-H "Content-Type: application/json" \
-d '{"name":"fulltext", "config":{"type":"fulltext","provider":"lucene"}}'

The POST will return a JSON response containing information about the newly

added index.

{
"template" : "http://localhost:7474/db/data/index/node/fulltext/{key}/{value}",
"provider" : "lucene",
"type" : "fulltext"

}

Now if we add Wodehouse to the full-text index, we get this:

curl -X POST http://localhost:7474/db/data/index/node/fulltext \
-H "Content-Type: application/json" \
-d '{ "uri" : "http://localhost:7474/db/data/node/9",
"key" : "name", "value" : "P.G.+Wodehouse"}'

Day 2: REST, Indexes, and Algorithms • 241

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Then a search is as easy as a Lucene syntax query on the index URL.

$ curl http://localhost:7474/db/data/index/node/fulltext?query=name:P*

Indexes can also be built on edges like earlier; just replace the instances of

node in the URLs with relationship, for example http://localhost:7474/db/data/index/rela-
tionship/published/date/1916-11-28.

REST and Gremlin

We spent much of Day 1 using Gremlin and the first half of today using the

REST interface. If you wondered which you should use, fear not. The Neo4j

REST interface has a Gremlin plug-in (which is installed by default in the

version of Neo4j we’re using).2 You can send through REST any commands

you could in the Gremlin console. This allows you the power and flexibility

of both tools in production. This is a great combination, since Gremlin is

better geared toward powerful queries, where REST is geared toward deploy-

ment and language flexibility.

The following code will return all vertex names. You only need to send the

data to the plug-in URL as a JSON string value, under the field script.

$ curl -X POST \
http://localhost:7474/db/data/ext/GremlinPlugin/graphdb/execute_script \
-H "content-type:application/json" \
-d '{"script":"g.V.name"}'

["P.G. Wodehouse", "Jeeves Takes Charge"]

Although code samples from here on out will use Gremlin, bear in mind that

you could instead choose to use REST.

Big Data

Up until now we’ve dealt with very small data sets, so now it’s time to see

what Neo4j can do with some big data.

Let’s explore some movie data by grabbing a dataset from Freebase.com. We’ll

be using the “performance” tab-separated set.3 Download the file and use the

following script, which iterates through each line and creates a relationship

between new or existing nodes (matches are found by name in the index).

Be warned, this dataset contains a vast amount of movie information, from

blockbusters to foreign films to, well, adult entertainment. You will need the

json and faraday Ruby gems installed to run this script.

2. http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
3. http://download.freebase.com/datadumps/latest/browse/film/performance.tsv

242 • Chapter 7. Neo4J

http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://download.freebase.com/datadumps/latest/browse/film/performance.tsv
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

neo4j/importer.rb

REST_URL = 'http://localhost:7474/'
HEADER = { 'Content-Type' => 'application/json' }

%w{rubygems json cgi faraday}.each{|r| require r}

make a connection to the Neo4j REST server
conn = Faraday.new(:url => REST_URL) do |builder|

builder.adapter :net_http
end

method to get existing node from the index, or create one
def get_or_create_node(conn, index, value)

look for node in the index
r = conn.get("/db/data/index/node/#{index}/name/#{CGI.escape(value)}")
node = (JSON.parse(r.body).first || {})['self'] if r.status == 200
unless node

no indexed node found, so create a new one
r = conn.post("/db/data/node", JSON.unparse({"name" => value}), HEADER)
node = (JSON.parse(r.body) || {})['self'] if [200, 201].include? r.status
add new node to an index
node_data = "{\"uri\" : \"#{node}\", \"key\" : \"name\",

\"value\" : \"#{CGI.escape(value)}\"}"
conn.post("/db/data/index/node/#{index}", node_data, HEADER)

end
node

end

puts "begin processing..."

count = 0
File.open(ARGV[0]).each do |line|
_, _, actor, movie = line.split("\t")
next if actor.empty? || movie.empty?

build the actor and movie nodes
actor_node = get_or_create_node(conn, 'actors', actor)
movie_node = get_or_create_node(conn, 'movies', movie)

create relationship between actor and movie
conn.post("#{actor_node}/relationships",
JSON.unparse({ :to => movie_node, :type => 'ACTED_IN' }), HEADER)

puts " #{count} relationships loaded" if (count += 1) % 100 == 0

end

puts "done!"

Day 2: REST, Indexes, and Algorithms • 243

http://media.pragprog.com/titles/rwdata/code/neo4j/importer.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

With everything set up, just run the script and point it to the downloaded

performance.tsv file.

$ ruby importer.rb performance.tsv

This can take hours to run the whole dataset, but you can stop the process

at any time for a partial movie/actor list. If you’re running Ruby 1.9, you

might have better luck replacing the line builder.adapter :net_http with builder.adapter
:em_synchrony, which creates a nonblocking connection.

Fancy Algorithms

With our big movie dataset, it’s time to hang up our REST interface for a while

and jump back into Gremlin.

Of Course, Kevin Bacon

Let’s have a little fun implementing one of the more famous graph algorithms

in existence: the Kevin Bacon algorithm. This algorithm is based on a game

to find the shortest distance between any actor and Kevin Bacon through

commonly acted movies. For instance, Alec Guinness acted in Kafka with

Theresa Russell, who was in Wild Things with Kevin Bacon.

Before continuing, fire up your Gremlin console and start up the graph. Then

we’ll create the costars custom step with the following code. This is similar to

the friendsuggest from yesterday. It finds the costars of an actor node (actors

who share an edge with the initial actor’s movies).

neo4j/costars.groovy

Gremlin.defineStep('costars',
[Vertex, Pipe],
{

_().sideEffect{start = it}.outE('ACTED_IN').
inV.inE('ACTED_IN').outV.filter{

!start.equals(it)
}.dedup

}
)

In Neo4j you don’t so much “query” for a set of values as you “walk” the graph.

The nice thing about this concept is that generally the first node walked to

will be the closest to your starting node (in terms of raw edge/node distance,

not of weighted distance). Let’s begin by finding our starting and ending nodes.

gremlin> bacon = g.V.filter{it.name=='Kevin Bacon'}.next()
gremlin> elvis = g.V.filter{it.name=='Elvis Presley'}.next()

244 • Chapter 7. Neo4J

http://media.pragprog.com/titles/rwdata/code/neo4j/costars.groovy
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We start by finding an actor’s costars’ costars’ costars…the classic stopping

distance is six degrees, but practically we can stop at four (if you don’t find

a match, you can try again). Here we can loop through the graph four times,

which finds all actors with “four degrees of separation.” We’ll use the costars

step we just created.

elvis.costars.loop(1){it.loops < 4}

Only vertices that end with Bacon are to be retained. All others are ignored.

elvis.costars.loop(1){
it.loops < 4

}.filter{it.equals(bacon)}

Just to ensure we don’t want to continue looping back to the Kevin Bacon

node for a second pass, hitting the bacon node short-circuits the loop. Or, in

other words, loop as long as the loop hasn’t occurred four times and we are

not on the bacon node. Then we can output the paths taken to arrive at each

bacon node.

elvis.costars.loop(1){
it.loops < 4 & !it.object.equals(bacon)

}.filter{it.equals(bacon)}.paths

With that, we only need to pop the first path off the top of the list of possible

paths—the shortest path will be arrived at first. The >> nomenclature just

pops the first item off the list of all nodes.

(elvis.costars.loop(1){
it.loops < 4 & !it.object.equals(bacon)

}.filter{it.equals(bacon)}.paths >> 1)

Finally, we get the name of each vertex and filter out any null edge data using

the Groovy grep command.

(elvis.costars.loop(1){
it.loops < 4 & !it.object.equals(bacon)

}.filter{it.equals(bacon)}.paths >> 1).name.grep{it}

==>Elvis Presley
==>Double Trouble
==>Roddy McDowall
==>The Big Picture
==>Kevin Bacon

We didn’t know who Roddy McDowall was, but that’s the beauty of our graph

database. We didn’t have to know to get a good answer. Feel free to sharpen

your Groovy-foo if you want the output to be fancier than our simple list, but

the data is all there.

Day 2: REST, Indexes, and Algorithms • 245

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Random Walk

When looking for good sample from a large data set, a useful trick is the

“random walk.” You start with a random number generator.

rand = new Random()

Then you filter out some target ratio of the total. If we want to return only

about one-third of Kevin Bacon’s ~60 movies, we could filter out any random

number less than 0.33.

bacon.outE.filter{rand.nextDouble() <= 0.33}.inV.name

The count should be somewhere around twenty random titles from the Bacon

canon.

Taking a second-degree step away from Kevin Bacon, his costars’ costars,

creates quite a list (more than 300,000 in our data set).

bacon.outE.inV.inE.outV.loop(4){
it.loops < 3

}.count()

==> 316198

But if you need only about 1 percent of that list, add a filter. Also note the

filter is itself a step, so you’ll need to add one more to your loop number.

bacon.outE{
rand.nextDouble() <= 0.01

}.inV.inE.outV.loop(5){
it.loops < 3

}.name

We received Elijah Wood, who we can run through our Bacon path algorithm

and reasonably expect two steps (Elijah Wood acted in Deep Impact with Ron

Eldard, who was in Sleepers with Kevin Bacon).

Centrality Park

Centrality is a measure of individual nodes against a full graph. For example,

if we wanted to measure how important each node in a network is based on

its distance to all the other nodes, that would require a centrality algorithm.

The most famous centrality algorithm is probably Google’s PageRank, but

there are several styles. We’ll execute a simple version called eigenvector

centrality, which just counts the number of in or out edges related to a node.

We’re going to give each actor a number related to how many roles they have

played.

246 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We need a map for groupCount() to populate and a count to set a maximum

number or loops.

role_count = [:]; count = 0
g.V.in.groupCount(role_count).loop(2){ count++ < 1000 }; ''

The role_count map will be keyed by vertices, with values of the count of edges

the vertex has. The easiest way to read the output is by sorting the map.

role_count.sort{a,b -> a.value <=> b.value}

The last value will be the actor with the greatest number of acting credits. In

our dataset that honor belonged to legendary voice actor Mel Blanc with 424

credits (which you can list by running g.V.filter{it.name=='Mel Blanc'}.out.name).

External Algorithms

Writing your own algorithms is fine, but most of this work has already been

done for you. The Java Universal Network/Graph (JUNG) Framework is a

collection of common graph algorithms and other tools for modeling and

visualizing graphs. Thanks to the Gremlin/Blueprint project, it’s easy to

access JUNG’s algorithms, such as PageRank, HITS, Voltage, centrality

algorithms, and graph-as-a-matrix tools.

To use JUNG, we need to wrap the Neo4j Graph into a new JUNG Graph.4 To

access the JUNG graph, we need to do one of two options: download and

install all of the Blueprint and JUNG jars into your Neo4j server libs directory

and restart the server, or download the prepackaged Gremlin console. We

recommend the latter option for this project, since it will save you the hassle

of hunting down several Java archive files (jars).

Assuming you’ve downloaded the gremlin console, shut down your neo4j

server and start up Gremlin. You’ll have to create the Neo4jGraph object and

point it to your installation’s data/graph directory.

g = new Neo4jGraph('/users/x/neo4j-enterprise-1.7/data/graph.db')

We’ll keep the Gremlin graph named g. The Neo4jGraph object needs to be

wrapped in a GraphJung object, which we’ll call j.

j = new GraphJung(g)

Part of the reason Kevin Bacon was chosen as the ultimate path destination

is his relative closeness to other actors. He has starred in movies with other

popular stars. To be important, he didn’t need to be in many roles himself

but simply be connected to those who are well connected.

4. http://blueprints.tinkerpop.com

Day 2: REST, Indexes, and Algorithms • 247

http://blueprints.tinkerpop.com
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

This raises the question: can we find a better actor than Kevin Bacon, in

terms of distance from other actors?

JUNG contains a scoring algorithm called BarycenterScorer that gives a score

to each vertex based on its distance to all other vertices. If Kevin Bacon is

indeed the best choice, we would expect his score to be the lowest, meaning

he is “closest” to all other actors.

Our JUNG algorithm should apply only to actors, so we construct a transformer

to filter only actor nodes. The EdgeLabelTransformer permits only those nodes

with an edge of ACTED_IN to the algorithm.

t = new EdgeLabelTransformer(['ACTED_IN'] as Set, false)

Next, we need to import the algorithm itself, passing in our GraphJung and

transformer.

import edu.uci.ics.jung.algorithms.scoring.BarycenterScorer
barycenter = new BarycenterScorer<Vertex,Edge>(j, t)

With that, we can get the BarycenterScorer score of any node. Let’s find out

what Kevin Bacon’s score is.

bacon = g.V.filter{it.name=='Kevin Bacon'}.next()
bacon_score = barycenter.getVertexScore(bacon)

~0.0166

Once we have Kevin Bacon’s score, we can go through every vertex and store

any that have a score lower than his.

connected = [:]

It could take a really long time to execute the BarycenterScorer score for each

actor in our database. So, instead, let’s just run the algorithm against each

of Kevin’s costars. This may take a few minutes, depending on your hardware.

BarycenterScorer is fast, but executing over each of Bacon’s costars adds up.

bacon.costars.each{
score = b.getVertexScore(it);
if(score < bacon_score) {

connected[it] = score;
}

}

All of the keys that exist in the connected map represent a better choice than

Kevin Bacon. But it’s good to have a name we recognize, so let’s output them

all and pick one we like. Your output will vary from ours, since the public

movie dataset is always in flux.

248 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

connected.collect{k,v -> k.name + " => " + v}

==> Donald Sutherland => 0.00925
==> Clint Eastwood => 0.01488
...

Donald Sutherland appeared in the list with a respectable ~0.00925. So,

hypothetically, the Six Degrees of Donald Sutherland should be an easier

game to play with your friends than the traditional Six Degrees of Kevin Bacon.

With our j graph we can now run any JUNG algorithm on our dataset, for

example PageRank. Like BarycenterScorer, you need to import the class first.

import edu.uci.ics.jung.algorithms.scoring.PageRank
pr = new PageRank<Vertex,Edge>(j, t, 0.25d)

The full list of JUNG algorithms can be found in their online Javadoc API.

More are added all the time, so it’s a good place to look before implementing

your own.

Day 2 Wrap-Up

On Day 2 we broadened our ability to interact with Neo4j by taking a look at

the REST interface. We saw how, using the Gremlin plug-in, we can execute

Gremlin code on the server and have the REST interface return results. We

played around with a larger dataset and finally finished up with a handful of

algorithms for diving into that data.

Day 2 Homework

Find

1. Bookmark the documentation for the Neo4j REST API.

2. Bookmark the API for the JUNG project and the algorithms it implements.

3. Find a binding or REST interface for your favorite programming language.

Do

1. Turn the path-finding portion of the Kevin Bacon algorithm into its own

step. Then implement a general-purpose Groovy function (for example,

def actor_path(g, name1, name2) {…}) that accepts the graph and two names and

compares the distance.

2. Choose and run one of the many JUNG algorithms on a node (or the data

set, if the API demands it).

3. Install your driver of choice, and use it to manage your company graph

with the people and the roles they play, with edges describing their

interactions (reports to, works with). If your company is huge, just try

Day 2: REST, Indexes, and Algorithms • 249

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

your close teams; if you’re with a small organization, try including some

customers. Find the most well-connected person in the organization by

closest distance to all other nodes.

7.4 Day 3: Distributed High Availability

We’re going to wrap up our Neo4j investigation by learning how to make Neo4j

more attuned to mission-critical uses. We’ll see how Neo4j keeps data stable

via ACID-compliant transactions. Then we’ll install and configure a Neo4j

high availability (HA) cluster to improve availability when serving high-read

traffic. Then we’re going to look into backup strategies to ensure our data

remains safe.

Transactions

Neo4j is an Atomic, Consistent, Isolated, Durable (ACID) transaction database,

similar to PostgreSQL. This makes it a good option for important data you

may have otherwise picked a relational database for. Just like transactions

we’ve seen before, Neo4j transactions are all-or-nothing operations. When a

transaction starts, every following operation will succeed or fail as an atomic

unit—failure of one means failure of all.

The details of how transactions are handled goes beyond Gremlin into the

underlying Neo4j wrapper project called Blueprint. Specific details can change

from version to version. We’re using Gremlin 1.3, which uses Blueprints 1.0.

If you’re using a different version of either, you can find the specifics in the

Blueprint API Javadocs.

Just like PostgreSQL, basic one-line functions are automatically wrapped in

an implicit transaction. To demonstrate multiline transactions, we need to

flag the graph object to turn off automatic transaction mode, letting Neo4j

250 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

know that we plan to handle transactions manually. You can change the

transaction mode through the setTransactionMode() function.

gremlin> g.setTransactionMode(TransactionalGraph.Mode.MANUAL)

You start and stop the transaction on the graph object using startTransaction()
and stopTransaction(conclusion). When you stop the transaction, you also need to

mark whether the transaction was successful. If not, Neo4j can roll back all

commands executed since the start. It’s a good idea to wrap the transaction

within a try/catch block to ensure that any exceptions will trigger a rollback.

g.startTransaction()
try {

// execute some multi-step graph stuff here...
g.stopTransaction(TransactionalGraph.Conclusion.SUCCESS)

} catch(e) {
g.stopTransaction(TransactionalGraph.Conclusion.FAILURE)

}

If you want to operate outside the Gremlin confines and work directly with

the Neo4j EmbeddedGraphDatabase, you can use the Java API syntax for transac-

tions. You may have to use this style if you write Java code or use a language

that is Java under the covers—like JRuby.

r = g.getRawGraph()
tx = r.beginTx()
try {

// execute some multistep graph stuff here...
tx.success()

} finally {
tx.finish()

}

Both varieties provide you with full ACID transaction guarantees. Even system

failure will ensure any writes are rolled back when the server is fired back

up. If you don’t need to manually handle transactions, you’re better off

keeping the transaction mode on TransactionalGraph.Mode.AUTOMATIC.

High Availability

High availability mode is Neo4j’s answer to the question, “Can a graph

database scale?” Yes, but with some caveats. A write to one slave is not

immediately synchronized with all other slaves, so there is a danger of losing

consistency (in the CAP sense) for a brief moment (making it eventually con-

sistent). HA will lose pure ACID-compliant transactions. It’s for this reason

that Neo4j HA is touted as a solution largely for increasing capacity for reads.

Day 3: Distributed High Availability • 251

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Just like Mongo, the servers in the cluster will elect a master that is the gold

copy of data. Unlike Mongo, however, slaves accept writes. Slave writes will

synchronize with the master node, which then propagates those changes to

the other slaves.

HA Cluster

To use Neo4j HA, we must first set up a cluster. Neo4j uses an external

cluster coordinator service called Zookeeper. Zookeeper is yet another excellent

project to arise from the Apache Hadoop project. It’s a general-purpose service

to coordinate distributed applications. Neo4j HA uses this to manage its life-

cycle activities. Each Neo4j server has its own related coordinator—tasked

with managing its place in the cluster—as shown in Figure 36, A three-server

Neo4j cluster and their coordinators, on page 253.

Happily, Neo4j Enterprise comes bundled with Zookeeper as well as some

files to help us configure a cluster. We’re going to run three instances of Neo4j

Enterprise version 1.7. You can download a copy from the website for your

operating system (be sure you select the correct edition)5 and then unzip it

and create two more copies of the directory. We suffixed ours with 1, 2, and

3 and will refer to them as such.

tar fx neo4j-enterprise-1.7-unix.tar
mv neo4j-enterprise-1.7 neo4j-enterprise-1.7-1
cp -R neo4j-enterprise-1.7-1 neo4j-enterprise-1.7-2
cp -R neo4j-enterprise-1.7-1 neo4j-enterprise-1.7-3

Now we have three identical copies of our database.

Normally you would unpack one copy per server and configure the cluster to

be aware of the other servers. But since we’re running them locally, we’ll

instead run them on different directories using different ports.

We will follow five steps to create our cluster, starting by configuring the

Zookeeper cluster coordinators and then the Neo4j servers.

1. Set unique IDs for each coordinator server.

2. Configure each coordinator server to communicate with the other servers

and its hosted Neo4j server.

3. Start up all three coordinator servers.

4. Configure each Neo4j server to run in HA mode, give them unique ports,

and make them aware of the coordinator cluster.

5. http://neo4j.org/download/

252 • Chapter 7. Neo4J

http://neo4j.org/download/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Coordinator 1

Coordinator 2 Coordinator 3

Neo4j 1
(master)

Neo4j 2
(slave)

Neo4j 3
(slave)

Cluster Interface

Figure 36—A three-server Neo4j cluster and their coordinators

5. Start up all three Neo4j servers.

Zookeeper tracks each server by way of an ID unique to the cluster. This

number is the only value in the file data/coordinator/myid. For server 1 we’ll keep

it at the default 1; for server 2 we’ll set it to 2 and set server 3 to contain 3.

echo "2" > neo4j-enterprise-1.7-2/data/coordinator/myid
echo "3" > neo4j-enterprise-1.7-3/data/coordinator/myid

We must also indicate some communication settings internal to the cluster.

Each server will have a file named conf/coord.cfg. By default, notice the server.1
variable has the server as localhost and two ports set: the quorum election port

(2888) and the master election port (3888).

Building the Cluster

A Zookeeper quorum is a group of servers in the cluster and the ports they

communicate through (this should not to be confused with a Riak quorum,

which is a minimal majority for enforcing consistency). The master election

port is used when the master goes down—this special port is used so the

Day 3: Distributed High Availability • 253

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

remaining servers can elect a new master. We’ll keep server.1 as is and add

server.2 and server.3 to use successive ports. The coord.cfg files under servers 1,

2, and 3 must all contain the same three lines.

server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

Finally, we must set the public port to which Neo4j may connect. This clientPort
defaults to 2181, so for server 1 we’ll leave it alone. We set clientPort=2182 for

server 2 and clientPort=2183 for server 3. If any of these ports are in use on your

machine, feel free to change this as necessary, but we’ll assume the previous

ports are in use for the remaining steps.

Coordinate

We start up the Zookeeper coordinator with a handy script provided by the

Neo4j team. Run the following command in each of the three server directories:

bin/neo4j-coordinator start
Starting Neo4j Coordinator...WARNING: not changing user
process [36542]... waiting for coordinator to be ready. OK.

The coordinator is now running, but Neo4j is not.

Wiring in Neo4j

Next we need to set up Neo4j to run in high availability mode and then connect

to a coordinator server. Open conf/neo4j-server.properties, and add the following

line under each server:

org.neo4j.server.database.mode=HA

This sets Neo4j to run in high availability mode; up until now we’ve been

running in SINGLE mode. While we’re in this file, let’s set the web server port

to a unique number. Normally the default port 7474 is fine, but since we’re

running three neo4j instances on one box, we can’t let them overlap for

http/https. We chose ports 7471/7481 for server 1, 7472/7482 for server 3,

and 7473/7483 for server 3.

org.neo4j.server.webserver.port=7471
org.neo4j.server.webserver.https.port=7481

Finally, we set each Neo4j instance to connect to one of the coordinator

servers. If you open the conf/neo4j.properties file for server 1, you should see a

few commented lines starting with ha. These are high availability settings that

convey three things: the current cluster machine number, the list of

254 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

zookeeper servers, and the port that the neo4j servers will use to communicate

with each other. For server 1, add the following fields to neo4j.properties:

ha.server_id=1
ha.coordinators=localhost:2181,localhost:2182,localhost:2183
ha.server=localhost:6001
ha.pull_interval=1

These settings will be similar on the other two servers, with two provisos:

ha.server_id=2 for server 2 and ha.server_id=3 for server 3. And the ha.server must

use a different port (we chose 6002 for server 2 and 6003 for server 3). Again,

the server ports needn’t change when you run them on separate machines.

Server 2 will contain the following (and so on for server 3):

ha.server_id=2
ha.coordinators=localhost:2181,localhost:2182,localhost:2183
ha.server=localhost:6002
ha.pull_interval=1

We set pull_interval to 1, which means each slave should check the master for

updates every second. Generally, you won’t go this low, but it lets us see

updates for the example data we’ll soon insert.

With our Neo4j HA servers configured, it’s time to start them up. Just like

the coordinator server startup script, start the neo4j server in each install

directory.

bin/neo4j start

You can watch the server output by tailing the log file.

tail -f data/log/console.log

Each server will attach to its configured coordinator.

Verifying Cluster Status

Whatever coordinator was first launched will be the master server—probably

server 1. You can verify this by opening the attached Neo4j instance’s web

admin (previously we set server 1 to port 7471). Click the Server Info link at

the top and then High Availability on the side menu.6

The properties under High Availability list information about this cluster. If

this server is the master server, the property will be true. If not, you can find

which server has been elected master by looking under InstancesInCluster.

This lists each connected server, its machine ID, whether it is the master

server, and other info.

6. http://localhost:7471/webadmin/#/info/org.neo4j/High%20Availability/

Day 3: Distributed High Availability • 255

http://localhost:7471/webadmin/#/info/org.neo4j/High%20Availability/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Verifying Replication

With our cluster up and running, you can verify that your servers are repli-

cating correctly. If all goes according to plan, any writes to a slave should

propagate to the master node and then eventually to the other slave server.

If you open the web consoles for each of the three servers, you can use the

built-in Gremlin consoles in the web admin. Notice that the Gremlin graph

object has changed to wrap a HighlyAvailableGraphDatabase.

g = neo4jgraph[HighlyAvailableGraphDatabase [/…/neo4j-ent-1.7-2/data/graph.db]]

To test our servers, we’re going to populate our new graph with some nodes

containing the names of some famous paradoxes. In one of the slave consoles,

let’s set the root node to store Zeno’s paradox.

gremlin> root = g.v(0)
gremlin> root.paradox = "Zeno's"
gremlin> root.save

Now let’s switch to the master server’s console and output the vertex paradox

values.

gremlin> g.V.paradox
==> Zeno's

Now if you switch to the other slave server and add Russell’s paradox, a quick

look at our list will reveal both nodes exist in the second slave, having added

only one directly to this server.

gremlin> g.addVertex(["paradox" : "Russell's"])
gremlin> g.V.paradox
==> Zeno's
==> Russell's

If one of your slave servers does not yet have the changes propagated to it,

you can go back to the Server Info, High Availability screen. Look for all

instances of lastCommittedTransactionId. When these values are equal, the system

data is consistent. The lower the number, the older the version of data in that

server.

Master Election

If you shut down the master server and refresh the server info in one of the

remaining servers, you will see that another server has been elected the new

master. Starting the server again will add it back to the cluster, but now the

old master will remain a slave (until another server goes down).

High availability allows very read-heavy systems to deal with replicating a

graph across multiple servers and thus sharing the load. Although the cluster

256 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

as a whole is only eventually consistent, there are tricks you can apply to

reduce the chance of reading stale data in your own applications, such as

assigning a session to one server. With the right tools, planning, and a good

setup, you can build a graph database large enough to handle billions of

nodes and edges and nearly any number of requests you may need. Just add

regular backups, and you have the recipe for a solid production system.

Backups

Backups are a necessary aspect of any professional database use. Although

backups are effectively built in when using replication, nightly backups that

are stored off-site are always a good idea for disaster recovery. It’s hard to

plan for a server room fire or an earthquake shaking a building to rubble.

Neo4j Enterprise offers a simple backup tool named neo4j-backup.

The most powerful method when running an HA server is to craft a full

backup command to copy the database file from the cluster to a date-stamped

file on a mounted drive. Pointing the copy to every server in the cluster will

ensure you get the most recent data available. The backup directory created

is a fully usable copy. If you need to recover, just replace each installation’s

data directory with the backup directory, and you’re ready to go.

You must start with a full backup. Here we back up our HA cluster to a

directory that ends with today’s date (uses the *nix date command).

bin/neo4j-backup -full -from ha://localhost:2181,localhost:2182,localhost:2183 \
-to /mnt/backups/neo4j-`date +%Y.%m.%d`.db

If you’re not running in HA mode, just change the mode in the URI to single.

Once you have done a full backup, you can choose to do an incremental

backup that will store changes only since the last backup. If we want to do

a full backup on a single server at midnight and then grab the incremental

changes every two hours, you could execute this command:

bin/neo4j-backup -incremental -from single://localhost \
-to /mnt/backups/neo4j-`date +%Y.%m.%d`.db

But keep in mind incremental works only on a fully backed-up directory, so

ensure the previous command is run on the same day.

Day 3 Wrap-Up

Today we spent some time keeping Neo4j data stable via ACID-compliant

transactions, high availability, and backup tools.

Day 3: Distributed High Availability • 257

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

It’s important to note that all of the tools we used today require the Neo4j

Enterprise edition, and so use a dual license—GPL/AGPL. If you want to keep

your server closed source, you should look into switching to the Community

edition or getting an OEM from Neo Technology (the company behind Neo4j).

Contact the Neo4j team for more information.

Day 3 Homework

Find

1. Find the Neo4j licensing guide.

2. Answer the question, “What is the maximum number of nodes supported?”

(Hint: it’s in Questions & Answers in the website docs.)

Do

1. Replicate Neo4j across three physical servers.

2. Set up a load balancer using a web server like Apache or Nginx, and

connect to the cluster using the REST interface. Execute a Gremlin script

command.

7.5 Wrap-Up

Neo4j is a top open source implementation of the (relatively rare) class of

graph databases. Graph databases focus on the relationships between data,

rather than the commonalities among values. Modeling graph data is simple.

You just create nodes and relationships between them and optionally hang

key-value pairs from them. Querying is as easy as declaring how to walk the

graph from a starting node.

Neo4j’s Strengths

Neo4j is one of the finest examples of open source graph databases. Graph

databases are perfect for unstructured data, in many ways even more so than

document datastores. Not only is Neo4j typeless and schemaless, but it puts

no constraints on how data is related. It is, in the best sense, a free-for-all.

Currently, Neo4j can support 34.4 billion nodes and 34.4 billion relationships,

which is more than enough for most uses (Neo4j could hold more than 42

nodes for each of Facebook’s 800 million users in a single graph).

The Neo4j distributions provide several tools for fast lookups with Lucene

and easy-to-use (if sometimes cryptic) language extensions like Gremlin and

the REST interface. Beyond ease of use, Neo4j is fast. Unlike join operations

258 • Chapter 7. Neo4J

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

in relational databases or map-reduce operations in other databases, graph

traversals are constant time. Like data is only a node step away, rather than

joining values in bulk and filtering the desired results—as most of the

databases we’ve seen operate. It doesn’t matter how large the graph becomes;

moving from node A to node B is always one step if they share a relationship.

Finally, the Enterprise edition provides for highly available and high read-

traffic sites by way of Neo4j HA.

Neo4j’s Weaknesses

Neo4j does have a few shortcomings. Edges in Neo4j cannot direct a vertex

back on itself. We also found its choice of nomenclature (node rather than

vertex, and relationship rather than edge) to add complexity when communi-

cating. Although HA is excellent at replication, it can only replicate a full

graph to other servers. It cannot currently shard subgraphs, which still places

a limit on graph size (though, to be fair, that limit measures in the tens of

billions). Finally, if you are looking for a business-friendly open source license

(like MIT), Neo4j may not be for you. Where the Community edition (everything

we used in the first two days) is GPL, if you want to run a production environ-

ment using the Enterprise tools (which includes HA and backups), you’ll

probably need to purchase a license.

Neo4j on CAP

If you choose to distribute, the name “high availability” cluster should give

away their strategy. Neo4j HA is available and partition tolerant (AP). Each

slave will return only what it currently has, which may be out of sync with

the master node temporarily. Although you can reduce the update latency by

increasing a slave’s pull interval, it’s still technically eventually consistent.

This is why Neo4j HA is recommended for read-mostly requirements.

Parting Thoughts

Neo4j’s simplicity can be off-putting if you’re not used to modeling graph data.

It provides a powerful open source API with years of production use and yet

still has relatively few users. We chalk this up to lack of knowledge, since

graph databases mesh so naturally with how humans tend to conceptualize

data. We imagine our families as trees, or our friends as graphs; most of us

don’t imagine personal relationships as self-referential datatypes. For certain

classes of problems, like social networks, Neo4j is an obvious choice. But you

should give it some serious consideration for nonobvious problems as well—

it just may surprise you how powerful and easy it is.

Wrap-Up • 259

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 8

Redis

Redis is like grease. It’s most often used to lubricate moving parts and keep

them working smoothly by reducing friction and speeding up their overall

function. Whatever the machinery of your system, it could very well be

improved with a bit poured over it. Sometimes the answer to your problem

is simply a judicious use of more Redis.

First released in 2009, Redis (REmote DIctionary Service) is a simple-to-use

key-value store with a sophisticated set of commands. And when it comes to

speed, Redis is hard to beat. Reads are fast, and writes are even faster, han-

dling upwards of 100,000 SET operations per second by some benchmarks.

Redis creator Salvatore Sanfilippo refers to his project as a “data structure

server” to capture its nuanced handling of complex datatypes and other fea-

tures. Exploring this super-fast, more-than-just-a-key-value-store will round

out our view of the modern database landscape.

8.1 Data Structure Server Store

It can be a bit difficult to classify exactly what Redis is. At a basic level, it’s

a key-value store, of course, but that simple label doesn’t really do it justice.

Redis supports advanced data structures, though not to the degree that a

document-oriented database would. It supports set-based query operations

but not with the granularity or type support you’d find in a relational database.

And, of course, it’s fast, trading durability for raw speed.

In addition to being an advanced data structure server, Redis is a blocking

queue (or stack) and a publish-subscribe system. It features configurable

expiry policies, durability levels, and replication options. All of this makes

Redis more of a toolkit of useful data structure algorithms and processes

than a member of any specific database genre.

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Redis’ expansive list of client libraries makes it a drop-in option for many

programming languages. It’s not simply easy to use; it’s a joy. If an API is UX

for programmers, then Redis should be in the Museum of Modern Art alongside

the Mac Cube.

In Days 1 and 2 we’ll explore Redis’s features, conventions, and configuration.

Starting with simple CRUD operations like always, we’ll quickly move on to

more advanced operations involving more powerful data structures: lists,

hashes, sets, and sorted sets. We’ll create transactions and manipulate data

expiry characteristics. We’ll use Redis to create a simple message queue and

explore its publish-subscribe functionality. Then we’ll dive into Redis’s

configuration and replication options, learning how to strike an application-

appropriate balance between data durability and speed.

Databases are often and increasingly used in concert with each other. Redis

is introduced last in this book so that we can use it in just such a manner.

In Day 3, we’ll build our capstone system, a rich multidatabase music solution

including Redis, CouchDB, Neo4J, and Postgres—using Node.js to cement it

together.

8.2 Day 1: CRUD and Datatypes

Since the command-line interface (CLI) is of such primary importance to the

Redis development team—and loved by users everywhere—we’re going to

spend Day 1 looking at many of the 124 commands available. Of primary

importance is its sophisticated datatypes and how they can query in more

ways than simply “retrieve the value of this key.”

Getting Started

Redis is available through a few package builders like Homebrew for Mac but

is also rather painless to build.1 We’ll be working off version 2.4. Once you

have it installed, you can start up the server by calling this:

$ redis-server

It won’t run in the background by default, but you can make that happen by

appending &, or you can just open another terminal. Next run the command-

line tool, which should connect to the default port 6379 automatically.

After you connect, let’s try to ping the server.

1. http://redis.io

262 • Chapter 8. Redis

http://redis.io
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$ redis-cli

redis 127.0.0.1:6379> PING
PONG

If you cannot connect, you’ll receive an error message. Typing help will display

a list of help options. Type help followed by a space and then start typing any

command. If you don’t know any Redis commands, just start pressing Tab

to cycle through your options.

redis 127.0.0.1:6379> help
Type: "help @<group>" to get a list of commands in <group>

"help <command>" for help on <command>
"help <tab>" to get a list of possible help topics
"quit" to exit

Today we’re going to use Redis to build the back end for a URL shortener,

like tinyurl.com or bit.ly. A URL shortener is a service that takes a really long

URL and maps it to a shorter version on their own domain—like mapping

http://www.myveryververylongdomain.com/somelongpath.php to http://bit.ly/VLD. Visiting that

short URL redirects users to the longer mapped URL, saves the visitors from

text messaging long strings, and also provides the short URL creator some

statistics like a count of visits.

In Redis we can use SET to key a short code like 7wks to a value like

http://www.sevenweeks.org. SET always requires two parameters, a key and a value.

Retrieving the value just needs GET and the key name.

redis 127.0.0.1:6379> SET 7wks http://www.sevenweeks.org/
OK
redis 127.0.0.1:6379> GET 7wks
"http://www.sevenweeks.org/"

To reduce traffic, we can also set multiple values with MSET, like any number

of key-value pairs. Here we map Google.com to gog and Yahoo.com to yah.

redis 127.0.0.1:6379> MSET gog http://www.google.com yah http://www.yahoo.com
OK

Correlatively, MGET grabs multiple keys and returns values as an ordered list.

redis 127.0.0.1:6379> MGET gog yah
1) "http://www.google.com/"
2) "http://www.yahoo.com/"

Although Redis stores strings, it recognizes integers and provides some simple

operations for them. If we want to keep a running total of how many short

keys are in our dataset, we can create a count and then increment it with the

INCR command.

Day 1: CRUD and Datatypes • 263

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis 127.0.0.1:6379> SET count 2
OK
redis 127.0.0.1:6379> INCR count
(integer) 3
redis 127.0.0.1:6379> GET count
"3"

Although GET returns count as a string, INCR recognized it as an integer and

added one to it. Any attempt to increment a noninteger ends poorly.

redis 127.0.0.1:6379> SET bad_count "a"
OK
redis 127.0.0.1:6379> INCR bad_count
(error) ERR value is not an integer or out of range

If the value can’t be resolved to an integer, Redis rightly complains. You can

also increment by any integer (INCRBY) or decrement (DECR, DECRBY).

Transactions

We’ve seen transactions in previous databases (Postgres and Neo4j), and

Redis’ MULTI block atomic commands are a similar concept. Wrapping two

operations like SET and INCR in a single block will complete either successfully

or not at all. But you will never end up with a partial operation.

Let’s key another short code to a URL and also increment the count all in one

transaction. We begin the transaction with the MULTI command and execute

it with EXEC.

redis 127.0.0.1:6379> MULTI
OK
redis 127.0.0.1:6379> SET prag http://pragprog.com
QUEUED
redis 127.0.0.1:6379> INCR count
QUEUED
redis 127.0.0.1:6379> EXEC
1) OK
2) (integer) 2

When using MULTI, the commands aren’t actually executed when we define

them (similar to Postgres transactions). Instead, they are queued and then

executed in sequence.

Similar to ROLLBACK in SQL, you can stop a transaction with the DISCARD com-

mand, which will clear the transaction queue. Unlike ROLLBACK, it won’t revert

the database; it will simply not run the transaction at all. The effect is identi-

cal, although the underlying concept is a different mechanism (transaction

rollback vs. operation cancellation).

264 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Complex Datatypes

So far, we haven’t seen much complex behavior. Storing string and integer

values under keys—even as transactions—is all fine and good, but most

programming and data storage problems deal with many types of data. Storing

lists, hashes, sets, and sorted sets natively helps explain Redis’ popularity,

and after exploring the complex operations you can enact on them, you may

find you agree.

These collection datatypes can contain a huge number of values (up to 2^32

elements or more than 4 billion) per key. That’s more than enough for all

Facebook accounts to live as a list under a single key.

While some Redis commands may appear cryptic, they generally follow a good

pattern. SET commands begin with S, hashes with H, and sorted sets with Z.
List commands generally start with either an L (for left) or an R (for right),

depending on the direction of the operation (such as LPUSH).

Hash

Hashes are like nested Redis objects that can take any number of key-value

pairs. Let’s use a hash to keep track of users who sign up for our URL-

shortening service.

Hashes are nice because they help you avoid storing data with artificial key

prefixes. (Note that we used colons [:] within our key. This is a valid character

that often logically separates a key into segments. It’s merely a matter of

convention, with no deeper meaning in Redis.)

redis 127.0.0.1:6379> MSET user:eric:name "Eric Redmond" user:eric:password s3cret
OK
redis 127.0.0.1:6379> MGET user:eric:name user:eric:password
1) "Eric Redmond"
2) "s3cret"

Instead of separate keys, we can create a hash that contains its own key-

value pairs.

redis 127.0.0.1:6379> HMSET user:eric name "Eric Redmond" password s3cret
OK

We need only keep track of the single Redis key to retrieve all values of the

hash.

redis 127.0.0.1:6379> HVALS user:eric
1) "Eric Redmond"
2) "s3cret"

Or we can retrieve all hash keys.

Day 1: CRUD and Datatypes • 265

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis 127.0.0.1:6379> HKEYS user:eric
1) "name"
2) "password"

Or we can get a single value, by passing in the Redis key, followed by the

hash key. Here we get just the password.

redis 127.0.0.1:6379> HGET user:eric password
"s3cret"

Unlike the document datastores Mongo and CouchDB, hashes in Redis cannot

nest (nor can any other complex datatype such as lists). In other words,

hashes can store only string values.

More commands exist to delete hash fields (HDEL), increment an integer field

value by some count (HINCRBY), or retrieve the number of fields in a hash (HLEN).

List

Lists contain multiple ordered values that can act both as queues (first value

in, first value out) and as stacks (last value in, first value out). They also have

more sophisticated actions for inserting somewhere in the middle of a list,

constraining list size, and moving values between lists.

Since our URL-shortening service can now track users, we want to allow them

to keep a wishlist of URLs they’d like to visit. To create a list of short-coded

websites we’d like to visit, we set the key to USERNAME:wishlist and push any

number of values to the right (end) of the list.

redis 127.0.0.1:6379> RPUSH eric:wishlist 7wks gog prag
(integer) 3

Like most collection value insertions, the Redis command returns the number

of values pushed. In other words, we pushed three values into the list so it

returns 3. You can get the list length at any time with LLEN.

Using the list range command LRANGE, we can retrieve any part of the list by

specifying the first and last positions. All list operations in Redis use a zero-

based index. A negative position means the number of steps from the end.

redis 127.0.0.1:6379> LRANGE eric:wishlist 0 -1
1) "7wks"
2) "gog"
3) "prag"

LREM removes from the given key some matching values. It also requires a

number to know how many matches to remove. Setting the count to 0 as we

do here just removes them all:

266 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis 127.0.0.1:6379> LREM eric:wishlist 0 gog

Setting the count greater than 0 will remove only that number of matches,

and setting the count to a negative number will remove that number of

matches but scan the list from the end (right side).

To remove and retrieve each value in the order we added them (like a queue),

we can pop them off from the left (head) of the list.

redis 127.0.0.1:6379> LPOP eric:wishlist
"7wks"

To act as a stack, after you RPUSH the values, you would RPOP from the end of

the list. All of these operations are performed in constant time.

On the previous combination of commands, you can use LPUSH and RPOP to
similar effect (a queue) or LPUSH and LPOP to be a stack.

Suppose we wanted to remove values from our wishlist and move them to

another list of visited sites. To execute this move atomically, we could wrap

pop and push actions within a multiblock. In Ruby these steps might look

something like this (you can’t use the CLI here because you must save the

popped value, so we used the redis-rb gem):

redis.multi do
site = redis.rpop('eric:wishlist')
redis.lpush('eric:visited', site)

end

But Redis provides a single command for popping values from the tail of one

list and pushing to the head of another. It’s called RPOPLPUSH (right pop, left

push).

redis 127.0.0.1:6379> RPOPLPUSH eric:wishlist eric:visited
"prag"

If you find the range of the wishlist, prag will be gone; it now lives under visited.
This is a useful mechanism for queuing commands.

If you looked through the Redis docs to find RPOPRPUSH, LPOPLPUSH, and LPOPRPUSH
commands, you may be dismayed to learn they don’t exist. RPOPLPUSH is your

only option, and you must build your list accordingly.

Blocking Lists

Now that our URL shortener is taking off, let’s add some social activities—like

a real-time commenting system—where people can post about the websites

they have visited.

Day 1: CRUD and Datatypes • 267

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Let’s write a simple messaging system where multiple clients can push com-

ments and one client (the digester) pops messages from the queue. We’d like

the digester to just listen for new comments and pop them as they arrive.

Redis provides a few blocking commands for this sort of purpose.

First open another terminal and start another redis-cli client. This will be our

digester. The command to block until a value exists to pop is BRPOP. It requires

the key to pop a value from and a timeout in seconds, which we’ll set to five

minutes.

redis 127.0.0.1:6379> BRPOP comments 300

Then switch back to the first console and push a message to comments.

redis 127.0.0.1:6379> LPUSH comments "Prag is great! I buy all my books there."

If you switch back to the digester console, two lines will be returned: the key

and the popped value. The console will also output the length of time it spent

blocking.

1) "comments"
2) "Prag is great! I buy all my books there."
(50.22s)

There’s also a blocking version of left pop (BLPOP) and right pop, left push

(BRPOPLPUSH).

Set

Our URL shortener is shaping up nicely, but it would be nice to group common

URLs in some way.

Sets are unordered collections with no duplicate values and are an excellent

choice for performing complex operations between two or more key values,

such as unions or intersections.

If we wanted to categorize sets of URLs with a common key, we can add

multiple values with SADD.

redis 127.0.0.1:6379> SADD news nytimes.com pragprog.com
(integer) 2

Redis added two values. We can retrieve the full set, in no particular order,

via SMEMBERS.

redis 127.0.0.1:6379> SMEMBERS news
1) "pragprog.com"
2) "nytimes.com"

Let’s add another category called tech for technology-related sites.

268 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis 127.0.0.1:6379> SADD tech pragprog.com apple.com
(integer) 2

To find the intersection of websites that both provide news and are technology

focused, we use the SINTER command.

redis 127.0.0.1:6379> SINTER news tech
1) "pragprog.com"

Just as easily, we can remove any matching values in one set from another.

To find all news sites that are not tech sites, use SDIFF:

redis 127.0.0.1:6379> SDIFF news tech
1) "nytimes.com"

We can also build a union of websites that are either news or tech. Since it’s

a set, any duplicates are dropped.

redis 127.0.0.1:6379> SUNION news tech
1) "apple.com"
2) "pragprog.com"
3) "nytimes.com"

That set of values can also be stored directly into a new set (SUNIONSTORE desti-
nation key [key …]).

redis 127.0.0.1:6379> SUNIONSTORE websites news tech

This also provides a useful trick for cloning a single key’s values to another

key, such as SUNIONSTORE news_copy news. Similar commands exist for storing

intersections (SINTERSTORE) and diffs (SDIFFSTORE).

Just like RPOPLPUSH moved values from one list to another, SMOVE does the

same for sets; it’s just easier to remember.

And like LLEN finds the length of a list, SCARD (set cardinality) counts the set;

it’s just harder to remember.

Since sets are not ordered, there are no left, right, or other positional com-

mands. Popping a random value from a set just requires SPOP key, and

removing values is SREM key value [value …].

Unlike lists, there are no blocking commands for sets.

Sorted Sets

Whereas other Redis datatypes we’ve looked at so far easily map to common

programming language constructs, sorted sets take something from each of

the previous datatypes. They are ordered like lists and are unique like sets.

They have field-value pairs like hashes, but rather than string fields, they are

Day 1: CRUD and Datatypes • 269

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

instead numeric scores that denote the order of the values. You can think of

sorted sets as like a random access priority queue. This power has a trade-

off, however. Internally, sorted sets keep values in order, so inserts can take

log(N) time to insert (where N is the size of the set), rather than the constant

time complexity of hashes or lists.

Next we want to keep track of the popularity of specific shortcodes. Every

time someone visits a URL, the score gets increased. Like a hash, adding a

value to a sorted set requires two values after the Redis key name: the score

and the member.

redis 127.0.0.1:6379> ZADD visits 500 7wks 9 gog 9999 prag
(integer) 3

To increment a score, we can either re-add it with the new score, which just

updates the score but does not add a new value, or increment by some

number, which will return the new value.

redis 127.0.0.1:6379> ZINCRBY visits 1 prag
"10000"

You can decrement also by setting a negative number for ZINCRBY.

Ranges

To get values from our visits set, we can issue a range command, ZRANGE,
which returns by position, just like the list datatype’s LRANGE command. Except

in the case of a sorted set, the position is ordered by score from lowest to

highest. So, to get the top two scoring visited sites (zero-based), use this:

redis 127.0.0.1:6379> ZRANGE visits 0 1
1) "gog"
2) "7wks"

To get the scores of each element as well, append WITHSCORES to the previous

code. To get them in reverse, insert the word REV, as in ZREVRANGE.

redis 127.0.0.1:6379> ZREVRANGE visits 0 -1 WITHSCORES
1) "prag"
2) "10000"
3) "7wks"
4) "500"
5) "gog"
6) "9"

But if we’re using a sorted set, it’s more likely we want to range by score,

rather than by position. ZRANGEBYSCORE has a slightly different syntax from

ZRANGE. Since the low and high range numbers are inclusive by default, we

270 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

can make a score number exclusive by prefixing it with an opening paren: (.
So, this will return all scores where 9 <= score <= 10,000:

redis 127.0.0.1:6379> ZRANGEBYSCORE visits 9 9999
1) "gog"
2) "7wks"

But the following will return 9 < score <= 10,000:

redis 127.0.0.1:6379> ZRANGEBYSCORE visits (9 9999
1) "7wks"

We can also range by both positive and negative values, including infinities.

This returns the entire set.

redis 127.0.0.1:6379> ZRANGEBYSCORE visits -inf inf

You can list them in reverse too, with ZREVRANGEBYSCORE.

Along with retrieving a range of values by rank (index) or score, ZREMRANGE-
BYRANK and ZREMRANGEBYSCORE, respectively, remove values by rank or score.

Unions

Just like the set datatype, we can create a destination key that contains the

union or intersection of one or more keys. This is one of the more complex

commands in Redis, since it must not only join the keys—a relatively simple

operation—but also merge (possibly) differing scores. The union operation

looks like this:

ZUNIONSTORE destination numkeys key [key ...]
[WEIGHTS weight [weight ...]] [AGGREGATE SUM|MIN|MAX]

destination is the key to store into, and key is one or more keys to union. numkeys
is simply the number of keys you’re about to join, while weight is the optional

number to multiply each score of the relative key by (if you have two keys,

you can have two weights, and so on). Finally, aggregate is the optional rule

for resolving each weighted score and summing by default, but you can also

choose the min or max between many scores.

Let’s use this command to measure the importance of a sorted set of short-

codes.

First we’ll create another key that scores our short codes by votes. Each visitor

to a site can vote if they like the site or not, and each vote adds a point.

redis 127.0.0.1:6379> ZADD votes 2 7wks 0 gog 9001 prag
(integer) 3

Day 1: CRUD and Datatypes • 271

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

We want to figure out the most important websites in our system, as some

combination of votes and visits. Votes are important, but to a lesser extent,

website visits also carry some weight (perhaps people are so enchanted by

the website, they simply forget to vote). We want to add the two types of scores

together to compute a new importance score, while giving votes a weight of

double importance—multiplied by two.

ZUNIONSTORE importance 2 visits votes WEIGHTS 1 2 AGGREGATE SUM
(integer) 3
redis 127.0.0.1:6379> ZRANGEBYSCORE importance -inf inf WITHSCORES
1) "gog"
2) "9"
3) "7wks"
4) "504"
5) "prag"
6) "28002"

This command is powerful in other ways too. For example, if we need to

double all scores of a set, we can union a single key with a weight of 2 and

store it back into itself.

redis 127.0.0.1:6379> ZUNIONSTORE votes 1 votes WEIGHTS 2
(integer) 2
redis 127.0.0.1:6379> ZRANGE votes 0 -1 WITHSCORES
1) "gog"
2) "0"
3) "7wks"
4) "4"
5) "prag"
6) "18002"

Sorted sets contain a similar command (ZINTERSTORE)to perform intersections.

Expiry

A common use case for a key-value system like Redis is as a fast-access cache

for data that’s more expensive to retrieve or compute. Expiration helps keep

the total key set from growing unbounded, by tasking Redis to delete a key-

value after a certain time has passed.

Marking a key for expiration requires the EXPIRE command, an existing key,

and a time to live in seconds. Here we set a key and set it to expire in ten

seconds. We can check whether the key EXISTS within ten seconds and it

returns a 1 (true). If we wait to execute, it will eventually return a 0 (false).

redis 127.0.0.1:6379> SET ice "I'm melting…"
OK
redis 127.0.0.1:6379> EXPIRE ice 10
(integer) 1

272 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis 127.0.0.1:6379> EXISTS ice
(integer) 1
redis 127.0.0.1:6379> EXISTS ice
(integer) 0

Setting and expiring keys is so common that Redis provides a shortcut com-

mand called SETEX.

redis 127.0.0.1:6379> SETEX ice 10 "I'm melting…"

You can query the time a key has to live with TTL. Setting ice to expire as shown

earlier and checking its TTL will return the number of seconds left.

redis 127.0.0.1:6379> TTL ice
(integer) 4

At any moment before the key expires, you can remove the timeout by running

PERSIST key.

redis 127.0.0.1:6379> PERSIST ice

For marking a countdown to a specific time, EXPIREAT accepts a Unix timestamp

(as seconds since January 1, 1970) rather than a number of seconds to count

up to. In other words, EXPIREAT is for absolute timeouts, and EXPIRE is for relative

timeouts.

A common trick for keeping only recently used keys is to update the expire

time whenever you retrieve a value. This is the most recently used (MRU)

caching algorithm to ensure your most recently used keys will remain in

Redis, while the neglected keys will just expire as normal.

Database Namespaces

So far, we’ve interacted only with a single namespace. Just like buckets in

Riak, sometimes we need to separate keys by namespace. For example, if you

wrote an internationalized key-value store, you could store different translated

responses in different namespaces. The key greeting could be set to “guten tag”

in a German namespace and “bonjour” in French. When a user selects their

language, the application just pulls all values from the namespace assigned.

In Redis nomenclature, a namespace is called a database and is keyed by

number. So far, we’ve always interacted with the default namespace 0 (also

known as database 0). Here we set greeting to the English hello.

redis 127.0.0.1:6379> SET greeting hello
OK
redis 127.0.0.1:6379> GET greeting
"hello"

Day 1: CRUD and Datatypes • 273

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

But if we switch to another database via the SELECT command, that key is

unavailable.

redis 127.0.0.1:6379> SELECT 1
OK
redis 127.0.0.1:6379[1]> GET greeting
(nil)

And setting a value to this database’s namespace will not affect the value of

the original.

redis 127.0.0.1:6379[1]> SET greeting "guten tag"
OK
redis 127.0.0.1:6379[1]> SELECT 0
OK
redis 127.0.0.1:6379> GET greeting
"hello"

Since all databases are running in the same server instance, Redis lets us

shuffle keys around with the MOVE command. Here we move greeting to database

2:

redis 127.0.0.1:6379> MOVE greeting 2
(integer) 2
redis 127.0.0.1:6379> SELECT 2
OK
redis 127.0.0.1:6379[2]> GET greeting
"hello"

This can be useful for running different applications against a single Redis

server but still allow these multiple applications to trade data between each

other.

And There’s More

Redis has plenty of other commands for actions such as renaming keys

(RENAME), determining the type of a key’s value (TYPE), and deleting a key-value

(DEL). There’s also the painfully dangerous FLUSHDB, which removes all keys

from this Redis database, and its apocalyptic cousin, FLUSHALL, which removes

all keys from all Redis databases. Check out the online documentation for

the full list of Redis commands.

Day 1 Wrap-Up

The datatypes of Redis and the complex queries it can perform make it much

more than a standard key-value store. It can act as a stack, queue, or priority

queue; can be an object store (via hashes); and even can perform complex set

operations such as unions, intersections, and subtractions (diff). It provides

274 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

many atomic commands, and for those multistep commands, it provides a

transaction mechanism. It has a built-in ability to expire keys, which is useful

as a cache.

Day 1 Homework

Find

Find the complete Redis commands documentation, as well as the Big-O

notated (O(x)) time complexity under the command details.

Do

1. Install your favorite programming language driver and connect to the

Redis server. Insert and increment a value within a transaction.

2. Using your driver of choice, create a program that reads a blocking list

and outputs somewhere (console, file, Socket.io, and so on) and another

that writes to the same list.

8.3 Day 2: Advanced Usage, Distribution

Day 1 introduced us to Redis as a data structure server. Today we’ll build on

that foundation by looking at some of the advanced functions provided by

Redis, such as pipelining, the publish-subscribe model, system configuration,

and replication. Beyond that, we’ll look at how to create a Redis cluster, store

a lot of data quickly, and use an advanced technique introducing Bloom filters.

A Simple Interface

At 20,000 lines of source code, Redis is a fairly simple project. But beyond

code size, it has a simple interface that accepts the very strings we have been

writing in the console.

Day 2: Advanced Usage, Distribution • 275

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Telnet

We can interact without the command-line interface by streaming commands

through TCP on our own via telnet and terminating the command with a

carriage return line feed (CRLF, or \r\n).

redis/telnet.sh

$ telnet localhost 6379
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SET test hello
+OK①

GET test
$5②

hello
SADD stest 1 99
:2③

SMEMBERS stest
*2④

$1
1
$2
99

CTRL-]

We can see that our input is the same as we provided to the console, but the

console cleaned up the responses a bit.

① Redis streams the OK status prefixed by a + sign.

② Before it returned the string hello, it sent $5, which means “the following

string is five characters.”

③ The number 2 after we add two set items to the test key is prefixed by : to
represent an integer (two values were added successfully).

④ Finally, when we requested two items, the first line returned begins with

an asterisk and the number 2—meaning there are two complex values about

to be returned. The next two lines are just like the hello string but contain

the string 1, followed by the string 99.

Pipelining

We can also stream our own strings one at a time by using the BSD netcat

(nc) command, which you may find is already installed on many Unix machines.

With netcat, we must specifically end a line with CRLF (telnet did this for us

implicitly). We also sleep for a second after the echo command has finished

276 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/telnet.sh
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

to give some time for the Redis server to return. Some nc implementations

have a -q option, thus negating the need for a sleep, but not all do, so feel free

to try it.

$ (echo -en "ECHO hello\r\n"; sleep 1) | nc localhost 6379
$5
hello

We can take advantage of this level of control by pipelining our commands,

or streaming multiple commands in a single request.

$ (echo -en "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379
+PONG
+PONG
+PONG

This can be far more efficient than pushing a single command at a time and

should always be considered if it makes sense to do so—especially in trans-

actions. Just be sure to end every command with \r\n, which is a required

delimiter for the server.

publish-subscribe

Yesterday we were able to implement a rudimentary blocking queue using

the list datatype. We queued data that could be read by a blocking pop com-

mand. Using that queue, we made a very basic publish-subscribe model. Any

number of messages could be pushed to this queue, and a single queue

reader would pop messages as they were available. This is powerful but lim-

ited. Under many circumstances we want a slightly inverted behavior, where

several subscribers want to read the announcements of a single publisher,

as shown in Figure 37, A publisher sends a message to all subscribers, on

page 278. Redis provides some specialized publish-subscribe (or pub-sub)

commands.

Let’s improve on the commenting mechanism we made yesterday using

blocking lists, by allowing a user to post a comment to multiple subscribers

(as opposed to just one). We start with some subscribers that connect to a

key, known as a channel in pub-sub nomenclature. Let’s start two more clients

and subscribe to the comments channel. Subscribing will cause the CLI to

block.

redis 127.0.0.1:6379> SUBSCRIBE comments
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "comments"
3) (integer) 1

Day 2: Advanced Usage, Distribution • 277

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Publisher

Subscriber A Subscriber B

Message 1 Message 1

Figure 37—A publisher sends a message to all subscribers.

With two subscribers, we can publish any string we want as a message to

the comments channel. The PUBLISH command will return the integer 2, meaning

two subscribers received it.

redis 127.0.0.1:6379> PUBLISH comments "Check out this shortcoded site! 7wks"
(integer) 2

Both of the subscribers will receive a multibulk reply (a list) of three items:

the string “message,” the channel name, and the published message value.

1) "message"
2) "comments"
3) "Check out this shortcoded site! 7wks"

When your clients want to no longer receive correspondence, they can execute

the UNSUBSCRIBE comments command to disconnect from the comments channel

or simply UNSUBSCRIBE alone to disconnect from all channels. However, note

in redis-cli that you will have to press CTRL+C to break the connection.

Server Info

Before getting into changing Redis’s system settings, it’s worth taking a quick

look at the INFO command, since changing settings values will alter some of

these values as well. INFO outputs a list of server data, including version,

process ID, memory used, and uptime.

redis 127.0.0.1:6379> INFO
redis_version:2.4.5
redis_git_sha1:00000000
redis_git_dirty:0

278 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

arch_bits:64
multiplexing_api:kqueue
process_id:54046
uptime_in_seconds:4
uptime_in_days:0
lru_clock:1807217
…

You may want to revisit this command again in this chapter, because it pro-

vides a useful snapshot of this server’s global information and settings. It

even provides information on durability, memory fragmentation, and replica-

tion server status.

Redis Configuration

So far, we’ve only used Redis out of the box. Much of Redis’s power comes

from its configurability, allowing you to tailor settings to your use case. The

redis.conf file that comes with the distribution—found in /etc/redis on *nix systems

—is fairly self-explanatory, so we’re going to cover only a portion of the file.

We’ll go through a few of the common settings in order.

daemonize no
port 6379
loglevel verbose
logfile stdout
database 16

By default daemonize is set to no, which is why the server always starts up in

the foreground. This is nice for testing but not very production friendly.

Changing this value to yes will run the server in the background while setting

the server’s process ID in a pid file.

The next line is the default port number for this server, port 6379. This can

be especially useful when running multiple Redis servers on a single machine.

loglevel defaults to verbose, but it’s good to set it to notice or warning in production.

logfile outputs to stdout (standard output, the console), but a filename is nec-

essary if you run in daemonize mode.

database sets the number of Redis databases we have available. We saw how

to switch between databases yesterday. If you plan to only ever use a single

database namespace, it’s not a bad idea to set this to 1.

Durability

Redis has a few persistence options. First is no persistence at all, which will

simply keep all values in main memory. If you’re running a basic caching

server, this is a reasonable choice since durability always increases latency.

Day 2: Advanced Usage, Distribution • 279

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

One of the things that sets Redis apart from other fast-access caches like

memcached2 is its built-in support for storing values to disk. By default, key-

value pairs are only occasionally saved. You can run the LASTSAVE command

to get a Unix timestamp of the last time a Redis disk write succeeded, or you

can read the last_save_time field from the server INFO output.

You can force durability by executing the SAVE command (or BGSAVE, to asyn-

chronously save in the background).

redis 127.0.0.1:6379> SAVE

If you read the redis-server log, you will see lines similar to this:

[46421] 10 Oct 19:11:50 * Background saving started by pid 52123
[52123] 10 Oct 19:11:50 * DB saved on disk
[46421] 10 Oct 19:11:50 * Background saving terminated with success

Another durability method is to alter the snapshotting settings in the config-

uration file.

Snapshotting

We can alter the rate of storage to disk by adding, removing, or altering one

of the save fields. By default there are three, prefixed by the save keyword

followed by a time in seconds and a minimum number of keys that must

change before a write to disk occurs.

For example, to trigger a save every 5 minutes (300 seconds) if any keys

change at all, you would write the following:

save 300 1

The configuration has a good set of defaults. The set means if 10,000 keys

change, save in 60 seconds; if 10 keys change, save in 300 seconds, and any

key changes will be saved in at least 900 seconds (15 minutes).

save 900 1
save 300 10
save 60 10000

You can add as many or few save lines as necessary to specify precise

thresholds.

Append-Only File

Redis is eventually durable by default, in that it asynchronously writes values

to disk in intervals defined by our save settings, or it is forced to write by

2. http://www.memcached.org/

280 • Chapter 8. Redis

http://www.memcached.org/
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

client-initiated commands. This is acceptable for a second-level cache or

session server but is insufficient for storing data you need to be durable, like

financial data. If a Redis server crashes, our users might not appreciate

having lost money.

Redis provides an append-only file (appendonly.aof) that keeps a record of all

write commands. This is like the write-ahead logging we saw in Chapter 4,

HBase, on page 93. If the server crashes before a value is saved, it executes

the commands on startup, restoring its state; appendonly must be enabled by

setting it to yes in the redis.conf file.

appendonly yes

Then we must decide how often a command is appended to the file. Setting

always is the more durable, since every command is saved. It’s also slow, which

often negates the reason people have for using Redis. By default everysec is
enabled, which saves up and writes commands only once a second. This is

a decent trade-off, since it’s fast enough, and worst case you’ll lose only the

last one second of data. Finally, no is an option, which just lets the OS handle

flushing. It can be fairly infrequent, and you’re often better off skipping the

append-only file altogether rather than choosing it.

appendfsync always
appendfsync everysec
appendfsync no

Append-only has more detailed parameters, which may be worth reading

about in the config file when you need to respond to specific production issues.

Security

Although Redis is not natively built to be a fully secure server, you may run

across the requirepass setting and AUTH command in the Redis documentation.

These can be safely ignored, since they are merely a scheme for setting a

plain-text password. Since a client can try nearly 100,000 passwords a second,

it’s almost a moot point, beyond the fact that plain-text passwords are

inherently unsafe anyway. If you want Redis security, you’re better off with

a good firewall and SSH security.

Interestingly, Redis provides command-level security through obscurity, by

allowing you to hide or suppress commands. This will rename the FLUSHALL
command (remove all keys from the system) into some hard-to-guess value

like c283d93ac9528f986023793b411e4ba2:

rename-command FLUSHALL c283d93ac9528f986023793b411e4ba2

Day 2: Advanced Usage, Distribution • 281

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

If we attempt to execute FLUSHALL against this server, we’ll be hit with an error.

The secret command works instead.

redis 127.0.0.1:6379> FLUSHALL
(error) ERR unknown command 'FLUSHALL'
redis 127.0.0.1:6379> c283d93ac9528f986023793b411e4ba2
OK

Or better yet, we can disable the command entirely by setting it to a blank

string.

rename-command FLUSHALL ""

You can set any number of commands to a blank string, allowing you a

modicum of customization over your command environment.

Tweaking Parameters

There are several more advanced settings for speeding up slow query logs,

encoding details, making latency tweaks, and importing external config files.

Keep in mind, though, that if you run across some documentation about

Redis virtual memory, you’re best to avoid it if possible. It’s been deprecated

in Redis 2.4 and may be removed in future versions.

To aid in testing your server configuration, Redis provides an excellent

benchmarking tool. It connects locally to port 6379 by default and issues

10,000 requests using 50 parallel clients. We can execute 100,000 requests

with the -n argument.

$ redis-benchmark -n 100000
====== PING (inline) ======
100000 requests completed in 3.05 seconds
50 parallel clients
3 bytes payload
keep alive: 1

5.03% <= 1 milliseconds
98.44% <= 2 milliseconds
99.92% <= 3 milliseconds
100.00% <= 3 milliseconds
32808.40 requests per second
…

Other commands are tested as well, like SADD and LRANGE; the more complex

ones generally taking more time.

Master-Slave Replication

Just like other NoSQL databases we’ve seen (such as MongoDB and Neo4j),

Redis supports master-slave replication. One server is the master by default

282 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

if you don’t set it as a slave of anything. Data will be replicated to any number

of slave servers.

Making slave servers is easy. We first need a copy of our redis.conf file.

$ cp redis.conf redis-s1.conf

The file will remain largely the same but with the following changes:

port 6380
slaveof 127.0.0.1 6379

If all went according to plan, you should see something similar to the following

in the slave server’s log when you start it:

$ redis-server redis-s1.conf

[9003] 16 Oct 23:51:52 * Connecting to MASTER...
[9003] 16 Oct 23:51:52 * MASTER <-> SLAVE sync started
[9003] 16 Oct 23:51:52 * Non blocking connect for SYNC fired the event.
[9003] 16 Oct 23:51:52 * MASTER <-> SLAVE sync: receiving 28 bytes from master
[9003] 16 Oct 23:51:52 * MASTER <-> SLAVE sync: Loading DB in memory
[9003] 16 Oct 23:51:52 * MASTER <-> SLAVE sync: Finished with success

And you should see the string 1 slaves output in the master log.

redis 127.0.0.1:6379> SADD meetings "StarTrek Pastry Chefs" "LARPers Intl."

If we connect the command line to our slave, we should receive our meeting

list.

redis 127.0.0.1:6380> SMEMBERS meetings
1) "StarTrek Pastry Chefs"
2) "LARPers Intl."

In production, you’ll generally want to implement replication for availability

or backup purposes and thus have Redis slaves on different machines.

Data Dump

So far, we’ve talked a lot about how fast Redis is, but it’s hard to get a feel

for it without playing with a bit more data.

Let’s insert a large dataset into our Redis server. You can keep the slave

running if you like, but a laptop or desktop might run quicker if you have

just a single master server. We’re going to grab a list of more than 2.5 million

published book titles, keyed by their International Standard Book Number

(ISBN) from Freebase.com.3

3. http://download.freebase.com/datadumps/latest/browse/book/isbn.tsv

Day 2: Advanced Usage, Distribution • 283

http://download.freebase.com/datadumps/latest/browse/book/isbn.tsv
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

You’ll first need the redis Ruby gem.

$ gem install redis

There are several ways to go about inserting a large dataset, and they get

progressively faster but more complex.

The simplest method is to simply iterate through a list of data and execute

SET for each value using the standard redis-rb client.

redis/isbn.rb

LIMIT = 1.0 / 0 # 1.0/0 is Infinity in Ruby
%w{rubygems hiredis redis/connection/hiredis}.each{|r| require r}
%w{rubygems time redis}.each{|r| require r}

$redis = Redis.new(:host => "127.0.0.1", :port => 6379)
$redis.flushall
count, start = 0, Time.now
File.open(ARGV[0]).each do |line|
count += 1
next if count == 1
isbn, _, _, title = line.split("\t")
next if isbn.empty? || title == "\n"

$redis.set(isbn, title.strip)

set the LIMIT value if you do not wish to populate the entire dataset
break if count >= LIMIT

end
puts "#{count} items in #{Time.now - start} seconds"

$ ruby isbn.rb isbn.tsv
2456384 items in 266.690189 seconds

If you want to speed up insertion and are not running JRuby, you can

optionally install the hiredis gem. It’s a C driver that is considerably faster than

the native Ruby driver. Then uncomment the hiredis require line in order to load

the driver. You may not see a large improvement for this type of CPU-bound

operation, but we highly recommend hiredis for production Ruby use.

You will see a big improvement with pipelining. Here we batch 1,000 lines at

a time and pipeline their insertion. It reduced our insertion time by more than

300 percent.

redis/isbn_pipelined.rb

BATCH_SIZE = 1000
LIMIT = 1.0 / 0 # 1.0/0 is Infinity in Ruby

%w{rubygems hiredis redis/connection/hiredis}.each{|r| require r}
%w{rubygems time redis}.each{|r| require r}

284 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/isbn.rb
http://media.pragprog.com/titles/rwdata/code/redis/isbn_pipelined.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

$redis = Redis.new(:host => "127.0.0.1", :port => 6379)
$redis.flushall

set line data as a single batch update
def flush(batch)

$redis.pipelined do
batch.each do |saved_line|
isbn, _, _, title = line.split("\t")
next if isbn.empty? || title == "\n"
$redis.set(isbn, title.strip)

end
end
batch.clear

end

batch = []
count, start = 0, Time.now
File.open(ARGV[0]).each do |line|
count += 1
next if count == 1

push lines into an array
batch << line

if the array grows to BATCH_SIZE, flush it
if batch.size == BATCH_SIZE

flush(batch)
puts "#{count-1} items"

end

set the LIMIT value if you do not wish to populate the entire dataset
break if count >= LIMIT

end
flush any remaining values
flush(batch)

puts "#{count-1} items in #{Time.now - start} seconds"

$ ruby isbn_pipelined.rb isbn.tsv
2666642 items in 79.312975 seconds

This reduces the number of Redis connections required, but building the

pipelined dataset has some overhead of its own. You should experiment with

different numbers of batched operations when pipelining in production.

As a side note to Ruby users, if your application is nonblocking via Event

Machine, the Ruby driver can use em-synchrony via EM::Protocols::Redis.connect.

Day 2: Advanced Usage, Distribution • 285

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Redis Cluster

Beyond simple replication, many Redis clients provide an interface for building

a simple ad hoc distributed Redis cluster. The Ruby client redis-rb supports

a consistent-hashing managed cluster. You may recall consistent hashing

from the Riak chapter, where nodes can be added and dropped without having

to expire most keys. This is the same idea, only managed via a client rather

than by the servers themselves.

First we need another server. Unlike the master-slave setup, both of our

servers will take the master (default) configuration. We copied the redis.conf
file and changed the port to 6380. That’s all that’s required for the servers.

redis/isbn_cluster.rb

LIMIT = 10000
%w{rubygems time redis}.each{|r| require r}
require 'redis/distributed'

$redis = Redis::Distributed.new([
"redis://localhost:6379/", "redis://localhost:6380/"

])
$redis.flushall

count, start = 0, Time.now
File.open(ARGV[0]).each do |line|
count += 1
next if count == 1
isbn, _, _, title = line.split("\t")
next if isbn.empty? || title == "\n"

$redis.set(isbn, title.strip)

set the LIMIT value if you do not wish to populate the entire dataset
break if count >= LIMIT

end
puts "#{count} items in #{Time.now - start} seconds"

Bridging between two or more servers requires only some minor changes to

our existing ISBN client. First we need to require the redis/distributed file from

the redis gem.

require 'redis/distributed'

Then replace the Redis client with Redis::Distributed and pass in an array of

server URIs. Each URI requires the redis scheme, server (localhost), and port.

$redis = Redis::Distributed.new([
"redis://localhost:6379/",
"redis://localhost:6380/"

])

286 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/isbn_cluster.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Running the client is the same as before.

$ ruby isbn_cluster.rb isbn.tsv

But a lot more work is being done by the client, since it handles computing

which keys are stored on which servers. You can validate that keys are stored

on separate servers by attempting to retrieve the same ISBN key from each

server through the CLI. Only one client will GET a value. But as long as you

retrieve keys set through the same Redis::Distributed configuration, the client

will access the values from the correct servers.

Bloom Filters

Owning a unique term is an excellent strategy for making something easily

findable online. If you were to write a book named The Jabbyredis, you would

be fairly certain any search engine would link to you. Let’s write a script that

lets someone quickly check whether a word is unique against all words used

in all titles in the ISBN catalog. We can use a Bloom filter to test whether a

word is used.

A Bloom filter is a probabilistic data structure that checks for the nonexistence

of an item in a set, first covered in Compression and Bloom Filters, on page

109. Although it can return a false positive, it cannot return a false negative.

This is a useful when you need to quickly discover whether a value does not

exist in a system.

Bloom filters succeed at discovering nonexistence by converting a value to a

very sparse sequence of bits and comparing that to a union of every value’s

bits. In other words, when a new value is added, it is OR’d against the current

Bloom filter bit sequence. When you want to check whether the value is

already in the system, you perform an AND against the Bloom filter’s sequence.

If the value has any true bits that aren’t also true in the Bloom filter’s corre-

sponding buckets, then the value was never added. In other words, this value

is definitely not in the Bloom filter. Following is a graphic representation of

this concept.

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0

a b

c

Day 2: Advanced Usage, Distribution • 287

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Let’s write a program that loops through a bunch of ISBN book data, extracts

and simplifies each book’s title works, and splits them into individual words.

Each new word encountered is checked against the Bloom filter. If the Bloom

filter returns false, meaning the word does not exist in our Bloom filter, then

go ahead and add it. Just to follow along, we can output any new word that’s

added.

$ gem install bloomfilter-rb

redis/isbn_bf.rb

LIMIT = 1.0 / 0 # 1.0/0 is Infinity in Ruby
LIMIT= 10000
%w{rubygems time bloomfilter-rb}.each{|r| require r}
bloomfilter = BloomFilter::Redis.new(:size => 1000000)

$redis = Redis.new(:host => "127.0.0.1", :port => 6379)
$redis.flushall

count, start = 0, Time.now
File.open(ARGV[0]).each do |line|
count += 1
next if count == 1
_, _, _, title = line.split("\t")
next if title == "\n"

words = title.gsub(/[^\w\s]+/, '').downcase
puts words
words = words.split(' ')
words.each do |word|

skip any keyword already in the bloomfilter
next if bloomfilter.include?(word)
output the very unique word
puts word
add the new word to the bloomfilter
bloomfilter.insert(word)

end
set the LIMIT value if you do not wish to populate the entire dataset
break if count >= LIMIT

end
puts "Contains Jabbyredis? #{bloomfilter.include?('jabbyredis')}"
puts "#{count} lines in #{Time.now - start} seconds"

Ruby wunderkind Ilya Grigorik created this Redis-backed Bloom filter, but

the concepts are transferable to any language.

Running the client uses the same ISBN file but needs only the book titles.

$ ruby isbn_bf.rb isbn.tsv

288 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/isbn_bf.rb
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

At the start of the output you should see plenty of common words, like and

and the. Near the end of the set, the words become increasingly esoteric, like

unindustria.

The upside with this approach is the ability to detect duplicate words. The

downside is that a few false positives will seep through—the Bloom filter may

flag a word we have never seen before. This is why in a real-world use case

you would perform some secondary check, such as a slower database query

to a system of record, which should happen only a small percentage of the

time, presuming a large enough filter size, which is computable.4

SETBIT and GETBIT

As we mentioned earlier, Bloom filters function by flipping certain bits in a

sparse binary field. The Redis Bloom filter implementation we just used takes

advantage of two relatively recent Redis commands that perform just such

actions: SETBIT and GETBIT.

Like all Redis commands, SETBIT is fairly descriptive. The command sets a

single bit (either 1 or 0) at a certain location in a bit sequence, starting from

zero. It’s a common use case for high-performance multivariate flagging—it’s

faster to flip a few bits than write a set of descriptive strings.

If we want to keep track of the toppings on a hamburger, we can assign each

type of topping to a bit position, such as ketchup = 0, mustard = 1, onion =

2, lettuce = 3. So, a hamburger with only mustard and onion could be repre-

sented as 0110 and set in the command line:

redis 127.0.0.1:6379> SETBIT my_burger 1 1
(integer) 0
redis 127.0.0.1:6379> SETBIT my_burger 2 1
(integer) 0

Later, a process can check whether my burger should have lettuce or mustard.

If zero is returned, the answer is false—one if true.

redis 127.0.0.1:6379> GETBIT my_burger 3
(integer) 0
redis 127.0.0.1:6379> GETBIT my_burger 1
(integer) 1

The Bloom filter implementation takes advantage of this behavior by hashing

a value as a multibit value. It calls SETBIT X 1 for each on position in an insert()
(where X is the bit position) and verifies existence by calling GETBIT X on include?()
—returning false if any GETBIT position returns 0.

4. http://en.wikipedia.org/wiki/Bloom_filter

Day 2: Advanced Usage, Distribution • 289

http://en.wikipedia.org/wiki/Bloom_filter
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Bloom filters are excellent for reducing unnecessary traffic to a slower under-

lying system, be it a slower database, limited resource, or network request.

If you have a slower database of IP addresses and you want to track all new

users to your site, you can use a Bloom filter to first check whether the IP

address exists in your system. If the Bloom filter returns false, you know the

IP address has yet to be added and can respond accordingly. If the Bloom

filter returns true, this IP address may or may not exist on the back end and

requires a secondary lookup to be sure. This is why computing the correct

size is important—a well-sized Bloom filter can reduce (but not eliminate) the

error rate or the likelihood of a false positive.

Day 2 Wrap-Up

Today we rounded out our Redis investigation by moving beyond simple

operations into squeezing every last bit of speed out of a very fast system.

Redis provides for fast and flexible data structure storage and simple

manipulations as we saw in Day 1 but is equally adept at more complex

behaviors by way of built-in publish-subscribe functions and bit operations.

It’s also highly configurable, with many durability and replication settings

that conform to whatever your needs may be. It also supports some nice third-

party enhancements, like Bloom filters and clustering.

This also concludes major operations for the Redis data structure store.

Tomorrow we’re going to do something a bit different, by using Redis as the

cornerstone of a polyglot persistence setup along with CouchDB and Neo4j.

Day 2 Homework

Find

Find out what messaging patterns are, and discover how many Redis can

implement.

Do

1. Run the ISBN populator script with all snapshotting and the append-only

file turned off. Then try running with appendfsync set to always, marking the

speed difference.

2. Using your favorite programming language’s web framework, try to build

a simple URL-shortening service backed by Redis with an input box for

the URL and a simple redirect based on the URL. Back it up with a Redis

master-slave replicated cluster across multiple nodes as your back end.

290 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

8.4 Day 3: Playing with Other Databases

Today we’re wrapping up our final database chapter by inviting some previous

databases to play. Yet Redis will hold a starring role by making our interaction

with other databases faster and easier.

We’ve learned throughout this book that different databases have different

strengths, so many modern system designs have moved toward a polyglot

persistence model, where many databases each play a role in the system.

You’ll learn how to build one of these projects using CouchDB as the system

of record (the canonical data source), Neo4j to handle data relationships, and

Redis to help with data population and caching. Consider this your final

exam.

Note that this project is not the authors’ endorsement of any specific set of

databases, languages, or frameworks over another but rather a showcase of

how multiple databases can work together, leveraging the capabilities of each

in pursuit of a single goal.

A Polyglot Persistent Service

Our polyglot persistence service will act as a front end to a band information

service. We want to store a list of musical band names, the artists who per-

formed in those bands, and any number of roles each artist played in the

band, from lead singer to backup keytar player. Each of three databases—

Redis, CouchDB, and Neo4j—will handle a different aspect of our band

management system.

Redis plays three important roles in our system: to assist in data populating

CouchDB, as a cache for recent Neo4j changes, and as a quick lookup for

partial value searches. Its speed and ability to store multiple data formats

make it well suited for population, and its built-in expiry policies are perfect

for handling cached data.

CouchDB is our system of record (SOR), or authoritative data source.

CouchDB’s document structure is an easy way to store band data with nested

artist and role information, and we will take advantage of the Changes API

in CouchDB to keep our third data source in sync.

Neo4j is our relationship store. Although querying the CouchDB SOR directly

is perfectly reasonable, a graph datastore allows us a simplicity and speed

in walking node relationships that other databases have a difficult time

matching. We’ll store relationships between bands, band members, and the

roles the members play.

Day 3: Playing with Other Databases • 291

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The Rise of Polyglot Persistence

Like the growing phenomenon of polyglot programming, polyglot persistence is now

gaining ground.

If you are unfamiliar with the practice, polyglot programming is whereby a team uses

more than one programming language in a single project. Contrast this with the

convention of using one general-purpose language throughout a project. This is

useful because of the different inherent strengths of languages. A framework like

Scala may be better suited for server-side stateless transactions on the Web, but a

language like Ruby may be friendlier for business logic. Used together, they create a

synergy. A polyglot language system like this was famously used at Twitter.

Some of the databases we’ve seen themselves support polyglot programming—Riak

supports both JavaScript and Erlang when writing mapreduce, and a single request

can execute both.

Similar to its language-centric cousin, polyglot persistence is where you can leverage

the strengths of many kinds of databases in the same system, as opposed to the

currently familiar practice of a single database, probably a relational style. A basic

variant of this is already common: using a key-value store (like Redis) that acts as a

cache for relatively slower relational database (like PostgreSQL) queries. Relational,

as we’ve seen in previous chapters, is suboptimally suited for a growing host of

problems, such as graph traversal. But even these new databases shine only as a

few stars in the full galaxy of requirements.

Why the sudden interest in polyglot? Martin Fowler noteda that having a single central

database where multiple applications could integrate was a common pattern in soft-

ware design. This once popular database integration pattern has given way to a

middleware layer pattern, where multiple applications instead communicate to a

service layer over HTTP. This frees up the middleware service itself to rely on any

number of databases or, in the case of polyglot persistence, any type.

a. http://martinfowler.com/bliki/DatabaseThaw.html

Each database has a specific role to play in our system, but they don’t natively

communicate. We use the Node.js JavaScript framework to populate the

databases, communicate between them, and act as a simple front-end server.

Since gluing multiple databases together requires a bit of code, this last day

will have much more code than we have seen so far in this book.

Population

The first item of business is to populate our datastores with the necessary

data. We take a two-phased approach here, by first populating Redis and

then populating our CouchDB SOR.

292 • Chapter 8. Redis

http://martinfowler.com/bliki/DatabaseThaw.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

As in earlier sections, we download a dataset from Freebase.com. We’ll be

using the group_membership tab-separated set.5 This file contains a lot of infor-

mation, but we are interested only in extracting the member or artist name,

the group or band name, and their roles in that band stored as a comma-

separated list. For example, John Cooper played in the band Skillet as the

Lead vocalist, Acoustic guitar player, and Bassist.

/m/0654bxy John Cooper Skillet Lead vocalist,Acoustic guitar,Bass 1996

Ultimately we want to structure John Cooper and the other members of

Skillet into a single CouchDB document like the following, stored at the URL

http://localhost:5984/bands/Skillet:

{
"_id": "Skillet",
"name": "Skillet"
"artists": [

{
"name": "John Cooper",
"role": [

"Acoustic guitar",
"Lead vocalist",
"Bass"

]
},
...
{
"name": "Korey Cooper",
"role": [

"backing vocals",
"Synthesizer",
"Guitar",
"Keyboard instrument"

]
}

]
}

This file contains well over 100,000 band members and more than 30,000

bands. That’s not many, but it’s a good starting point to build your own sys-

tem. Note that not every artist’s roles are documented. This is an incomplete

dataset, but we can deal with that later.

5. http://download.freebase.com/datadumps/latest/browse/music/group_membership.tsv

Day 3: Playing with Other Databases • 293

http://download.freebase.com/datadumps/latest/browse/music/group_membership.tsv
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Phase 1: Data Transformation

You may wonder why we bother populating Redis and not just dive right into

populating CouchDB. Acting as an intermediary, Redis adds structure to the

flat TSV data so that subsequent insertion into another database is fast. Since

our plan is to create a single record per band name, Redis allows us to make

a single pass through our TSV file (which lists the same band for each band

member—each band member is represented in a line). Adding single members

directly to CouchDB for each line in the file can cause update thrashing,

where two band member lines attempt to create/update the same band doc-

ument at the same time, forcing the system to reinsert when one of them fails

CouchDB’s version check.

The catch with this strategy is that you’re limited to the constraints of Redis

to hold an entire dataset in RAM—though this limit could be overcome by the

simple consistent-hashing cluster we saw on Day 2.

With our data file in hand, ensure you have Node.js installed as well as the

Node Package Manager (npm). Once that’s all done, we need to install three

NPM projects: redis, csv, and hiredis (the optional Redis C-driver we learned

about yesterday that can greatly speed up Redis interactions).

$ npm install hiredis redis csv

Then, check that your Redis server is running on the default port 6379, or

alter each script’s createClient() function to point to your Redis port.

You can populate Redis by running the following Node.js script in the same

directory as your TSV file, which we assume is named group_membership.tsv. (All

of the JavaScript files we’ll look at are fairly verbose, so we don’t show them

in their entirety. All of the code can be downloaded from the Pragmatic

Bookshelf website. Here we’ll just stick to the meat of each file.) Download

and run the following file:

$ node pre_populate.js

This script basically iterates through each line of the TSV and extracts the

artist name, the band name, and the roles they play in that band. Then it

adds those values to Redis (skipping any blank values).

The format of each Redis band key is "band:Band Name". The script will add this

artist name to the set of artist names. So, the key "band:Beatles" will contain

the set of values ["John Lennon", "Paul McCartney", "George Harrison", "Ringo Starr"]. The

artist keys will also contain the band name and similarly contain a set of

roles. "artist:Beatles:Ringo Starr" will contain the set ["Drums"].

294 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

The other code just keeps track of how many lines we’ve processed and outputs

the results to the screen.

redis/pre_populate.js

csv().
fromPath(tsvFileName, { delimiter: '\t', quote: '' }).
on('data', function(data, index) {

var
artist = data[2],
band = data[3],
roles = buildRoles(data[4]);

if(band === '' || artist === '') {
trackLineCount();
return true;

}
redis_client.sadd('band:' + band, artist);
roles.forEach(function(role) {
redis_client.sadd('artist:' + band + ':' + artist, role);

});
trackLineCount();

}).

You can test that the code has been populating Redis by launching redis-cli
and executing RANDOMKEY. We should expect a key prefixed by band: or artist:…any

value but (nil) is good.

Now that Redis is populated, proceed immediately to the next section. Turning

off Redis could lose data, unless you chose to set a higher durability than the

default or initiated a SAVE command.

Phase 2: SOR Insertion

CouchDB will play the role of our system of record (SOR). If any data conflicts

arise between Redis, CouchDB, or Neo4j, CouchDB wins. A good SOR should

contain all of the data necessary to rebuild any other data source in its

domain.

Ensure CouchDB is running on the default port 5984, or change the

require('http').createClient(5984, 'localhost') line in the following code to the port

number you require. Redis should also still be running from the previous

section. Download and run the following file:

$ node populate_couch.js

Since phase 1 was all about pulling data from a TSV and populating Redis,

this phase is all about pulling data from Redis and populating CouchDB. We

don’t use any special drivers for CouchDB, since it’s a simple REST interface

and Node.js has a simple built-in HTTP library.

Day 3: Playing with Other Databases • 295

http://media.pragprog.com/titles/rwdata/code/redis/pre_populate.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Eric says:

Nonblocking Code

Before starting this book, we were only passingly familiar with writing event-driven

nonblocking applications. Nonblocking means precisely that: rather than waiting for

a long-running process to complete, the main code will continue executing. Whatever

you need to do in response to a blocking event you put inside a function or code block

to be executed later. This can be by spawning a separate thread or, in our case,

implementing a reactor pattern event-driven approach.

In a blocking program, you can write code that queries a database, waits, and loops

through the results.

results = database.some_query()
for value in results

do something with each value
end
this is not executed until after the results are looped...

In a event-driven program, you would pass in the loop as a function/code block.

While the databases is doing its thing, the rest of the program can continue running.

Only after the database returns the result does the function/code block get executed.

database.some_query do |results|
for value in results
do something with each value

end
end
this continues running while the database performs its query...

It took us quite some time to realize the benefits here. The rest of the program can

run rather than sitting idle while it waits on the database, sure, but is this common?

Apparently so, because when we began coding in this style, we noticed an order-of-

magnitude decrease in latency.

We try to keep the code as simple as we can, but interacting with databases in a

nonblocking way is an inherently complex process. But as we learned, it’s generally

a very good method when dealing with databases. Nearly every popular programming

language has some sort of nonblocking library. Ruby has EventMachine, Python has

Twisted, Java has the NIO library, C# has Interlace, and of course JavaScript has

Node.js.

In the following block of code, we perform a Redis KEYS bands:* to get a list of

all band names in our system. If we had a really big dataset, we could add

more scoping (for example, bands:A* to get only band names starting with a,

and so on). Then for each of those bands we fetch the set of artists and extract

the band name from the key, by removing the prefix bands: from the key

string.

296 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis/populate_couch.js

redisClient.keys('band:*', function(error, bandKeys) {
totalBands = bandKeys.length;
var

readBands = 0,
bandsBatch = [];

bandKeys.forEach(function(bandKey) {
// substring of 'band:'.length gives us the band name
var bandName = bandKey.substring(5);
redisClient.smembers(bandKey, function(error, artists) {

Next we get all of the roles for every artist in this band, which Redis returns

as an array of arrays (each artists role is its own array). We can do this by

batching up Redis SMEMBERS commands into an array called roleBatch and exe-

cuting them in a single MULTI batch. Effectively, that would be executing a

single pipelined request like this:

MULTI
SMEMBERS "artist:Beatles:John Lennon"
SMEMBERS "artist:Beatles:Ringo Starr"

EXEC

From there, a batch of 50 CouchDB documents are made. We build a batch

of 50, because we then send the entire set to CouchDB’s /_bulk_docs command,

allowing us very, very fast insertion.

redis/populate_couch.js

redisClient.
multi(roleBatch).
exec(function(err, roles)
{

var
i = 0,
artistDocs = [];

// build the artists sub-documents
artists.forEach(function(artistName) {
artistDocs.push({ name: artistName, role : roles[i++] });

});

// add this new band document to the batch to be executed later
bandsBatch.push({
_id: couchKeyify(bandName),
name: bandName,
artists: artistDocs

});

Day 3: Playing with Other Databases • 297

http://media.pragprog.com/titles/rwdata/code/redis/populate_couch.js
http://media.pragprog.com/titles/rwdata/code/redis/populate_couch.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

With the population of the bands database, we now have in a single location

all of the data our system requires. We know the names of many bands, the

artists who performed in them, and the roles they played in those bands.

Now would be a good time to take a break and play around with our newly

populated bands system of record in CouchDB at http://localhost:5984/_utils/
database.html?bands.

Relationship Store

Next on the docket is our Neo4j service that we’ll use to track relationships

between artists and the roles they play. We could certainly query CouchDB

outright by creating views, but we are rather limited on complex queries based

on relationships. If Wayne Coyne from the Flaming Lips loses his theremin

before a show, he could ask Charlie Clouser from Nine Inch Nails, who also

plays a theremin. Or we could discover artists who have many overlapping

talents, even if they performed different roles in different bands—all with a

simple node walk.

With our initial data in place, now we need to keep Neo4j in sync with

CouchDB should any data ever change on our system of record. So, we’ll kill

two birds by crafting a service that populates Neo4j on any changes to

CouchDB since the database was created.

We also want to populate Redis with keys for our bands, artists, and role so

we can quickly access this data later. Happily, this includes all data that

we’ve already populated in CouchDB, thus saving us a separate initial Neo4j

and Redis population step.

Ensure that Neo4j is running on port 7474, or change the appropriate create-
Client() function to use your correct port. CouchDB and Redis should still be

running. Download and run the following file. This file will continue running

until you shut it down.

$ node graph_sync.js

This server just uses the continuous polling example we saw in the CouchDB

chapter to track all CouchDB changes. Whenever a change is detected, we

do two things: populate Redis and populate Neo4j. This code populates Redis

by cascading callback functions. First it populates the band as "band-name:Band
Name". It follows this pattern for artist name and roles.

This way, we can search with partial strings. For example, KEYS band-name:Bea*
could return this: Beach Boys, Beastie Boys, Beatles, and so on.

298 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

redis/graph_sync.js

function feedBandToRedis(band) {
redisClient.set('band-name:' + band.name, 1);
band.artists.forEach(function(artist) {
redisClient.set('artist-name:' + artist.name, 1);
artist.role.forEach(function(role){
redisClient.set('role-name:' + role, 1);

The next block is how we populate Neo4j. We created a driver that you can

download as part of this book’s code, named neo4j_caching_client.js. It just uses

Node.js’s HTTP library to connect to the Neo4j REST interface with a bit of

rate-limiting built in so the client doesn’t open too many connections at once.

Our driver also uses Redis to keep track of changes made to the Neo4j graph

without having to initiate a separate query. This is our third separate use for

Redis—the first being as a data transformation step for populating CouchDB,

and the second we just saw earlier, to quickly search for band values.

This code creates band nodes (if they need to be created), then artist nodes

(if they need to be created), and then roles. Each step along the way creates

a new relationship, so The Beatles node will relate to John, Paul, George, and

Ringo nodes, who in turn each relate to the roles they play.

redis/graph_sync.js

function feedBandToNeo4j(band, progress) {
var

lookup = neo4jClient.lookupOrCreateNode,
relate = neo4jClient.createRelationship;

lookup('bands', 'name', band.name, function(bandNode) {
progress.emit('progress', 'band');
band.artists.forEach(function(artist) {
lookup('artists', 'name', artist.name, function(artistNode){

progress.emit('progress', 'artist');
relate(bandNode.self, artistNode.self, 'member', function(){

progress.emit('progress', 'member');
});
artist.role.forEach(function(role){
lookup('roles', 'role', role, function(roleNode){
progress.emit('progress', 'role');
relate(artistNode.self, roleNode.self, 'plays', function(){

progress.emit('progress', 'plays');

Let this service keep running in its own window. Every update to CouchDB

that adds a new artist or role to an existing artist will trigger a new relationship

in Neo4j and potentially new keys in Redis. As long as this service runs, they

should be in sync.

Day 3: Playing with Other Databases • 299

http://media.pragprog.com/titles/rwdata/code/redis/graph_sync.js
http://media.pragprog.com/titles/rwdata/code/redis/graph_sync.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Open your CouchDB web console and open a band. Make any data change

you want to the database: add a new band member (make yourself a member

of the Beatles!), or add a new role to an artist. Keep an eye on the graph_sync

output. Then fire up the Neo4j console and try finding any new connections

in the graph. If you added a new band member, they should now have a

relationship with the band node or new role if that was altered. The current

implementation does not remove relationships—though it would not be a

complete modification to add a Neo4j DELETE operation to the script.

The Service

This is the part we’ve been building up to. We’re going to create a simple web

application that allows users to search for a band. Any band in the system

will list all of the band members as links, and any clicked band member link

will list some information about the artist—namely, the roles they play. In

addition, each role the artist plays will list every other artist in the system

who also plays that role.

For example, searching for Led Zeppelin would give you Jimmy Page, John

Paul Jones, John Bonham, and Robert Plant. Clicking Jimmy Page will list

that he plays guitar and also many other artists who play guitar, like The

Edge from U2.

To simplify our web app creation a bit, we’ll need two more node packages:

bricks (a simple web framework) and mustache (a templating library).

$ npm install bricks mustache

Like in the previous sections, ensure you have all of the databases running,

and then start up the server. Download and run the following code:

$ node band.js

The server is set to run on port 8080, so if you point your browser to

http://localhost:8080/, you should see a simple search form.

Let’s take a look at the code that will build a web page that lists band infor-

mation. Each URL performs a separate function in our little HTTP server. The

first is at http://localhost:8080/band and accepts any band name as a parameter.

redis/bands.js

appServer.addRoute("^/band$", function(req, res) {
var

bandName = req.param('name'),
bandNodePath = '/bands/' + couchUtil.couchKeyify(bandName),
membersQuery = 'g.V[[name:"'+bandName+'"]]'

+ '.out("member").in("member").uniqueObject.name';

300 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/bands.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

getCouchDoc(bandNodePath, res, function(couchObj) {
gremlin(membersQuery, function(graphData) {

var artists = couchObj && couchObj['artists'];
var values = { band: bandName, artists: artists, bands: graphData };
var body = '<h2>{{band}} Band Members</h2>';
body += '{{#artists}}';
body += '{{name}}';
body += '{{/artists}}';
body += '<h3>You may also like</h3>';
body += '{{#bands}}';
body += '{{.}}';
body += '{{/bands}}';
writeTemplate(res, body, values);

If you enter in the band Nirvana in the search form, your URL request will be

http://localhost:8080/band?name=Nirvana. This function will render an HTML page

(the overall template is in an external file named template.html). This web page

lists all artists in a band, which it pulls directly from CouchDB. It also lists

some suggested bands, which it retrieves from a Gremlin query against the

Neo4j graph. The Gremlin query is like this for Nirvana:

g.V.filter{it.name=="Nirvana"}.out("member").in("member").dedup.name

Or in other words, from the Nirvana node, get all unique names whose

members are connected to Nirvana members. For example, Dave Grohl played

in Nirvana and the Foo Fighters, so Foo Fighters will be returned in this list.

The next action is the http://localhost:8080/artist URL. This page will output infor-

mation about an artist.

redis/bands.js

appServer.addRoute("^/artist$", function(req, res) {
var

artistName = req.param('name'),
rolesQuery = 'g.V[[name:"'+artistName+'"]].out("plays").role.uniqueObject',
bandsQuery = 'g.V[[name:"'+artistName+'"]].in("member").name.uniqueObject';

gremlin(rolesQuery, function(roles) {
gremlin(bandsQuery, function(bands) {
var values = { artist: artistName, roles: roles, bands: bands };
var body = '<h3>{{artist}} Performs these Roles</h3>';
body += '{{#roles}}';
body += '{{.}}';
body += '{{/roles}}';
body += '<h3>Play in Bands</h3>';
body += '{{#bands}}';
body += '{{.}}';
body += '{{/bands}}';
writeTemplate(res, body, values);

Day 3: Playing with Other Databases • 301

http://media.pragprog.com/titles/rwdata/code/redis/bands.js
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Two Gremlin queries are executed here. This first outputs all roles a member

plays, and the second is a list of bands that person played in. For example,

Jeff Ward (http://localhost:8080/artist?name=Jeff%20Ward) would be listed as playing

the role Drummer and in the bands Nine Inch Nails and Ministry.

A cool feature of the previous two pages is that we render links between these

values. The artist list in the /bands page links to the chosen /artist page, and

vice versa. But we could make searching a bit easier.

redis/bands.js

appServer.addRoute("^/search$", function(req, res) {
var query = req.param('term');

redisClient.keys("band-name:"+query+"*", function(error, keys) {
var bands = [];
keys.forEach(function(key){

bands.push(key.replace("band-name:", ''));
});
res.write(JSON.stringify(bands));
res.end();

Here we just pull all keys from Redis that match the first part of the string,

such as "Bea*" as described previously. It then outputs the data as JSON. The

template.html file links to the jQuery code necessary to make this function as

an autocomplete feature on the rendered search box.

Expanding the Service

This is a fairly little script for all of the bare-bones work we’re doing here. You

may find many places you want to extend. Notice that the band suggestion

is only first-order bands (bands the current band’s members have performed

in); you can get interesting results by writing a query to walk second-order

bands, like this: g.V.filter{it.name=='Nine Inch Nails'}.out('member').in('member').dedup.
loop(3){ it.loops <= 2 }.name.

You may also note that we do not have a form where someone can update

band information. Adding this functionality could be fairly simple, since we

already wrote CouchDB population code in the populate_couch.js script, and

populating CouchDB will automatically keep Neo4j and Redis eventually

consistent as long as the graph_sync.js service is running.

If you enjoy playing with this kind of polyglot persistence, you could take this

even further. You could add a PostgreSQL data warehouse6 to transform this

data into a star schema—allowing for different dimensions of analysis, such

6. http://en.wikipedia.org/wiki/Data_warehouse

302 • Chapter 8. Redis

http://media.pragprog.com/titles/rwdata/code/redis/bands.js
http://en.wikipedia.org/wiki/Data_warehouse
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

as most commonly played instrument or average numbers of total members

in a band vs. total instruments. You could add a Riak server to store samples

of bands’ music, an HBase server to build a messaging system where users

can keep track of their historical likes/dislikes, or a MongoDB extension to

add a geographic element to this service.

Or, redesign this project entirely with a different language, web framework,

or dataset. There are as many opportunities to extend this project as there

are combinations of databases and technologies to create it—a Cartesian

product of all open source.

Day 3 Wrap-Up

Today was a big day—so big, in fact, we wouldn’t be surprised if it took several

days to complete. But this is a little taste of the future of data management

systems, as the world strolls away from the one large relational database

model to a several specialized databases model. We also glued these

databases together with some nonblocking code, which, though not a focus

of this book, also seems to be where database interaction is headed in the

development space.

The importance of Redis in this model should not be missed. Redis certainly

doesn’t provide any functionality these databases don’t supply individually,

but it does supply speedy data structures. We were able to organize a flat file

into a series of meaningful data structures, which is an integral part of both

data population and transportation. And it did this in a fast and simple-to-

use way.

Even if you’re not sold on the whole polyglot persistence model, you should

certainly consider Redis for any system.

Day 3 Homework

Do

1. Alter the importer steps to also track a band member’s start and end

dates with the band. Track that data in the artist’s CouchDB subdocu-

ment. Display this information on the artist’s page.

2. Add MongoDB into the mix by storing a few music samples into GridFS,

whereby users can hear a song or two related to a band. If any songs

exists for a band, add a link to the web app. Ensure the Riak data and

CouchDB remain in sync.

Day 3: Playing with Other Databases • 303

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

8.5 Wrap-Up

The Redis key-value (or data structure) store is light and compact, with a

variety of uses. It’s akin to one of those multitools composed of a knife, can

opener, and other bits and bobs like a corkscrew—Redis is good to have

around for solving a variety of odd tasks. Above all, Redis is fast, simple, and

as durable as you choose. While rarely a stand-alone database, Redis is a

perfect complement to any polyglot ecosystem as an ever-present helper for

transforming data, caching requests, or managing messages by way of its

blocking commands.

Redis’s Strengths

The obvious strength of Redis is speed, like so many key-value stores of its

ilk. But more than most key-value stores, Redis provides the ability to store

complex values like lists, hashes, and sets, and retrieve them based through

operations specific to those datatypes. Beyond even a data structure store,

however, Redis’s durability options allow you to trade speed for data safety

up to a fairly fine point. Built-in master-slave replication is another nice way

of ensuring better durability without requiring the slowness of syncing an

append-only file to disk on every operation. Additionally, replication is great

for very high-read systems.

Redis’s Weaknesses

Redis is fast largely because it resides in memory. Some may consider this

cheating, since of course a database that never hits the disk will be fast. A

main memory database has an inherent durability problem; namely, if you

shut down the database before a snapshot occurs, you can lose data. Even

if you set the append-only file to disk sync on every operation, you run a risk

with playing back expiry values, since time-based events can never be

counted on to replay in exactly the same manner—though in fairness this

case is more hypothetical than practical.

Redis also does not support datasets larger than your available RAM (Redis

is removing virtual memory support), so its size has a practical limitation.

Although there is a Redis Cluster currently in development to grow beyond

a single-machine’s RAM requirements, anyone wanting to cluster Redis must

currently roll their own with a client that supports it (like the Ruby driver we

used in Day 2).

304 • Chapter 8. Redis

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Parting Thoughts

Redis is chock-full of commands—more than 120 of them. Most commands

are straightforward enough to understand by their names alone, once you

get used to the idea that seemingly random letters will be removed (for

example, INCRBY) or that mathematical precision can sometimes be more con-

fusing than helpful (for example, ZCOUNT, or sorted set count, vs. SCARD, or set

cardinality).

Redis is already becoming an integral part of many systems. Several open

source projects rely on Redis, from Resque, a Ruby-based asynchronous job

queueing service, to session management in the Node.js project SocketStream.

Regardless of the database you choose as your SOR, you should certainly

add Redis to the mix.

Wrap-Up • 305

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

CHAPTER 9

Wrapping Up

Now that we’ve made it through the databases, congratulations are in order!

We hope you’ve gained an appreciation for these seven databases. If you use

one in a project, we’ll be happy. And if you decide to use multiple databases,

like we saw at the end of the Redis chapter, we’ll be ecstatic. We believe the

future of data management lies in the polyglot persistence model (using more

than one database in a project)—while the worldview of the general-purpose

RDBMS fog drifts away.

Let’s take this opportunity to see where our seven databases fit together in

the greater database ecosystem. By this point, we have explored the details

of each and mentioned a few commonalities and differences. We’ll see how

they contribute to the vast and expanding landscape of data storage options.

9.1 Genres Redux

We’ve seen that how databases store their data can be largely divided into

five genres: relational, key-value, columnar, document, and graph. Let’s take

a moment and recap their differences and see what each style is good for and

not so good for—when you’d want to use them and when to avoid them.

Relational

This is the most common classic database pattern. Relational database

management systems (RDBMSs) are set-theory-based systems implemented

as two-dimensional tables with rows and columns. Relational databases

strictly enforce type and are generally numeric, strings, dates, and uninter-

preted blobs, but as we saw, PostgreSQL provided extensions such as array

or cube.

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Good For:

Because of the structured nature of relational databases, they make sense

when the layout of the data is known in advance but how you plan to use

that data later may not be. Or, in other words, you pay the organizational

complexity up front to achieve query flexibility later. Many business problems

are aptly modeled this way, from orders to shipments and from inventory to

shopping carts. You may not know in advance how you’ll want to query the

data later—how many orders did we process in February?—but the data is

quite regular in nature, so enforcing that regularity is helpful.

Not-So-Good For:

When your data is highly variable or deeply hierarchical, relational databases

aren’t the best fit. Because you must specify a schema up front, data problems

that exhibit a high degree of record-to-record variation will be problematic.

Consider developing a database to describe all the creatures in nature. Creat-

ing a full list of all features to account for (hasHair, numLegs, laysEggs, and

so on) would be intractable. In such a case, you’d want a database that makes

less restrictions in advance on what you can put into it.

Key-Value

The key-value (KV) store was the simplest model we covered. KV maps simple

keys to (possibly) more complex values like a huge hashtable. Because of

their relative simplicity, this genre of database has the most flexibility of

implementation. Hash lookups are fast, so in the case of Redis, speed was

its primary concern. Hash lookups are also easily distributed, and so Riak

took advantage of this fact for focusing on simple-to-manage clusters. Of

course, its simplicity can be a downside for any data with complex modeling

requirements.

Good For:

With little or no need to maintain indexes, key-value stores are often designed

to be horizontally scalable, extremely fast, or both. They’re particularly suited

for problems where the data are not highly related. For example, in a web

application, users’ session data meet this criteria; each user’s session activity

will be different and largely unrelated to the activity of other users.

Not-So-Good For:

Often lacking indexes and scanning capabilities, KV stores won’t help you if

you need to be able to perform queries on your data, other than basic CRUD

operations (Create, Read, Update, Delete).

308 • Chapter 9. Wrapping Up

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Columnar

Columnar databases (aka column-oriented, aka column family) share many

similarities with both KV and RDBMS stores. Like with a key-value database,

values are queried by matching keys. Like relational, their values are groups

of zero or more columns, though each row is capable of populating however

many it wants. Unlike either, columnar databases store like data by columns,

rather than keeping data together by rows. Columns are inexpensive to add,

versioning is trivial, and there is no real storage cost for unpopulated values.

We saw how HBase is a classic implementation of this genre.

Good For:

Columnar databases have been traditionally developed with horizontal scala-

bility as a primary design goal. As such, they’re particularly suited to “Big

Data” problems, living on clusters of tens, hundreds, or thousands of nodes.

They also tend to have built-in support for features such as compression and

versioning. The canonical example of a good columnar data storage problem

is indexing web pages. Pages on the Web are highly textual (benefits from

compression), somewhat interrelated, and change over time (benefits from

versioning).

Not-So-Good For:

Different columnar databases have different features and therefore different

drawbacks. But one thing they have in common is that it’s best to design

your schema based on how you plan to query the data. This means you should

have some idea in advance of how your data will be used, not just what it’ll

consist of. If data usage patterns can’t be defined in advance—for example,

fast ad hoc reporting—then a columnar database may not be the best fit.

Document

Document databases allow for any number of fields per object and even allow

objects to be nested to any depth as values of other fields. The common rep-

resentation of these objects is as JavaScript Object Notation (JSON), adhered

to by both MongoDB and CouchDB—though this is by no means a conceptual

requirement. Since documents don’t relate to each other like relational

databases, they are relatively easy to shard and replicate across several

servers, making distributed implementations fairly common. MongoHQ tends

to tackle availability by supporting the creation of datacenters that manage

huge datasets for the Web. Meanwhile, CouchDB focuses on being simple

and durable, where availability is achieved by master-master replication of

fairly autonomous nodes. There is high overlap between these projects.

Genres Redux • 309

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Good For:

Document databases are suited to problems involving highly variable domains.

When you don’t know in advance what exactly your data will look like, docu-

ment databases are a good bet. Also, because of the nature of documents,

they often map well to object-oriented programming models. This means less

impedance mismatch when moving data between the database model and

application model.

Not-So-Good For:

If you’re used to performing elaborate join queries on highly normalized rela-

tional database schemas, you’ll find the capabilities of document databases

lacking. A document should generally contain most or all of the relevant

information required for normal use. So while in a relational database you’d

naturally normalize your data to reduce or eliminate copies that can get out

of sync, with document databases, denormalized data is the norm.

Graph

Graph databases are an emerging class of database that focuses more on the

free interrelation of data than the actual values. Neo4j, as our open source

example, is growing in popularity for many social network applications. Unlike

other database styles that group collections of like objects into common

buckets, graph databases are more free-form—queries consist of following

edges shared by two nodes or, namely, traversing nodes. As more projects

use them, graph databases are growing the straightforward social examples

to occupy more nuanced use cases, such as recommendation engines, access

control lists, and geographic data.

Good For:

Graph databases seem to be tailor-made for networking applications. The

prototypical example is a social network, where nodes represent users who

have various kinds of relationships to each other. Modeling this kind of data

using any of the other styles is often a tough fit, but a graph database would

accept it with relish. They are also perfect matches for an object-oriented

system. If you can model your data on a whiteboard, you can model it in a

graph.

Not-So-Good For:

Because of the high degree of interconnectedness between nodes, graph

databases are generally not suitable for network partitioning. Spidering the

graph quickly means you can’t afford network hops to other database nodes,

310 • Chapter 9. Wrapping Up

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

so graph databases don’t scale out well. It’s likely that if you use a graph

database, it’ll be one piece of a larger system, with the bulk of the data stored

elsewhere and only the relationships maintained in the graph.

9.2 Making a Choice

As we said at the beginning, data is the new oil. We sit upon a vast ocean of

data, yet until it’s refined into information, it’s unusable (and with a more

crude comparison, there’s a lot of money in data these days). The ease of

collecting and ultimately storing, mining, and refining the data out there

starts with the database you choose.

Deciding which database to choose is often more complex than merely con-

sidering which genre maps best to a given domain’s data. Though a social

graph may seem to clearly function best with a graph database, if you’re

Facebook, you simply have far too much data to choose one. You are more

likely going to choose a “Big Data” implementation, such as HBase or Riak.

This will force your hand into choosing a columnar or key-value store. In

other cases, though you may believe a relational database is clearly the best

option for bank transactions, it’s worth knowing that Neo4j also supports

ACID transactions, expanding your options.

These examples serve to point out that there are other avenues beyond genre

to consider when choosing which database—or databases—best serve your

problem scope. As a general rule, as the size of data increases, the capacity

of certain database styles wane. Column-oriented datastore implementations

are often built to scale across datacenters and support the largest “Big Data”

sets, while graphs generally support the smallest. This is not always the case,

however. Riak is a large-scale key-value store meant to shard data across

hundreds or thousands of nodes, while Redis was built to run on one—with

the possibility of a few master-slave replicas or client-managed shards.

There are several more dimensions to consider when choosing a database,

such as durability, availability, consistency, scalability, and security. You

have to decide whether ad hoc queryability is important or if mapreduce will

suffice. Do you prefer to use an HTTP/REST interface, or are you willing to

require a driver for a custom binary protocol? Even smaller scope concerns,

such as the existence of bulk data loaders, might be important for you to

think about.

To simplify the comparison between these databases, we created a table in

Appendix 1, Database Overview Tables, on page 313. The table is not meant

to be an exhaustive list of features. Instead, it’s meant to be a tool to quickly

Making a Choice • 311

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

compare these databases we’ve already covered. Note the versions of each

database. These features change in the blink of an eye, so we highly recom-

mend double-checking these values for more recent versions.

9.3 Where Do We Go from Here?

Modern application scaling problems now fall largely in the realm of data

management. We’ve reached a point in application evolution where program-

ming language, framework, and operating system choice—even hardware and

operations (thanks to virtual machine hosts and “the cloud”)—are becoming

so cheap and easy as to become largely trivial problems driven as much by

preference as necessity. If you want to scale your application in this age, you

should think quite a bit about which database, or databases, you choose—

it’s more than likely your true bottleneck. Helping you make this choice

correctly was a leading purpose of this book.

Although the book has come to a close, we trust your interest in polyglot

persistence is wide open. The next steps from here are to pursue in detail the

databases that piqued your interest or continue learning about other options

like Cassandra, Drizzle, or OrientDB.

It’s time to get your hands dirty.

312 • Chapter 9. Wrapping Up

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

APPENDIX 1

Database Overview Tables

This book contains a wealth of information about each of the seven databases

we discuss: PostgreSQL, Riak, HBase, MongoDB, CouchDB, Neo4j, and Redis.

In the pages that follow, you’ll find tables that tally up these databases along

a number of dimensions to present an overview of what’s covered in more

detail elsewhere in the book. Although the tables are not a replacement for a

true understanding, they should provide you with an at-a-glance sense of

what each database is capable of, where it falls short, and how it fits into the

modern database landscape.

Data RelationsDatatypesVersionGenre

NoneTyped2.0DocumentMongoDB

NoneTyped1.1DocumentCouchDB

Ad hoc (Links)Blob1.0Key-valueRiak

NoneSemi-typed2.4Key-valueRedis

PredefinedPredefined

and typed

9.1RelationalPostgreSQL

Ad hoc (Edges)Untyped1.7GraphNeo4j

NonePredefined

and typed

0.90.3ColumnarHBase

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

HTTP/RESTInterface ProtocolWritten in

Language

Standard Object

SimpleCustom over

TCP

C++JSONMongoDB

YesHTTPErlangJSONCouchDB

YesHTTP,

protobuf

ErlangTextRiak

NoSimple text

over TCP

C/C++StringRedis

NoCustom over

TCP

CTablePostgreSQL

YesHTTPJavaHashNeo4j

YesThrift, HTTPJavaColumnsHBase

DurabilityScalableMapreduceAd Hoc Query

Write-ahead

journaling,

Safe mode

DatacenterJavaScriptCommands,

mapreduce

MongoDB

Crash-onlyDatacenter

(via BigCouch)

JavaScriptTemporary

views

CouchDB

Durable write

quorum

DatacenterJavaScript,

Erlang

Weak support,

Lucene

Riak

Append-only

log

Cluster (via

master-slave)

NoCommandsRedis

ACIDCluster (via

add-ons)

NoSQLPostgreSQL

ACIDCluster (via

HA)

No (in the

distributed

sense)

Graph walk-

ing, Cypher,

search

Neo4j

Write-ahead

logging

DatacenterHadoopWeakHBase

314 • Appendix 1. Database Overview Tables

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Very Large FilesBulk LoadVersioningSecondary

Indexes

GridFSmongoimportNoYesMongoDB

AttachmentsBulk Doc APIYesYesCouchDB

Lewak

(deprecated)

NoYesYesRiak

NoNoNoNoRedis

BLOBsCOPY

command

NoYesPostgreSQL

NoNoNoYes (via

Lucene)

Neo4j

NoNoYesNoHBase

ConcurrencyShardingReplicationRequires

Compaction

Write lockYesMaster-slave

(via replica

sets)

NoMongoDB

Lock-free

MVCC

Yes (with

filters in

BigCouch)

Master-masterFile rewriteCouchDB

Vector-clocksYesPeer-based,

master-master

NoRiak

NoneAdd-ons (e.g.,

client)

Master-slaveSnapshotRedis

Table/row

writer lock

Add-ons (e.g.,

PL/Proxy)

Master-slaveNoPostgreSQL

Write lockNoMaster-slave

(in Enterprise

Edition)

NoNeo4j

Consistent per

row

Yes via HDFSMaster-slaveNoHBase

Appendix 1. Database Overview Tables • 315

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

MultitenancySecurityTriggersTransactions

YesUsersNoNoMongoDB

YesUsersUpdate

validation or

Changes API

NoCouchDB

NoNonePre/post-

commits

NoRiak

NoPasswordsNoMulti opera-

tion queues

Redis

YesUsers/groupsYesACIDPostgreSQL

NoNoneTransaction

event handlers

ACIDNeo4j

NoKerberos via

Hadoop

security

NoYes (when

enabled)

HBase

WeaknessesMain Differentiator

Embed-abilityEasily query Big DataMongoDB

Query-abilityDurable and embeddable

clusters

CouchDB

Query-abilityHighly availableRiak

Complex dataVery, very fastRedis

Distributed availabilityBest of OSS RDBMS modelPostgreSQL

BLOBs or terabyte scaleFlexible graphNeo4j

Flexible growth, query-abilityVery large-scale, Hadoop

infrastructure

HBase

316 • Appendix 1. Database Overview Tables

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

APPENDIX 2

The CAP Theorem

Understanding the five database genres is an important selection criterion,

but it’s not the only one. Another recurring theme in this book is the CAP

theorem, which lays bare an unsettling truth about how distributed database

systems behave in the face of network instability.

CAP proves that you can create a distributed database that is consistent (writes

are atomic and all subsequent requests retrieve the new value), available (the

database will always return a value as long as a single server is running), or

partition tolerant (the system will still function even if server communication

is temporarily lost—that is, a network partition), but you can have only two

at once.

In other words, you can create a distributed database system that is consistent

and partition tolerant, a system that is available and partition tolerant, or a

system that is consistent and available (but not partition tolerant—which

basically means not distributed). But it is not possible to create a distributed

database that is consistent and available and partition tolerant at the same

time.

The CAP theorem is pertinent when considering a distributed database, since

you must decide what you are willing to give up. The database you choose

will lose availability or consistency. Partition tolerance is strictly an architec-

tural decision (will the database be distributed or not). It’s important to

understand the CAP theorem to fully grok your options. The trade-offs made

by the database implementations in this book are largely influenced by it.

A2.1 Eventual Consistency

Distributed databases must be partition tolerant, so the choice between

availability and consistency can be difficult. However, while CAP dictates that

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

A CAP Adventure, Part I: CAP

Imagine the world as a giant distributed database system. All of the land in the world

contains information about certain topics, and as long as you’re somewhere near

people or technology, you can find an answer to your questions.

Now, for the sake of argument, imagine you are a passionate Beyoncé Knowles fan

and the date is September 5, 2006. Suddenly, at your friend’s beach house party

celebrating the release of Beyoncé’s second studio album, a freak tidal wave sweeps

across the dock and drags you out to sea. You fashion a makeshift raft and wash up

on a desert island days later. Without any means of communication, you are effectively

partitioned from the rest of the system (the world). There you wait for five long years….

One morning in 2011 you are awakened by shouts from the sea. A salty old schooner

captain has discovered you! After five years alone, the captain leans over the bow

and bellows: “How many studio albums does Beyoncé have?”

You now have a decision to make. You can answer the question with the most recent

value you have (which is now five years old). If you answer his query, you are available.

Or, you can decline to answer the question, knowing since you are partitioned, your

answer may not be consistent with the rest of the world. The captain won’t get his

answer, but the state of the world remains consistent (if he sails back home, he can

get the correct answer). As your role of queried node, you can either help keep the

world’s data consistent or be available, but not both.

if you pick availability you cannot have true consistency, you can still provide

eventual consistency.

The idea behind eventual consistency is that each node is always available

to serve requests. As a trade-off, data modifications are propagated in the

background to other nodes. This means that at any time the system may be

inconsistent, but the data is still largely accurate.

The Internet’s Domain Name Service (DNS) is a prime example of an eventually

consistent system. You register a domain, and it may take a few days to

propagate to all DNS servers across the Internet. But at no time is any partic-

ular DNS server unavailable (assuming you can connect to it, that is).

A2.2 CAP in the Wild

Some partition-tolerant databases can be tuned to be more or less consistent

or available on a per-request basis. Riak works like this, allowing clients to

decide at request time what level of consistency they require. The other

databases in this book largely occupy one corner or another of the CAP trade-

off triangle.

318 • Appendix 2. The CAP Theorem

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

A CAP Adventure, Part II: Eventual Consistency

Let’s rewind two years, back to 2009. You’ve been on the island for three years at

this point, and you spot a bottle in the sand—precious contact with the outside world.

You uncork it and rejoice! You’ve just received an integral piece of knowledge…

The number of studio albums Beyoncé has is of utmost importance to the world’s

aggregate knowledge. It’s so important, in fact, that every time she releases a new

album, someone writes the current date and the number on a piece of paper. They

place that paper in a bottle and throw it out to sea. If someone, like yourself, is par-

titioned from the rest of the world on a desert island, they can eventually have the

correct answer.

Skip forward to the present. When the ship captain asks, “How many studio albums

does Beyoncé have?” you remain available and answer “three.” You may be inconsistent

with the rest of the world, but you are reasonably certain of your answer, having not

yet received another bottle.

The story ends with the captain rescuing you, and you return home to find her new

album and live happily ever after. As long as you remain on land, you needn’t be

partition tolerant and can remain consistent and available until the end of your days.

Redis, PostgreSQL, and Neo4J are consistent and available (CA); they don’t

distribute data and so partitioning is not an issue (though arguably, CAP

doesn’t make much sense in non-distributed systems). MongoDB and HBase

are generally consistent and partition tolerant (CP). In the event of a network

partition, they can become unable to respond to certain types of queries (for

example, in a Mongo replica set you flag slaveok to false for reads). In practice,

hardware failure is handled gracefully—other still-networked nodes can cover

for the downed server—but strictly speaking, in the CAP theorem sense, they

are unavailable. Finally, CouchDB is available and partition tolerant (AP).

Even though two or more CouchDB servers can replicate data between them,

CouchDB doesn’t guarantee consistency between any two servers.

It’s worth noting that most of these databases can be configured to change

CAP type (Mongo can be CA, CouchDB can be CP), but here we’ve noted their

default or common behaviors.

A2.3 The Latency Trade-Off

There is more to distributed database system design than CAP, however. For

example, low latency (speed) is a chief concern for many architects. If you

read the Amazon Dynamo1 paper, you’ll notice a lot of talk about availability

1. http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

The Latency Trade-Off • 319

http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

but also Amazon’s latency requirements. For a certain class of applications,

even a small latency change can translate to a large costs. Yahoo’s PNUTS

database famously gives up both availability on normal operation and consis-

tency on partitions in order to squeeze a lower latency out of its design.2 It’s

important to consider CAP when dealing with distributed databases, but it’s

equally important to be aware that distributed database theory does not stop

there.

2. http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

320 • Appendix 2. The CAP Theorem

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Bibliography

[TH01] David Thomas and Andrew Hunt. Programming Ruby: The Pragmatic Pro-

grammer’s Guide. Addison-Wesley, Reading, MA, 2001.

[Tat10] Bruce A. Tate. Seven Languages in Seven Weeks: A Pragmatic Guide to

Learning Programming Languages. The Pragmatic Bookshelf, Raleigh, NC

and Dallas, TX, 2010.

http://pragprog.com/titles/rwdata/errata/add
http://forums.pragprog.com/forums/rwdata

Index

SYMBOLS
! (exclamation sign), in regu-

lar expression searches, 37

% (percent sign), as wildcard
on LIKE searches, 22

* (star)
in regular expression

searches, 37
in Riak searches, 88

-> (arrow operator), in Groovy,
234

<> (not equal sign), in Post-
greSQL, 14

? (question mark), in Riak
searches, 88

@- command, cURL, 66

\ (backslash) commands, for
psql shell, 11

{…} curly braces, Groovy code
use of, 225

~ operator, in regular expres-
sion searches, 37

A
abstract syntax tree (query

tree), 31

ACID compliance, 25

ACID transaction database,
Neo4j as, 250–251

aggregate functions, 21–23

aggregated queries, in Mon-
goDB, 155–157

algebra, relational, SQL and,
13

Amazon
Dynamo paper, Riak and,

52
Elastic Compute Cloud

(EC2), 126

Amazon’s Web Services
(AWS), 126, 129

Apache Hadoop, 94, 119

Apache Hadoop project, 252

Apache Incubator project,
122

Apache Solr, 87

append only file, in Redis,
280

application code, choosing to
execute database code, 29

arbiters and voting, in Mon-
goDB, 169

Array Value, CouchDB Futon
document with, 181

arrow operator (->), in Groovy,
234

atomicity, verifying, 25

attributes
mapping, 12
in PostgreSQL

(COLUMNs), 11

AUTO_INCREMENT, MySQL,
16

Avro protocol, HBase, 122

AWS (Amazon’s Web Ser-
vices), 126, 129

B
B-tree

definition of, 21
index in PostgreSQL, 19
in MongoDB, 152–155

B-tree index, in PostgreSQL,
20

backslash (\) commands, for
psql shell, 11

Big Data implementation,
106–111, 311

Big Table, 94

big_vclock, 84

BigCouch, vs. CouchDB, 212

Bloom filters, 287–290
about, 109, 111

Bloom, Burton Howard, 109

BSD netcat (nc), 276–277

bucket values, storing map
functions in, 67–68

buckets, populating Riak, 55

built-in functions, in Riak, 68

C
CAP theorem

about, 317–320
adventure, 318–319
in HBase, 132
in Neo4j, 259
in Riak, 72, 92

Cartesian products, 12

Cassandra database, 5, 125

centrality, meaning of, 246

Changes API interface, 203,
291

characters, regular expres-
sion, 37

CLI (command-line interface),
connecting to MySQL, 137

Cloud Servers, RackSpace,
125

cloud service providers, 125

cluster
checking health of, 128
configuring, 127–128
connecting to, 128
HA, 252
launching, 128–129
Redis, 286–287
setting up, 125–126

code, choosing to execute
database, 29

collect(), as Groovy map
function, 233

collection
in Gremlin, 226
in MongoDB, 150

column families, HBase, 97–
99, 104, 116

column-oriented databases,
94

columnar databases
about, 309
strengths of, 309
weaknesses of, 309

columnar databases (column-
oriented databases), about,
5

columns
definition of, 21
in PostgreSQL, 11

command line shell, in Post-
greSQL, 10–11

command line, Redis com-
mands

DEL command, 274
DISCARD command, 264
EXPIRE command, 272–

273
FLUSHALL command,

274, 281
FLUSHDB command, 274
GET command, 264
GETBIT command, 287–

290
INCR command, 263
INFO command, 278–279
LASTSAVE command,

280
LRANGE command, 270,

282
MGET command, 263
MOVE command, 274
MULTI command in, 264
RENAME command, 274
SADD command, 282
SAVE command, 280
SDIFF command, 269
SET command, 263

SETBIT command, 287–
290

SETEX command, 273
SINTER command, 269
TYPE command, 274
ZRANGE command, 270–

271

command-line interface (CLI)
connecting to MySQL,

137
Redis and, 262

compression algorithms, in
HBase, 110

conflicts, resolving with vector
clocks, 80

constraints
foreign key, 13
primary key, 11
REFERENCES keyword

as, 15

CouchDB, see also polyglot
persistence service example

_all_docs view, 191
_changes field, 205
_id field in, 180
_rev field, 181
about, 6, 177–178
accessing documents

through views, 186–
188

Changes API interface,
203, 291

communication with, 182
CouchDB, 217
creating documents with

POST, 183–184
creating views with reduc-

ers, 200–202
developing application

specific view, 191–192
field names, 180
filtering changes, 210–

211
handling conflicts, 213–

216
importing data using,

194–199
issuing GET requests,

183
JSON structure nested

in, 180, 182
modifying records, 180
polling for changes with

Node.js, 206–209
querying design docu-

ments with curl, 192–
194

removing documents with
DELETE, 185

replicating data in, 212–
213

role in polyglot persis-
tence service example,
291

saving view as design
document, 191

strengths of, 217
total_rows field, 194
updating documents with

PUT, 183–184
vs. BigCouch, 212
vs. MongoDB, 178
watching for changes,

203–206
watching for changes

continuously, 209–210
weaknesses of, 217
writing views, 188–190

CouchDB Futon
creating documents, 179–

181
document with Array

Value, 181
replicator, 213

count() function
about, 22
using HAVING with, 23

count()function, aggregating
results, 156

CREATE INDEX command,
SQL, 19

CREATE TABLE command,
SQL, 11, 18

crosstab(), using in PostgreSQL,
33–34

Crow’s-Feet Entity Relation-
ship Diagram, 17–18

CRUD
about, 14
definition of, 21
verbs, 54

cURL
@- command, 66
issuing GET requests,

182
querying CouchDB de-

sign documents with,
192

REST and, 54
Riak and, 52

324 • Index

-v (verbose) attribute in,
55

-X PUT parameter, 55

curly braces {…}, Groovy code
use of, 225

D
database code, choosing to

execute, 29

databases
choosing correct, 1–3
genres of, 3–7
listing languages avail-

able in, 28

datastores, genres of, 1–2

datatypes
PostgreSQL, 14
Redis, 263, 265–267

default values, in HBase, 101

DEL command, in Redis, 274

DELETE (Delete)
as CRUD verb, 54
removing documents

with, 185
removing value using, 56

DELETE FROM command,
SQL, 13

describe command, 116

dictionaries
installing language, 41
Postgres use of, 41
simple, 40

DISCARD command
in Redis, 264
vs. ROLLBACK (SQL),

264

DISTINCT keyword, SQL, 23

distinct() function
in aggregated queries,

157
aggregating results, 156

document databases
about, 309
strengths of, 310
uniqueness of, 165
weaknesses of, 310

document datastore, Mon-
goDB as, 151

document oriented databases,
about, 5–6

domain specific languages,
conversing in, 235

dynamic programming lan-
guages, vs. static program-
ming languages, 149

E
EC2 (Elastic Compute Cloud),

Amazon, 126

edges, in Gremlin, 223

Elastic Compute Cloud (EC2),
Amazon, 125–126

elemMatch directive, Mon-
goDB, 143–145

Entity Relationship Diagram
(ERD), 17–18

ERD (Entity Relationship Dia-
gram), 17–18

Erlang, 52, 78, 86–87
CouchDB written in, 177
downloading, 52

eval() function, MongoDB,
160

event-driven nonblocking ap-
plications, 296

exclamation sign (!), in regu-
lar expression searches, 37

EXPIRE command, in Redis,
272–273

EXPLAIN command, SQL, 42–
43

extract(), in PostgreSQL, 33

F
Facebook, messaging index

table of, 100

filters
definition of, 210
using, 211

find function, in MongoDB,
140–141, 148–149

FLUSHALL command, in Re-
dis, 274, 281

FLUSHDB command, in Re-
dis, 274

foreign key constraint, 13

foreign keys, building indexes
on, 35

freebase.com, 293

full table scans, 18

full text search, inverted in-
dex in Neo4j, 241–242

Full-text searches, 39–48

Fully distributed mode,
HBase, 95

functions, creating functions
in Riak, 66–67

Futon web interface
creating Admin, 180

creating documents, 181
creating documents in

CouchDB, 179–181

fuzzy searching, about, 36

G
Generalized Index Search

Tree (GIST), 39

Generalized Inverted iNdex
(GIN), 42–43

genre graph, two-dimension-
al, 46

genres, as multidimensional
cube, 45–48

GeoSpatial indexes, spherical,
152

GeoSpatial Queries, Mon-
goDB, 171–172

German dictionary, installing,
41

GET (Read)
as CRUD verb, 54
issuing requests, 182–

183
reading documents with,

183
in Redis, 264
request for _changes

field, 205
retrieving value using, 56
using in Neo4j, 238–240

get command, in HBase, 100

getLast(collection), calling in
MongoDB, 160

GETBIT command, 287–290

GIN (Generalized Inverted iN-
dex), 42–43

GIST (Generalized Index
Search Tree), 39

Git, downloading, 52

Google, MapReduce, 132

graph, Gremlin terms in, 223

graph databases
about, 6, 310
Neo4j as, 219–220
strengths of, 310
weaknesses of, 310

Gremlin
about, 223
as Pipe building lan-

guage, 226–228
as general-purpose graph

traversal language, 223
calling loop(), 230–232

Index • 325

conversing in domain
specific languages, 235

edges in, 223
graph algorithms in, 244–

245
Groovy programming

language and, 233–235
jQuery and, 228
Java libraries in, 223
REST and, 242

Gremlin/Blueprint project,
247–249

GridFS, in MongoDB, 172–
173

Groovy programming lan-
guage, 223–226

closure in, 224
map function in, 233
method parentheses in,

225
reduce function in, 233

GROUP BY clause
in MySQL, 24
SQL, 23
vs. PARTITION BY, 24
vs. Window functions,

24–25

group() function
in aggregated queries,

157
aggregating results, 156
in MongoDB, 163

groupCount(), in Neo4j, 246

group()function, aggregate
query in MongoDB, 156

H
HA cluster, using in Neo4j,

252–253, 255

Hadoop distributed file sys-
tem (HDFS), 132

Hadoop, Apache, 94, 119,
125, 252

hash datatype, Redis, 265–
267

hash index, creating, 19

HAVING clause, using with
count(), 23

HBase
about, 93–94
adding data programmat-

ically, 103–104
altering tables, 101–102
as columnar database, 5
Big Data implementation,

106–111

Bloom filter support, 110
capturing data contained

in links, 116
column families, 97, 99,

104, 116
compression algorithms

in, 110
configuring, 95–96
constructing scanner,

116–118
creating tables, 96–99
datatypes, 132
default values in, 101
developing Thrift HBase

application, 124–125
disk usage, 111–112
get command in, 100
importing data, 106–107
inserting data in, 99
invoking scripts, 106–107
map, 96
on CAP, 132
properties, 97
protocols for client con-

nectivity, 122
put command in, 100
regions, 111, 113–115
retrieving data in, 99
running modes, 95
setting up cloud service,

126–129
shell in, 96–97, 103
shutting down, 96
starting, 96
streaming Wikipedia,

107–109
strengths of, 131
timestamp in, 100
timestamps in, 99
updating data in, 99
weaknesses of, 132
Whirr setting up clusters

in, 125

HBase Network Settings, 97

HBase shell, 96

HBaseMaster, 115

HDFS (Hadoop distributed file
system), 132

Homebrew for Mac, 262

hooks, pre/post commit, 84–
86

HTTP Etags, 83

HTTP headers and error
codes, in Riak, 55

HTTP PUT action, 55

HTTP Solr interface, Riak, 87

HTTP/REST interface, 52,
311

humongous, 135–136

Hypertable database, 5

I
ILIKE searches, 37

INCR command, in Redis,
263–264

index, as URL parameter for
Riak searches, 88

indexed lookup points, 19

indexes
about, 18
building on foreign keys,

35
definition of, 21
inverted, 42–43
in PostgreSQL, 18–20
in Riak, 89–90

indexing
lexemes, 42–43
in MongoDB, 152
in Neo4j, 241
values in Redis, 271

INFO command, in Redis,
278–279

inject(), as reduce function in
Groovy, 233

inner joins, 15–17

INSERT INTO, SQL com-
mands, 14

INSERT INTO command
INSERT INTO command,

14
SQL, 13

inverted indexes, GIN, 42–43

J
jQuery, Gremlin and, 228

Jamendo data, 200

Java, support in PostgreSQL
for, 28

Java API protocol, HBase, 122

Java libraries, in Gremlin,
223

Java Virtual Machine (JVM),
103

JavaScript
as native tongue of Mon-

goDB, 138–140
reduce function in, 69
Riak precommit property

to use function name,
85

326 • Index

JavaScript framework
in polyglot persistence

service exam, 292
relationship store, 298–

300

joins
about, 15
definition of, 21
inner, 15–17
left, 21
left joins, 17
MongoDB and, 148
outer, 17–18
right, 18

journaling, WAL, 112

JRuby
Apache Hadoop and, 119
based command line pro-

gram, HBase and, 96

JSON
based document

database, CouchDB as,
178

documents, 136
Riak search returning, 88
structure nested in

CouchDB, 180, 182

JSON objects
in CouchDB, 187
key/value pairs in, 180
in Neo4j, 238
serialized change notifica-

tion, 209

JUNG (Java Universal Net-
work/Graph) Framework,
247–249

JVM (Java Virtual Machine),
103

K
Kevin Bacon algorithm, 244–

245

key events, 80

key filters, in Riak, 69

key name, creating using
Post, 56

key-value (KV) store
about, 4, 308
Redis as, 261
strengths of, 308
weaknesses of, 308

key/value index, in Neo4j,
241

key/values, Neo4j data as set
of, 222

keys, in HBase, 97

KV (key-value) store, about,
4

L
large-scale deployments, in

Riak, 72

LASTSAVE command, in Re-
dis, 280

left joins, 17, 21

levenshtein, searches, 38

lexemes, indexing, 42–43

LIKE searches
% as wildcard on, 22
about, 37

link walking, 57–60
with mapreduce, 70–71

Links
about, 57
metadata, 58
using next_to in, 57

links, capturing data con-
tained in, 116

Linls, metadata, 57

list datatype, Redis, 266–267

listCommands() function,
MongoDB, 158

logs, table, 28–29

lookups with indexing, in
PostgreSQL, 18–20

loopback interface, 97

loops(), Neo4j calling, 230–
232

LRANGE command, in Redis,
270, 282

Lucene, Erlang module, 86

M
map function

following pattern of re-
duce function, 70

in Groovy, 233
outputs in Riak, 65
storing in bucked value,

67–68
storing in bucket value,

68

map functions, mapreduce
converting data using, 63–
64

map() function, in MongoDB,
163

mapping object to common
key, 64–66

/mapred command, 67

MapReduce, Google, 132

mapreduce
about, 63–66
in CouchDB, 200, 202–

203
creating in Riak, 66–67
link walking, 70–71
mapping object to com-

mon key, 64–66
in MongoDB, 160–164
retrieving objects using,

156

mapreduce functions, creat-
ing in Riak, 66–67

max(), 22

membase database, 4

memcached database, 4

Mercurial, downloading, 52

metadata
Links as, 57
storing, 58

metaphones, using in
searches, 43–44

MGET command, using in
Redis, 263

MIME types
multipart/mixed, 58
in Riak, 60–61

min(), 22

misspellings, MongoDB
warning about, 149

MongoDB
about, 6, 135–136
aggregated queries, 155–

157
building index on nested

values, 154
collection in, 150
command line reading,

140–142
commands, 139
constructing ad-hoc

queries, 141–142
count() function, 156
creating, 137–138
creating JavaScript func-

tions, 139–140
deleting documents, 149–

150
distinct() function, 156
elemMatch directive,

143–145
eval() function, 160
find function in, 140–

141, 148–149

Index • 327

GeoSpatial Queries, 171–
172

getLast(collection), 160
GridFS, 172–173
group() function, 156–157
indexing in, 152–155
installing, 136
joins and, 148
listCommands() function,

158
mapreduce in, 160–164
MongoDB, 139
nested array data in,

142–143
ObjectId, 138
operators, 145–148
problem with even nodes,

168
reading with code, 150
reducers, 163–164
references, 148
replica sets, 165–168
retrieving documents in,

140–141
runCommand() function,

157–159
server-side commands,

158–159
sharding in, 169–171
shortcut for simple deci-

sion functions, 150
strengths of, 174
updating, 146–148
use of JavaScript in, 138–

140
voting and arbiters in,

169
vs. CouchDB, 178
vs. mongoconfig, 170
warning about mis-

spellings, 149

MOVE command, in Redis,
274

movie suggestion system
schema, 35–36

MULTI command, in Redis,
264

multidimensional cubes, 45–
48

genres as, 45–48

multipart/mixed MIME type,
58

MySQL
AUTO_INCREMENT, 16
connecting to command-

line interface, 137
GROUP BY in, 24

N
namespaces, in Redis, 273–

274

Neo4j, random walk in, 246

Neo4j database
about, 7, 219
adding nodes in, 222,

224
adding subset of nodes to

graph, 230–232
as ACID transaction

database, 250–251
as whiteboard friendly,

219–221
backups, 257
building cluster, 253
calling loop(), 230–232
conversing in domain

specific languages, 235
dealing with large data

sets, 242–244
deleting, 236
finding path between two

nodes, 240
graph algorithms in, 244–

245
graph of nodes, 227
Gremlin and REST, 242
Groovy programming

language and, 233–235
groupCount() in, 246
high availability mode

and, 251, 254
indexing in, 241–242
process called walking,

220
process stepping forward

and back, 231
REST interface of, 238
role in polyglot persis-

tence service example,
291

role_count map in, 246
shutting down master

servers, 256
strengths of, 258
suggested schema, 220
updating, 236
using HA cluster in, 252–

253, 255
using JUNG in, 247–249
using REST in, 238–240
using pipes in Gremlin,

226–228
verifying cluster status,

255
verifying replication, 256
via Gremlin, 223–227

weaknesses of, 259
web interface, 221–222
Zookeeper coordinator in,

252, 254

nested array data, in Mon-
goDB, 142–143

nested values, building Mon-
goDB index on, 154

next_to, using in links, 57

*nix pipes, 110–111

*nix systems, 279

Node.js
JavaScript framework in

polyglot persistence
service example, 292

polling for changes with,
206–209

nodes
adding in Neo4j, 222, 224
consistency by quorum

in Riak, 77
consistency by reads in

Riak, 76
consistency by writes in

Riak, 76
durable writes in Riak,

78–79
eventual consistency in

Riak, 76
finding in Neo4j path be-

tween two in, 240
in Neo4j, 221
Neo4j graph of, 224
Riak, 72–78
server, 221
using REST in Neo4j to

create, 238

non-blocking, meaning of,
296

NoSQL, vs. relational
databases RDBMS, 1

not equal sign (<>), in Post-
greSQL, 14

Null values
about, 14
disallowing, 14

O
ObjectId, MongoDB, 138–139

old_vclock, 84

ON keyword, 15

operators
MongoDB, 145–148
in regular expression

searches, 37

outer joins, 17–18

328 • Index

P
PageRank, Google, 246

parsers, in Postgres, 41

PARTITION BY clause, vs.
GROUP BY, 24

percent sign (%), as wildcard
on LIKE searches, 22

Perl, 28

PERSIST key, in Redis, 273

PHP, 28

Pipe, processing units, 231

pipeline
Gremlin operations as,

226
meaning of, 226
streaming strings, 276–

277
vs. vertex, 228

pivot tables, in PostgreSQL,
33–34

PL/pgSQL, 28

polling interface, accessing
Changes API interface
through, 204

polyglot persistence, about, 7

polyglot persistence service
example, 291–303

phase 1, data transforma-
tion, 294–295

phase 2, system of
record(SOR) insertion,
295–298

populate datastores, 292–
293

rise of, 292
service of searching for

bands, 300–303

population script, using Ru-
by, 62–63

POST (Create)
as CRUD verb, 54
creating documents with,

183–184
creating key name using,

56

PostgreSQL, SQL executed to,
32

PostgreSQL database
about, 4, 9–10
aggregate functions, 21–

23
as relational database, 9
built-in documentation,

11
creating table logs, 28–29

creating views in, 30–31
datatypes, 14
generating tsvector lex-

emes, 41
installing, 10
joining tables, 15–18
lookups with indexing,

18–20
parsers in, 41
pivot tables in, 33–34
searching, 37–38
shell in, 11
SQL executed to, 31
strengths of, 49
templates in, 41
transactions in, 25–26
using Window functions,

24–25
using crosstab() in, 33–34
using extract() in, 33
views as RULES, 31–33
weaknesses of, 49
working with tables, 11–

15
writing procedures in, 28

pre/post commit hooks, 84–
86

precommit functions, Erlang
module, 86–87

primary key, 21
as SQL identifier, 11
constraints, 11
creating compound key

using, 14
definition of, 21
index, 19
ObjectId in MongoDB as,

138–139
setups, 16

protocols for client connectiv-
ity, HBase, 122

Pseudodistributed mode,
HBase, 95

psql shell
backslash (/) commands,

11
connecting to, 11

PUT (Update)
as CRUD verb, 54
creating Riak buckets,

55–57
updating documents with

PUT, 184–185

put and get commands, in
HBase, 100

put command, in HBase,
100, 103

Python, 28

Q
q and q.op, as URL parameter

for Riak searches, 88

query parameter values, Riak,
77

query tree (abstract syntax
tree), 31

question mark (?), in Riak
searches, 88

R
RackSpace Cloud Servers,

125

random walk, in Neo4j, 246

RDBMS databases
about, 2–3, 307
mathematical relations

in, 12
strengths of, 308
transactions in, 25–26
vs. NoSQL, 1
weaknesses of, 308

RDBMS databases), vs.
columnar databases, 5

reading, in MongoDB
with code, 150
command line, 140–142

Redis Bloom filter, 287–290

Redis database, see also poly-
glot persistence service ex-
ample

, 287
about, 5, 261
as key-value store, 261–

262
blocking lists, 267
building backend for a,

263–264
cluster, 282
command-line interface

and, 262
configuration of, 279
connecting to server,

262–263
data dumps, 283–285
datatypes, 263
DEL command, 274
DISCARD command, 264
durability of, 280
EXPIRE command, 272–

273
FLUSHALL command,

274, 281

Index • 329

FLUSHDB command, 274
GET command, 264
GETBIT command, 287–

290
getting ranges in, 270–

271
INCR command, 263
INFO command, 278–279
LASTSAVE command,

280
LRANGE command, 270,

282
master/slave replication,

282
MGET command, 263
MOVE command, 274
MULTI command in, 264
namespaces in, 273–274
PERSIST key in, 273
persistence options, 279
publishing and subscrib-

ing, 276–278
RENAME command, 274
role in polyglot persis-

tence service example,
291

SADD command, 282
SAVE command, 280
SDIFF command, 269
security of, 281–282
server information, 278–

279
SET command, 263
SETBIT command, 291
SETEX command, 273
SINTER command, 269
sorting sets, 269–272
streaming commands via

telnet, 276
streaming strings, 276–

277
strengths of, 304
transactions in, 264
tweaking parameters,

282
TYPE command, 274
using Bloom filter, 287–

290
weaknesses of, 304
ZRANGE command, 270–

271

Redis Ruby gem, 282

reduce function
in CouchDB, 202
following pattern of map

function, 70
in Groovy, 233

in JavaScript, 69
mapreduce converting

scalar values using,
63–64

reduce() function, in Mon-
goDB, 163

reducers
in CouchDB, 200–202
in MongoDB, 163
running on separate

servers, 163

REFERENCES, SQL keyword,
13–14

REFERENCES keyword, as
constraint, 15

regex (regular expression)
searches, 37

regioninfo scans, TABLE
schema, 116

regions, HBase, 111, 113–115

regular expression (regex)
searches, 37

relational algebra, SQL and,
13

relational databases
about, 2–3, 307
mathematical relations

in, 12
Neo4j as, 219–220
strengths of, 308
transactions in, 25–26
vs. NoSQL, 1
vs. Riak database, 91
vs. columnar databases,

5
weaknesses of, 308

relations, in PostgreSQL (TA-
BLES), 11

relationship, vs. vertex, 223

RENAME command, in Redis,
274

replicating data, in CouchDB,
212–213

Representational State
Transfer (REST), about, 54–
55

REST (Representational State
Transfer)

about, 54–55
based document

database, CouchDB as,
178

communication with
CouchDB, 182

Gremlin and, 242

Neo4j interface of, 238
using in Neo4j, 238–240

REST protocol, HBase, 122

restart argument, in Riak, 85

RETURNING statement, SQL,
16

Riak database
about, 4, 51
Amazon Dynamo paper,

52
as NoSQL style database,

91
as key value store, 55
built-in functions, 68
creating mapreduce

functions in Riak, 66–
67

cURL and, 52
indexes in, 89–90
installing, 52–54
key filters in, 69
mapreduce in, 66
MIME types in, 58
on CAP, 92
populating buckets, 55–

57
query parameter values,

77
restart argument, 85
ring, 72–74
searching, 86–88
stored functions in, 67–

68
strengths of, 91
timeout option, 71
timestamps in, 80
valid bucket properties,

77
vs. relational databases,

91
weaknesses of, 91
web and, 51–52
-X PUT parameter, 55

Riak servers
app. config, 84
configuring partitions,

72–74
durable writes in, 78–79
large-scale deployments

and, 72
nodes and vnodes, 72–78
resolving with vector

clocks, 80–84

Riak, HTTP Solr interface, 87

right joins, 18

role_count map, in Neo4j, 246

330 • Index

ROLLBACK command
SQL, 25
vs. ROLLBACK (SQL)

DISCARD (Redis), 264

rows
as URL parameter for Ri-

ak searches, 88
definition of, 21
in PostgreSQL, 11

Ruby
importing data into

CouchDB using, 194–
199

population script using,
62–63

support in PostgreSQL
for, 28

Ruby on Rails system, grab-
bing data via ActiveRecord
interface, 64

RULES, in PostgreSQL, 31–33

runCommand() function,
MongoDB, 157–159

S
SADD command, in Redis,

282

SAVE command, in Redis,
280

scalability, about, 2–3

scanner, constructing HBase,
116–118

scanning tables to build other
tables

about, 115–116
examining output, 119–

120
running script, 118
using mapreduce for, 119

schema definition diagram,
18

schemas
definition diagram, 17
movie suggestion system,

35–36
in Neo4j, 220
for PostgreSQL, 11–14

Scheme, 28

scripts
HBase Big Data imple-

mentation, 106–111
for scanning all rows of

table, 116–118

SDIFF command, in Redis,
269

searches
about, 36
combining string match-

es, 44
Full-text, 39–48
ILIKE, 37
levenshtein, 38
LIKE, 22, 37
regular expression

(regex), 37
in Riak, 86–88
trigram, 38–39
TSQuery, 39–41
TSVector, 39–41
using metaphones, 43–44
using wildcards in Riak,

88

secondary indexes, in Riak,
89–90

SELECT...FROM table com-
mand

, 13
SQL, 13

SERIAL integers, 17

SERIAL keyword, 16

server-side commands, in
MongoDB, 158–159

servers, nodes in, 221

servers, Riak
configuring partitions,

72–74
durable writes in, 78–79
large-scale deployments

and, 72
nodes and vnodes, 72–78
pruning vector clocks, 84
resolving with vector

clocks, 80–84

SET command, using in Re-
dis, 263

$set operation, in MongoDB,
147–148

SETBIT command, 287–290

SETEX command, in Redis,
273

sets, meaning of, 268

Seven Languages in Seven
Weeks (Tate), xi

sharding, in MongoDB, 169–
171

shell protocol, HBase, 122

simple dictionary, 40

SINTER command, in Redis,
269

small_vclock, 84

snapshotting, in Redis, 280

sort, as URL parameter for
Riak searches, 88

SQL, see also primary key
aggregate functions, 21–

23
definition of, 21
executed to PostgreSQL,

31–32
foreign key constraints,

13, 15
joins, 15–18
PostgreSQL and, 4
standard string matches,

37–38

SQL clauses
GROUP BY, 23
HAVING, 23
WHERE, 13

SQL commands
CREATE INDEX, 19
CREATE TABLE, 11, 18
DELETE FROM, 13
EXPLAIN, 42–43
finding in PostgreSQL, 11
INSERT INTO, 13–14
ROLLBACK, 25
SELECT...FROM, 13
UPDATE, 15, 29

SQL identifier, primary key
as, 11

SQL keywords
DISTINCT, 23
ON, 15
REFERENCES, 13–14
SERIAL, 16
UNIQUE, 19

SQL statements, RETURN-
ING, 16

Stand-alone mode, HBase, 95

star (*)
in regular expression

searches, 37
in Riak searches, 88

static programming lan-
guages, vs. dynamic pro-
gramming languages, 149

stop words, 40

stored functions, in Riak, 67–
68

stored procedures, 26–28

string matches, combining in
searches, 44

strings, in PostgreSQL, 14

system design, consistency
and durability in, 72

Index • 331

T
table logs, 28–29

tables
altering in HBase, 100–

102
building by scanning,

115–116
creating HBase, 96–98
creating SQL, 11
definition of, 21
full table scans of, 18
joins, 15–18
timestamps in, 17
unions, 18

Tate, Bruce A., xi

Tcl, 28

telnet, streaming commands
via, 276

templates, in Postgres, 41

text datatype, 14

Thrift protocol, HBase
about, 122
building client applica-

tion, 123–125
generating models, 123
installing, 122–123

timeout option, in Riak, 71

timestamps
in HBase, 99–100
in Riak, 80
table, 17

top command, MongoDB, 158

transactions
in PostgreSQL, 25–26
unavoidable, 26

transform steps, in Gremlin,
231

triggers, 28

trigram searches, 38–39

TSQuery searches, 39–41

tsvector lexemes, generating
in Postgres, 41

TSVector searches, 39–41

Tuple relational calculus, SQL
and, 13

tuples, in PostgreSQL
(ROWs), 11

two dimensional indexes, in
MongoDB, 152

TYPE command, in Redis,
274

U
underscores (_), as wildcard

in Riak Link, 58

unions
in Redis, 271–272
table, 18

UNIQUE constraints, setting,
35

UNIQUE keyword, SQL, 19

Unix build tools, 52

UPDATE command, SQL, 15,
29

URL parameters, for Riak
searches, 88

URL shortener
adding activities to, 267
building backend for a,

263–264

V
-v (verbose) attribute, in

cURL, 55

varchar() strings, 14

vector clocks (vclocks)
about, 80
in practice, 82–84
Riak pruning, 84
in theory, 81–82

vendor lock, 27

venue_id
counting events at, 22
setting, 22

venues, creating tables with,
16

versioning, in HBase, 99

vertex
vs. pipeline, 228
vs. relationship, 223

views
accessing documents

through views in
CouchDB, 186–188

creating in , 30–31
creating views with

CouchDB reducers,
200–202

developing in CouchDB
application specific,
191–192

path for querying, 193
saving as design docu-

ment in CouchDB,
191–192

writing views in
CouchDB, 188–190

virtual nodes (vnodes)
consistency by quorum

in Riak, 77
consistency by reads in

Riak, 76
consistency by writes in

Riak, 76
durable writes in Riak,

78–79
eventual consistency in

Riak, 76
Riak, 72–78

Voldemort database, 4, 125

voting and arbiters in, in
MongoDB, 169

vtags, 83

W
WAL (Write-Ahead Log) files,

112–113

web, Riak and, 51–52

web administration page
dashboard, 222

WHERE clause, SQL, 13

$where clause, running cus-
tom code in MongoDB us-
ing, 150

Whirr
about, 125
configuring cluster for,

127–128
destroying cluster com-

mand, 129
preparing, 126
setting up cloud service,

126

whiteboard friendly, meaning
of, 219

WikiMedia Foundation, pub-
lishing data dumps, 106

Wikipedia, streaming, 107–
109

wildcards
in ILIKE searches, 37
in LIKE searches, 22, 37
in regular expressions, 37
in Riak, 88
in Riak Link, 58

Window functions, using in
PostgreSQL, 24–25

Write Ahead Logging, 94

Write-Ahead Log (WAL) files,
112–113

wt, as URL parameter for Ri-
ak searches, 88

332 • Index

X
-X PUT parameter, 55

X-Riak- Meta- header prefix,
58

XML, streaming, 107

Y
young_vclock, 84

Z
Zookeeper, 125, 132, 252,

254

ZRANGE command, in Redis,
270–271

Index • 333

Learn a New Language This Year
Want to be a better programmer? Each new programming language you learn teaches you

something new about computing. Come see what you’re missing.

You should learn a programming language every year,

as recommended by The Pragmatic Programmer. But

if one per year is good, how about Seven Languages in

Seven Weeks? In this book you’ll get a hands-on tour

of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that list,

you’ll broaden your perspective of programming by

examining these languages side-by-side. You’ll learn

something new from each, and best of all, you’ll learn

how to learn a language quickly.

Bruce A. Tate

(328 pages) ISBN: 9781934356593. $34.95

http://pragprog.com/titles/btlang

Bill Karwin has helped thousands of people write better

SQL and build stronger relational databases. Now he’s

sharing his collection of antipatterns—the most com-

mon errors he’s identified out of those thousands of

requests for help.

Most developers aren’t SQL experts, and most of the

SQL that gets used is inefficient, hard to maintain, and

sometimes just plain wrong. This book shows you all

the common mistakes, and then leads you through

the best fixes. What’s more, it shows you what’s behind

these fixes, so you’ll learn a lot about relational

databases along the way.

Bill Karwin

(352 pages) ISBN: 9781934356555. $34.95

http://pragprog.com/titles/bksqla

http://pragprog.com/titles/btlang
http://pragprog.com/titles/bksqla

Long live the command line!
Use tmux for incredible mouse-free productivity, and learn how to create profession com-

mand-line apps.

Your mouse is slowing you down. The time you spend

context switching between your editor and your con-

soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer

that you can tailor to your workflow. Learn how to

customize, script, and leverage tmux’s unique abilities

and keep your fingers on your keyboard’s home row.

Brian P. Hogan

(88 pages) ISBN: 9781934356968. $11.00

http://pragprog.com/titles/bhtmux

Speak directly to your system. With its simple com-

mands, flags, and parameters, a well-formed command-

line application is the quickest way to automate a

backup, a build, or a deployment and simplify your

life.

David Bryant Copeland

(200 pages) ISBN: 9781934356913. $33

http://pragprog.com/titles/dccar

http://pragprog.com/titles/bhtmux
http://pragprog.com/titles/dccar

Welcome to the New Web
You need a better JavaScript and more expressive CSS and HTML today. Start here.

CoffeeScript is JavaScript done right. It provides all of

JavaScript’s functionality wrapped in a cleaner, more

succinct syntax. In the first book on this exciting new

language, CoffeeScript guru Trevor Burnham shows

you how to hold onto all the power and flexibility of

JavaScript while writing clearer, cleaner, and safer

code.

Trevor Burnham

(160 pages) ISBN: 9781934356784. $29

http://pragprog.com/titles/tbcoffee

CSS is fundamental to the web, but it’s a basic lan-

guage and lacks many features. Sass is just like CSS,

but with a whole lot of extra power so you can get more

done, more quickly. Build better web pages today with

Pragmatic Guide to Sass. These concise, easy-to-digest

tips and techniques are the shortcuts experienced CSS

developers need to start developing in Sass today.

Hampton Catlin and Michael Lintorn Catlin

(128 pages) ISBN: 9781934356845. $25

http://pragprog.com/titles/pg_sass

http://pragprog.com/titles/tbcoffee
http://pragprog.com/titles/pg_sass

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

The best agile book isn’t a book: Agile in a Flash is a

unique deck of index cards that fit neatly in your

pocket. You can tape them to the wall. Spread them

out on your project table. Get stains on them over

lunch. These cards are meant to be used, not just read.

Jeff Langr and Tim Ottinger

(110 pages) ISBN: 9781934356715. $15

http://pragprog.com/titles/olag

Here are three simple truths about software develop-

ment:

1. You can’t gather all the requirements up front. 2.

The requirements you do gather will change. 3. There

is always more to do than time and money will allow.

Those are the facts of life. But you can deal with those

facts (and more) by becoming a fierce software-delivery

professional, capable of dispatching the most dire of

software projects and the toughest delivery schedules

with ease and grace.

Jonathan Rasmusson

(280 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

http://pragprog.com/titles/olag
http://pragprog.com/titles/jtrap

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/titles/rwdata
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/rwdata

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/rwdata
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/rwdata
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	Why Seven Databases
	What's in This Book
	What This Book Is Not
	Code Examples and Conventions
	Online Resources

	1. Introduction
	It Starts with a Question
	The Genres
	Onward and Upward

	2. PostgreSQL
	That’s Post-greS-Q-L
	Day 1: Relations, CRUD, and Joins
	Day 2: Advanced Queries, Code, and Rules
	Day 3: Full-Text and Multidimensions
	Wrap-Up

	3. Riak
	Riak Loves the Web
	Day 1: CRUD, Links, and MIMEs
	Day 2: Mapreduce and Server Clusters
	Day 3: Resolving Conflicts and Extending Riak
	Wrap-Up

	4. HBase
	Introducing HBase
	Day 1: CRUD and Table Administration
	Day 2: Working with Big Data
	Day 3: Taking It to the Cloud
	Wrap-Up

	5. MongoDB
	Hu(mongo)us
	Day 1: CRUD and Nesting
	Day 2: Indexing, Grouping, Mapreduce
	Day 3: Replica Sets, Sharding, GeoSpatial, and GridFS
	Wrap-Up

	6. CouchDB
	Relaxing on the Couch
	Day 1: CRUD, Futon, and cURL Redux
	Day 2: Creating and Querying Views
	Day 3: Advanced Views, Changes API, and Replicating Data
	Wrap-Up

	7. Neo4J
	Neo4J Is Whiteboard Friendly
	Day 1: Graphs, Groovy, and CRUD
	Day 2: REST, Indexes, and Algorithms
	Day 3: Distributed High Availability
	Wrap-Up

	8. Redis
	Data Structure Server Store
	Day 1: CRUD and Datatypes
	Day 2: Advanced Usage, Distribution
	Day 3: Playing with Other Databases
	Wrap-Up

	9. Wrapping Up
	Genres Redux
	Making a Choice
	Where Do We Go from Here?

	A1. Database Overview Tables
	A2. The CAP Theorem
	Eventual Consistency
	CAP in the Wild
	The Latency Trade-Off

	Bibliography
	Index

